
KYBERNET IKA — VOLUME 6 0 (2 0 2 4) , NUMBER 6 , PAGES 8 1 9 – 8 3 3

DDIMCACHE: AN ENHANCED TEXT-TO-IMAGE
DIFFUSION MODEL ON MOBILE DEVICES

Wu Qifeng

On June 11, 2024, OpenAI announced a collaboration with Apple to deeply integrate the
ChatGPT generative language model into Apple’s product lineup. With support from various
generative AI models, devices like smartphones will become more intelligent. The text-to-image
diffusion model, known for its stable and superior generative capabilities, has gained wide recog-
nition in image generation and will undoubtedly play a crucial role on mobile devices. However,
the large size and complex architecture of diffusion models result in high computational costs
and slower execution speeds. As a result, diffusion models require high-end GPUs or cloud-
based inference, which often raises personal privacy and data security. This paper presents a
multiplicative effect joint optimization method for complex models such as diffusion models,
enabling efficient execution on mobile devices. The method integrates multiple optimization
strategies, leveraging their interactions to create synergies and enhance overall performance.
Building on this multiplicative effect joint optimization approach, we have introduced DDIM-
Cache, an enhanced text-to-image diffusion model. DDIMCache maintains image generation
quality while achieving optimal speed, generating 512–512 images in approximately 6 seconds.
This provides powerful image generation capabilities and an enhanced user experience for mo-
bile users.In addition, as a foundation model, Stable Diffusion supports more applications such
as image editing, inpainting, style transfer, and super-resolution, all of which can have a sig-
nificant impact. The ability to run the model entirely on mobile devices without an internet
connection will open up endless possibilities.

Keywords: diffusion model, text-to-image, mobile devices

Classification: 68T01

1. INTRODUCTION

2024 is poised to become a breakthrough year for mobile AI. The global market share
of AI-powered smartphones is expected to reach 16%. Fueled by consumer demand
for AI assistants and enhanced mobile AI features, this share is anticipated to surge
to 54%̇ by 2028. The strategic partnership between Apple and OpenAI could reshape
consumer expectations for mobile AI applications, accelerating the shift toward more
personalized, efficient, and diverse AI solutions. In the long term, Apple may develop a
fully integrated AI ecosystem, spanning from hardware to applications, centered around

DOI: 10.14736/kyb-2024-6-0819

http://doi.org/10.14736/kyb-2024-6-0819

820 W. QIFENG

mobile devices. Apple has stated that its “Apple Intelligence” will decide whether tasks
are processed on-device or in the cloud. Simple tasks will be handled on the device, while
more computationally demanding ones will utilize cloud-based processing. Apple’s AI
capabilities can recognize data without collecting it. To ensure users that their data
remains local and isn’t exploited, Apple has developed a private cloud server with chip-
level privacy and security protections.

The text-to-image diffusion model, renowned for its stability and generative capabil-
ities, is poised to become an essential feature on mobile devices. Generative language
models, such as ChatGPT, demand considerable computational resources. Diffusion-
based text
-to-image generation models [1] generally surpass generative language models in both
computational scale and architectural complexity. Consequently, large-scale cloud infer-
ence platforms and high-end GPUs are needed to deliver the desired user experience.
This approach not only incurs high costs but also raises potential privacy concerns. The
challenge of accelerating model inference on mobile devices has garnered significant at-
tention. Deploying diffusion models on mobile devices can drastically cut computational
costs, reduce latency, enhance user privacy, and improve scalability. However, limited
computing and memory resources on mobile devices pose significant challenges for de-
ploying and running diffusion models. To tackle these challenges, we have introduced
DDIMCache, an enhanced text-to-image diffusion model. The key contributions of this
paper include:

1. This paper performed an in-depth analysis of the UNet used in the denoising
process, identifying architectural redundancies. Based on this, we developed a
feature-caching optimization method for diffusion model inference. This method
greatly enhances image generation speed with only a slight reduction in quality.

2. This paper presents a multiplicative effect Joint optimization algorithm for com-
plex models such as diffusion models, enabling efficient execution on mobile de-
vices. The method integrates multiple optimization strategies, leveraging their
interactions to create synergies and enhance overall performance.

3. This paper propose DDIMCache, a text-to-image diffusion model designed specifi-
cally for mobile devices. DDIMCache achieves optimal speed without compromis-
ing image quality, generating 512 × 512 images in around 6 seconds.

2. RELATED WORK

In their article “World’s First On-Device Demonstration of Stable Diffusion on an An-
droid Phone” [2] (Hou and Asghar, 2023), the authors discuss Qualcomm’s breakthrough
in running the Stable Diffusion model directly on an Android smartphone. In their 2023
study [3], Chen et al. implemented several optimizations that reduced Stable Diffusion’
inference latency to under 12 seconds on mobile.

Recent research on accelerating model inference on mobile devices has mainly con-
centrated on fast sampling methods, GPU optimization [3], training improvements [4],
quantization techniques [5], model pruning [6], and architecture search [7]. Due to the
severely limited computational and memory resources on mobile devices, even though

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 821

fast sampling methods theoretically offer the greatest potential for acceleration, the
resulting performance improvements are often insufficient to ensure a good user experi-
ence.In some cases, they may even degrade image generation quality. Therefore, stan-
dard optimization algorithms alone are insufficient to achieve both optimal generation
speed and maintain image quality on mobile devices with hardware and performance
limitations.

To tackle these challenges, this paper presents a joint optimization method for com-
plex models such as diffusion models, enabling efficient execution on mobile devices.
The method integrates multiple optimization strategies, leveraging their interactions to
create synergies and enhance overall performance.

3. APPROACH

3.1. Multiplicative effect joint optimization algorithm

When exploring the deployment of neural network models on mobile devices, several
key challenges and optimization directions are involved. Due to the limited computa-
tional resources and power constraints of mobile devices, efficiently deploying complex
neural network models on these devices requires the application of various optimization
techniques in combination. Here are some key exploration directions:

1. Quantization techniques reduce memory usage and computational load by convert-
ing floating-point weights and activations in a model to lower 16 widths. Although
quantization may slightly reduce model accuracy, it significantly lowers computa-
tional costs and accelerates inference on mobile devices.

Pruning techniques reduce model size by removing redundant or less impactful
parameters. Common pruning methods include weight pruning, which removes
neurons with smaller weights, and structural pruning, which eliminates entire con-
volutional filters or neuron layers that are less important. Pruning can significantly
reduce the number of parameters in the model, thereby lowering memory require-
ments and computational complexity.

2. Researchers have specifically designed several lightweight neural network archi-
tectures for mobile devices, such as TensorFlow Lite, PyTorch Mobile, and Core
ML. These architectures adapt to the computing capabilities of mobile devices by
reducing parameters and computation.

3. Modern mobile devices are equipped with dedicated AI hardware accelerators, such
as NPUs (Neural Processing Units) and DSPs (Digital Signal Processors). These
accelerators efficiently handle neural network computations, greatly increasing the
speed and efficiency of model inference. GPU Acceleration: Although the GPU
performance of mobile devices is limited compared to desktop-level GPUs, using
them for parallel computation can still improve the speed of neural network exe-
cution.

4. Improving neural network model architectures is a key area of deep learning re-
search, particularly with regard to addressing architectural redundancy in different

822 W. QIFENG

application scenarios, which presents a significant optimization opportunity. Ar-
chitectural redundancy refers to unnecessary layers, nodes, or parameters in the
model design that can lead to wasted computing resources, slower inference speed,
or excessive memory usage. By optimizing these redundant components, model
efficiency can be significantly improved while maintaining or even enhancing per-
formance.

5. By analyzing the inference process, methods such as reducing inference steps or
caching intermediate computation results can be used to minimize redundant cal-
culations.

Through the analysis of the deployment and operation process of the neural network
model, the multiplicative effect joint optimization algorithm combines the aforemen-
tioned multiple optimization techniques, utilizing the strengths of each to complement
and share information, achieving a multiplicative effect that surpasses the abilities of
any individual method.

We analyze the deployment and execution of the diffusion model on mobile devices.

1. Mobile devices have limited computational power and memory, making it im-
possible to load all components of the text-to-image diffusion model. In most
scenarios, the loss from 8-bit quantization is minimal, resulting in almost no sig-
nificant difference in image quality while substantially reducing model size.Pruning
typically involves a trade-off with model performance, necessitating careful con-
sideration.Both pruning and quantization are essential for the complete operation
of diffusion models on mobile devices.

2. Existing deep learning frameworks have been optimized specifically for certain
mobile devices. For example, iOS devices are well-supported by Core ML, while
Android devices typically support TensorFlow Lite or PyTorch Mobile. A universal
deep learning framework for mobile devices has not yet emerged, which is why we
do not use specialized learning frameworks.

3. Although AI accelerators and GPU acceleration on mobile devices have played an
important role in promoting the efficient operation of deep learning models, their
designs are often tailored to specific devices and hardware architectures, resulting
in a lack of universal solutions. Therefore, we have also decided to abandon this
approach.

4. The application of the UNET architecture in diffusion models does indeed face
redundancy issues, especially in image generation tasks. This is because UNET
was originally designed for image segmentation, and the requirements for image
generation differ from those for image segmentation. Therefore, in image genera-
tion applications, the design of the UNET architecture contains some redundancies
and offers significant optimization potential.

5. The inference performance of diffusion models is mainly constrained by the number
of denoising steps and the computational complexity of each step. We can consider
using common fast sampling methods to reduce the number of inference steps.

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 823

3.2. Pruning and quantization

When loaded into memory, Stable Diffusion 1.5 typically occupies around 10GB of RAM.
The limited memory on mobile devices makes it impractical to load all components of
Stable Diffusion at once. All subsequent experiments will default to using quantization
and pruning.

Due to the significant impact of pruning on diffusion models, which often have com-
plex architectures, preserving details and generating high-quality images is crucial. We
adopt a structural pruning approach, removing entire convolutional layers. After prun-
ing, the model is fine-tuned using a small-scale training dataset.

We then applied quantization to the pruned Stable Diffusion 1.5, quantizing the
weights to 8-bit precision to reduce memory consumption. Since mobile GPUs lack
support for integer matrix multiplications, we converted them to 16-bit floating points
before computation.

Finally, when fully loaded into memory, the model occupies approximately 1.8GB,
which most mobile hardware can support.

3.3. DDIM

The reverse diffusion process [8] in the text-to-image diffusion model denoises random
noise Xt ∼ N(0, I) to the target distribution by modeling the transition probabilities
q(Xt−1|Xt). At each step t of the reverse diffusion process, the conditional probability
distribution is approximated by the network ϵθ(Xt, t), and the training is formalized as
a noise prediction problem . Therefore,

Xt−1 ∼ pθ(Xt−1|Xt) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, βtI

)
, (1)

where αt = 1− βt, and ᾱt =
∏t

i=1 αi. After multiple iterations, X0 is obtained.

Diffusion models require a thousands of denoising steps. By employing fast sampling
algorithms like DDIM (Denoising Diffusion Implicit Models) [9] , the number of sampling
steps can be reduced without significantly degrading the quality of the generated output.
The method uses deterministic sampling to accelerate inference speed by dozens of times
while maintaining the quality of the generated images. Theoretically, it is the most
powerful optimization method for diffusion models. In the following experiments, the
implementation will be specifically done using Python. Hugging Face’s [10] diffusers
library provides a relatively simple interface for using Stable Diffusion 1.5. You can
generate images by specifying the DDIM sampler.

3.4. Cache strategy

In this work, we continue to optimize each inference step of the diffusion model. The
network ϵθ, employed in the reverse diffusion process, is typically constructed using a
UNet [11] architecture. However, the redundancy of the UNet design has become the
main bottleneck for conditional diffusion models. As shown in Figure 1, UNet is a con-
volutional neural network comprising an encoder, a decoder, and skip connections. The

824 W. QIFENG

Fig. 1. This is UNet Architecture image.

Fig. 2. Cache Strategy in the Inference.

encoder down-samples the input image to various sizes, encoding high-level features,
while skip connections transmit feature information from the encoder to correspond-
ing decoder layers for feature fusion. This design ensures that high-frequency features,
which may be lost during down-sampling, are reintroduced during the decoder’s recon-
struction of the high-resolution image. The decoder then up-samples the feature maps
to reconstruct the final output image.

In each layer of the UNet, high-level features from the previous layer Ui+1 are fused
with high-frequency features from the corresponding down-sampling block Di via skip
connections. This fusion is represented by the operation Di⊕Ui+1 , where⊕denotes fea-
ture concatenation. Here, U represents up-sampling blocks, D represents down-sampling
blocks, Di denotes the ith layer down-sampling block, and Ui+1 denotes the (i + 1)th
layer up-sampling block. After feature fusion in the current layer, the result is passed to

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 825

the next layer for further fusion at a larger scale. Ui+1 represents high-level features, in-
cluding semantic and structural information about the image. These high-level features
encode slowly changing information, such as the shape, texture, position, and category
of objects. On the other hand, Di provides high-frequency features, including fine edges,
texture details, and noise, primarily derived from the down-sampling blocks.

The training process of diffusion models is computationally intensive, requiring for-
ward propagation, backward propagation, and weight updates for each batch of samples.
However, the inference process is less demanding, requiring only forward propagation
to predict the image without backward propagation or weight updates. The inference
process primarily relies on UNet for noise prediction. Leveraging redundant features of
the UNet architecture can effectively reduce the computational load during inference.

Below, we introduce the process described in Figure 2. At each denoising step, the
network ϵθ predicts noise based on the parameters Xt and t. Removing the predicted
noise from Xt results in Xt−1. During the denoising process, changes in the image
between adjacent steps are minimal.

The final stage of noise prediction specifically involves feature fusion in the first layer
of the UNet, represented as D1 ⊕U2. The predicted noise is related only to D1, U2, and
the time step t. U2 contains high-level features of the generated image, primarily low-
frequency information such as high-level semantics and structure, which are unrelated
to high-frequency noise. Because U2 changes very little between consecutive steps in the
denoising process, recomputing these high-level features at each step results in substan-
tial redundant computation. Therefore, U2 can be cached at each step to accelerate the
inference process. On the other hand, D1, which contains high-frequency information
like noise, changes significantly between consecutive steps and cannot be cached.

At step t in the denoising process, after processing by the encoder and multiple layers
of feature fusion in the UNet, high-level features Ut2 are obtained. Ut2 represents the
high-level features of the second-layer up-sampling block at step t. Since Ut2 changes
little over the subsequent n steps, it can be cached in a cache. The result of feature fusion
(D1 ⊕ U2) in the first layer of the UNet is then further processed to obtain Xt. In the
subsequent denoising step t− i (i = 1, 2, 3, . . . , n−1), the computation process for Ut+i,2

can be omitted, and the cached Ut2 value reused for feature fusion in the first layer. This
feature caching mechanism can be extended to all steps in the reverse denoising process.
The cached features are computed once and reused over the subsequent n − 1 steps.
The process of caching high-level features U2 continues in the next step. Subsequent
experiments will analyze the appropriate value for n.

3.5. DDIMCache

We introduced DDIMCache, an enhanced text-to-image diffusion model, by combining
optimizations from quantization,pruning, DDIM, and caching strategies. The following
experiments will demonstrate that these optimization algorithms produce a multiplica-
tive effect, significantly reducing computational load and greatly improving efficiency.

826 W. QIFENG

4. EXPERIMENT

4.1. Experimental setup

DDIMCache is built on the foundation of Hugging Face’s Stable Diffusion 1.5 [10]. To
ensure optimal performance on mobile devices, we performed pruning and quantization
optimizations in advance.We selected the widely used MS-COCO 2017 [12] dataset for
a comprehensive performance evaluation.We used standard metrics, including latency
and FID, for our evaluation. All experiments were conducted on the recently released
high-performance Samsung S23 Ultra, which features a Snapdragon 8 Gen 2 processor,
Adreno 740 GPU, and 8GB of RAM.

4.2. Quantitative analysis

Latency
FID Cache

n = 1
Cache
n = 2

Cache
n = 3

Cache
n = 5

Cache
n = 6

Cache
n = 10

DDIM
Step=20 9.8

29.1
5.3

29.4
3.8

29.8
2.4

30.8
2.2

31.5
1.7

33.9

DDIM
Step=50 24.4

18.3
13

18.5
9.3

18.8
6.2

19.8
5.4

20.6
4.1

24.2

DDIM
Step=100 49.4

18
27.3

18.2
19.4

18.4
12.1

19.5
10.8

20.1
8.3

23.7

DDIM
Step=1000 487.3

17.4
271.0

17.6
191.0

17.9
123.1

18.9
109.4

19.8
84.2

23.1

Tab. 1. Benchmark results for the GALAXY S23 ULTRA with each

optimization enabled, using MS-COCO 2017 to generate images with

a resolution of 512–512. Due to memory constraints, the DDIM and

Cache optimizations executed in Stable Diffusion 1.5 have undergone

quantization and pruning.

The table 1 presents the performance metrics of the base model Stable Diffusion 1.5
after applying quantization and pruning, across various cache Step and DDIM sampling
Step. The metrics include FID scores, which assess image generation quality, and latency,
which reflects the image generation speed in seconds. The first row represents the
baseline model with varying cache step sizes applied. The cache step size, denoted as
n, takes values of 1, 2, 3, 5, 6, and 10. When n = 1, it is equivalent to not using the
caching strategy. The first column represents the baseline model with varying sampling
step sizes applied.The sampling step size, denoted as step, takes values of 20, 50, 100,
and 1000. When step = 1000, it is equivalent to not using the Fast Sampling Method.
When n = 1 and step=1000, it is equivalent to executing the original base model with
only quantization and pruning applied. The values below the diagonal line in each cell
represent the latency for image generation by the model under the corresponding cache
step size n and sampling step size step, with the latency measured in seconds. For the
quality assessment of images generated by diffusion models, the FID metric is one of

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 827

the very commonly used evaluation indicators. Regarding the reasonable range of FID
values [13], for image generation tasks, an FID score between 5 and 20 can be considered
a very good result. An FID score above 20 may require further model improvement.
These values, of course, can vary depending on the specific dataset and task, but they
can generally serve as a reference range.

Speedup and efficiency are two metrics used to measure the performance improvement
of optimized algorithms. Speedup measures the degree of performance enhancement
achieved by the optimized algorithm. It represents the factor by which the execution
time of the algorithm improves after optimization compared to the execution time before
optimization. The formula for calculating speedup is:

S(n) =
Ts

Tp(n)
(2)

Where: S(n) is the speedup under parameter n, Ts is the execution time before the
algorithm is optimized, and Tp(n)is the execution time of the optimized algorithm un-
der parameter n. The efficiency of an algorithm is a measure of how effectively the
algorithm utilizes resources (n) after applying an optimization technique. It indicates
how efficiently the algorithm uses resources (n) in the process of improving performance.
The formula for calculating efficiency is still based on speedup:

E(n) =
S(n)

n
(3)

Where:S(n) is the speedup under parameter n, E(n)represents the efficiency under pa-
rameter n, and n denotes the amount of resources used.

4.2.1. Quantization and pruning

Without quantization and pruning, mobile devices’ memory limitations prevent the full
execution of Stable Diffusion. This paper focuses on model performance on mobile
devices, ablation experiments for these methods will not be conducted. As seen in the
Table 1. When n = 1 and step=1000, it is equivalent to executing the original base model
with only quantization and pruning applied.In this case, the model’s image generation
latency is 487 seconds, with an FID of 17.4. The model’s latency is significantly higher
than typical values, and the FID is also larger than usual. This is due to the significantly
lower computational performance of mobile platforms compared to desktop platforms.
Regarding differences in image generation quality, models on mobile devices often need
to be quantized and pruned. It may degrade image generation quality.

4.2.2. DDIM

As seen in the second column of Table 1, where the cache n = 1, indicating that no
caching strategy is applied, and only the DDIM is used. As the sampling step size
decreases from 1000 to 50, the latency significantly decreases from 487 seconds to 24.4
seconds. Meanwhile, the FID score gradually rises from 17.4 to 18.3, indicating a slight
reduction in image generation quality. When the sampling step size is further reduced to
20, the latency continues to decrease to 9.8 seconds, but the FID score increases sharply

828 W. QIFENG

to 29.1. As expected, DDIM is feasible on mobile platforms.DDIM offers an effective
method to reduce the computational burden of diffusion models while maintaining qual-
ity image generation.When Step=50, the FID is 18.3, which falls within an acceptable
range. However, the latency is 24.4 seconds, far exceeding the image generation delay
for a good user experience.Next, we will separately evaluate the speedup and efficiency
for different sampling Step of DDIM.

DDIM
Step=100

DDIM
Step=50

DDIM
Step=20

factor
=1000/Step

DDIM
factor=10

DDIM
factor=20

DDIM
factor=50

S(factor) 9.9 19.9 49.7
E(factor) 0.99 0.99 0.99

Tab. 2. Performance evaluation of DDIM.

Table 2 can be calculated from Table 1 using Equations 2 and 3. In DDIM, as
the Step increases, the algorithm’s performance decreases. To more clearly express the
performance variation in DDIM, we introduce a parameter equivalent to Step: factor,
where factor = 1000/Step. Here, 1000 represents the total number of sampling steps, so
the factor indicates the reduction factor relative to the total Steps of DDIM.

From the observation of Table 2, it can be concluded that as the sampling Step
decreases and the step reduction factor increases, the algorithm’s speedup improves
significantly, while the efficiency remains stable. This indicates that the Fast Sampling
Method are able to maintain high efficiency while enhancing computational speed.

4.2.3. Cache strategy

The fifth row of Table 1 shows that when the sampling step size is set to 1000, the fast
sampling method is not applied, and only the cache strategy is used. The caching method
efficiently reduces the computational burden of diffusion models.As the caching step
increases (from n = 1 to n = 10), the image generation latency significantly decreases
from 487 seconds to 84 seconds. The FID gradually increases from 17.4 to 23.1, indicating
a slight decline in image generation quality. When n = 6, the FID is 19.8, which remains
within an acceptable range. However, the latency is 109 seconds, far exceeding the
image generation delay for a good user experience. Next, we will separately evaluate the
speedup and efficiency for different n of the Cache Strategy.

Cache
(n = 2)

Cache
(n = 3)

Cache
(n = 5)

Cache
(n = 6)

Cache
(n = 10)

S(n) 1.80 2.55 3.96 4.47 5.8
E(n) 0.9 0.85 0.79 0.75 0.58

Tab. 3. Performance evaluation of Cache strategy.

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 829

From Table 1, Table 3 can be calculated using Equations 2 and 3. As observed in Table
3, the speedup of the cache strategy increases significantly as the n grows. However, the
acceleration rate diminishes with larger values of n, indicating that while a larger cache
n improves computational speed, its effect on acceleration lessens progressively.

4.2.4. Multiplicative-effect optimization algorithm

The remainder of Table 1 presents the image generation performance after applying
cache strategy and fast sampling method to the baseline model.As the sampling step
size decreases from 100 to 20 and the cache n increases from 2 to 10, latency significantly
reduces from 271 seconds to 1.7 seconds. Meanwhile, the FID score gradually increases
from 17.6 to 33.9, indicating a decrease in image generation quality.

We compare the performance of the DDIM with the Cache strategy. Comparing
Table 2 and Table 3, DDIM shows greater speed gains and maintains stable efficiency
across various settings. The Cache strategy achieves higher efficiency with smaller val-
ues of n, but as n increases, although speed improves, efficiency decreases. The DDIM
outperforms the Cache strategy in terms of both performance and stability. Neither
optimization method alone is sufficient to achieve the low latency required for a satisfac-
tory user experience in image generation, while maintaining acceptable image quality.
However, by an multiplicative-effect optimization algorithm, this goal can be achieved.

We propose DDIMCache, a text-to-image diffusion model designed specifically for
mobile devices. As shown in Table 1, with cache step size of n = 5 and sampling step size
of Step=50, the optimized implementation achieves 512–512 images generation latency of
6.2 seconds and an FID score of 19.8. In hardware and performance-constrained mobile
environments, the image generation latency falls within the range of a satisfactory user
experience, and the image quality is acceptable.

4.3. DDIMCache

Table 4 compares the Stable Diffusion 1.5 with the DDIMCache proposed in this paper
for generating 512x512 images across four different scenarios. The first row displays
images generated by Stable Diffusion 1.5 on a desktop computer with an RTX 3090
GPU, while the second row shows images generated by the DDIMCache on a Samsung
S23 Ultra using the same prompt.
The results indicate that the images generated by DDIMCache are highly similar to

those of Stable Diffusion 1.5, with some differences. However, the images generated by
DDIMCache still align with the text prompts provided, maintaining consistency and
relevance between the image content and descriptions. The model can still understand
and accurately generate images based on the text prompts. The performance gap is
attributed to DDIMCache’s use of quantization, pruning, fast sampling, and feature
caching, which causes some loss of image information during generation. Despite this,
the difference between images generated by DDIMCache and the true image distribution
remains within an acceptable range. This balance between performance and quality is
particularly valuable in mobile applications requiring fast image generation with limited
computational resources.

830 W. QIFENG

Below, we detail the differences for Stable Diffusion 1.5 and DDIMCache:

1. Technical Differences:
Stable Diffusion 1.5 uses the full UNet architecture and employs standard fast sam-
pling methods. The memory usage is about 10GB and requires a high-end GPU
(such as an RTX 3090) on a desktop computer. DDIMCache has undergone quan-
tization and pruning to reduce the model’s memory footprint, introducing feature
caching methods and the DDIM, which significantly reduces sampling steps and
computational load. The sampling steps and cache steps can be flexibly adjusted
as needed. The memory usage is about 1.8GB, making it runnable on mobile
devices with decent computational power.

2. Performance Comparison:
On a desktop computer with an RTX 3090 GPU, Stable Diffusion 1.5 generates
512x512 images with an average latency of 5.7 seconds and an FID of 4.6. Running
the Stable Diffusion 1.5 model on the memory- and compute-constrained Samsung
S23 Ultra is impractical. Using the DDIMCache with n = 5 cache steps and 50
sampling steps, the optimized diffusion model can be deployed and run on the
Samsung S23 Ultra, generating 512x512 images with an average latency of 6.2
seconds and an FID of 19.8.

Below is an introduction to suitable and unsuitable scenarios for DDIMCache:

Best-Suited Scenarios:

1. Real-time image generation on mobile devices

A small blue
book sitting on
a large red book.

A brown bird
and a blue bear.

A vessel propelled
on water by oars,
sails, or an engine.

One cat and two
dogs sitting on

the grass.

Stable
Diffu-
sion1.5
Latency=5.7s
FID=4.6

DDIMCache
Latency=6.2s
FID=19.8

Tab. 4. Comparison of Stable Diffusion and DDIMCache on Image

Generation.

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 831

2. Scenarios sensitive to latency

3. Environments with limited computational and memory resources

4. Scenarios requiring fast response times for user interaction

Less-Suited Scenarios:

1. Scenarios with abundant computational resources and no speed constraints

2. Scenarios requiring precise image detail reproduction

For scenarios requiring quick preview generation, more aggressive optimization parame-
ters can be used. For final output images, increasing the sampling steps or reducing the
cache interval can improve image quality. Overall, DDIMCache is an optimization so-
lution for mobile scenarios, particularly well suited for applications requiring fast image
generation with constrained resources. By sacrificing some image quality, DDIMCache
significantly improves performance, enabling the deployment of diffusion models on mo-
bile devices. The decision to use DDIMCache should depend on specific application
requirements, hardware conditions, and user experience considerations.

4.4. Algorithm comparison

Although some research exists on deploying large models on mobile devices, the num-
ber of studies is still limited, and the specific research data only includes latency and
optimization methods. Next, Table 5 will be used to analyze and compare existing opti-
mization methods, and several trends for deploying and running large models on mobile
devices in the future will be presented.

1. All methods employ fast sampling techniques, which, as previously mentioned,
are the most effective for optimizing diffusion models. Fast sampling can increase
inference speed by several orders of magnitude while maintaining image quality.
Such specialized optimization methods tailored to specific models will play a crucial
role.

Method Latency Fast Sam-
pling

Fid Main Optimization

HOU & ASGHAR ∼ 15S 20 steps Not men-
tioned

Qualcomm AI Stack

CHEN ET AL. ∼ 12S 20 steps Not men-
tioned

GPU-aware optimization

DDIMCache ∼ 6S 50 steps 19.8 Multiplicative Effect Joint
Optimization

Tab. 5. Comparison of different optimization implementations on

GALAXY S23.

832 W. QIFENG

2. Hou and Asghar’s approach was the first to deploy the Stable Diffusion model
on Android smartphones, leveraging the Qualcomm AI Stack for optimization,
enabling the generation of 512x512 pixel images on the GALAXY S23 in 15 sec-
onds.Qualcomm combines its hardware advantages with neural network models,
algorithms, and software into a unified AI stack, assisting developers in creating,
optimizing, and deploying AI applications. The Qualcomm AI Stack plays a role
in acceleration, but this general hardware and software integrated optimization
approach does not have an advantage compared to other specialized optimization
methods tailored to specific models.

3. Chenet al. proposed various GPU-specific optimizations that generate 512x512
pixel images in under 12 seconds. Compared to other methods with the same
sampling steps, they achieved a latency advantage,indicating that the GPU accel-
eration methods play a significant role

4. DDIMCache proposed in this paper significantly reduces the generation latency
to approximately 6 seconds while maintaining high image quality, clearly outper-
forming other methods. By utilizing multiple optimization algorithms tailored to
specific models, this approach maximizes the strengths of each method, enabling
them to complement and exchange information, ultimately achieving synergistic
effects that exceed the performance of any individual method. This could be a key
approach for deploying large models on mobile devices in the future.

5. CONCLUSION

We propose DDIMCache, a text-to-image diffusion model designed specifically for mobile
devices.DDIMCache achieves optimal speed, generating 512 × 512 images in around 6
seconds.In hardware and performance-constrained mobile environments, DDIMCache
effectively maintains image generation quality and achieves optimal performance.This
provides mobile users with powerful image generation capabilities and an enhanced user
experience.

ACKNOWLEDGEMENT

This research received no specific grant from any funding agency in the public, commercial, or
not-for-profit sectors. Funding for this research was covered by the author(s) of the article.

(Received September 30, 2024)

REFERENCES

[1] R. Rombach, A. Blattmann, D. Lorenz et al.: High-resolution image synthesis with latent
diffusion models. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition 2022, pp. 10684–10695. DOI:10.1109/CVPR52688.2022.01042

[2] J. Hou and Z. Asghar: World’s first on-device demonstration of stable diffusion on an
android phone. Qualcomm 24 (2023). https://www.qualcomm.com/news/onq/2023/02/
worlds-first-on-device-demonstration-of-stable-diffusion-on-android

https://doi.org/10.1109/CVPR52688.2022.01042
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android

DDIMCache: An enhanced text-to-image diffusion model on mobile devices 833

[3] Y.H. Chenm R. Sarokin, J. Lee et al.: Speed is all you need: On-device
acceleration of large diffusion models via gpu-aware optimizations. In: Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023. pp. 4651–
4655. DOI:10.1109/CVPRW59228.2023.00490

[4] Y. Shang, Z. Yuan et al.: Post-training quantization on diffusion models. In: Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023. pp. 1972–
1981. DOI:10.1109/CVPR52729.2023.00196

[5] X. Li, Y. Liu, L. Lian et al.: Q-diffusion: Quantizing diffusion models. In:
Proc. IEEE/CVF International Conference on Computer Vision 2023: pp. 17535–17545.
DOI:10.1109/ICCV51070.2023.01608

[6] X. Ma, G. Fang, and X.Wang: Llm-pruner: On the structural pruning of large language
models. Adv. Neural Inform. Process. Systems 36 (2023), 21702–21720.

[7] Y. Li, G. Yuan, Y. Wen et al.: Efficientformer: Vision transformers at mobilenet speed.
Adv. Neural Inform. Process. Systems 35 (2022), 12934–12949.

[8] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan et al.: Deep unsupervised learning
using nonequilibrium thermodynamics. In: International Conference on Machine Learning
PMLR, 2015, pp. 2256–2265.

[9] Jiaming Song, Chenlin Meng, and Stefano Ermon: Denoising diffusion implicit models.
2020. In: arXiv preprint: 2010.02502

[10] S.M. Jain: Hugging face. Introduction to transformers for NLP: With the hugging face
library and models to solve problems. Apress, Berkeley 2022, 51–67. DOI:10.1007/978-1-
4842-8844-3 4

[11] O. Ronneberger, P. Fischer, T. Brox U-net: Convolutional networks for biomedical image
segmentation. Medical image computing and computer-assisted interventional MICCAI
2015. In: Proc. 18th international conference, Munich 2015, part III 18. Springer Inter-
national Publishing, pp. 234–241.

[12] T.Y. Lin, M. Maire, S. Belongie et al.: Microsoft coco: Common objects in context.
Computer Vision’ECCV 2014. In: Proc. 13th European Conference, Zurich 2014, Part V
13. Springer International Publishing 2014, pp. 740–755.

[13] A.Q. Nichol and P. Dhariwal: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning, PMLR 2021, pp. 8162–8171.

Wu Qifeng, Gannan University of Science and Technology, Ganzhou, JiangXi, 341000.
P.R. China.

e-mail: 38896500@qq.com

https://doi.org/10.1109/CVPRW59228.2023.00490
https://doi.org/10.1109/CVPR52729.2023.00196
https://doi.org/10.1109/ICCV51070.2023.01608
https://arxiv.org/2010.02502
https://doi.org/10.1007/978-1-4842-8844-3_4
https://doi.org/10.1007/978-1-4842-8844-3_4

	Introduction
	Related work
	Approach
	Multiplicative effect joint optimization algorithm
	Pruning and quantization
	DDIM
	Cache strategy
	DDIMCache

	Experiment
	Experimental setup
	Quantitative analysis
	Quantization and pruning
	DDIM
	Cache strategy
	Multiplicative-effect optimization algorithm

	DDIMCache
	Algorithm comparison

	Conclusion

