Kybernetika 60 no. 6, 797-818, 2024

Inverse optimal dynamic boundary control for uncertain Korteweg-de Vries-Burgers equation

Xiushan Cai, Yuhang Lin, Cong Lin and Leipo LiuDOI: 10.14736/kyb-2024-6-0797

Abstract:

We investigate Korteweg--de Vries--Burgers (KdVB) equation, where the dissipation and dispersion coefficients are unknown, but their lower bounds are known. First, we establish dynamic boundary controls with update laws to globally exponentially stabilize this uncertain system. Secondly, we demonstrate that the dynamic boundary control design is suboptimal to a meaningful functional after some minor modifications of the dynamic boundary controls. In addition, we also consider dynamic boundary controls for the case of unknown dissipation or dispersion coefficients, and obtain corresponding results. Finally, three examples are used to demonstrate the effectiveness of the proposed control design.

Keywords:

uncertainty, Korteweg-de Vries-Burgers equation, dynamic boundary control, globally exponential stabilization

Classification:

93Cxx, 93Dxx

References:

  1. A. Armaou and P. D. Christofides: Wave suppression by nonlinear finite-dimensional control. Chemical Engrg. Sci. 55 (2000), 2627-2640.   DOI:10.1016/S0009-2509(99)00544-8
  2. A. Balogh and M. Krstic: Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration. IEEE Trans. Automat. Control 45 (2000), 1739-1745.   DOI:10.1109/9.880639
  3. A. C. Boulanger and P. Trautmann: Sparse optimal control of the KdV-Burgers equation on a bounded domain. SIAM J. Control Optim. 55 (2017), 3673-706.   DOI:10.1137/15M1020745
  4. X. Cai, N. Bekiaris-Liberis and M. Krstic: Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans. Automat. Control 63 (2018), 233-240.   DOI:10.1109/TAC.2017.2722104
  5. X. Cai, N. Bekiaris-Liberis and M. Krstic: Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica 103 (2019), 549-557.   DOI:10.1016/j.automatica.2019.02.038
  6. X. Cai, L. Liao, J. Zhang and W. Zhang: Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics. Kybernetika 52 (2016), 76-88.   DOI:10.14736/kyb-2016-1-0076
  7. X. Cai, Y. Lin, L. Liu and C. Lin: Control design of a continuous model and its application in highway traffic flow. IEEE Trans. Circuits Systems II: Express Briefs 70 (2023), 2575-2579.   DOI:10.1109/TCSII.2023.3241646
  8. X. Cai, C. Lin, L. Liu and X. Zhan: Inverse optimal control for strict-feedforward nonlinear systems with input delays. Int. J. Robust Nonlinear Control 2 8(2018), 2976-2995.   DOI:10.1002/rnc.4062
  9. X. Cai, Y. Lin, J. Zhang and C. Lin: Predictor control for wave PDE/nonlinear ODE cascaded system with boundary value-dependent propagation speed. Kybernetika 58 (2022), 400-425.   DOI:10.14736/kyb-2022-3-0400
  10. X. Cai, Y. Lin, X. Zhan, L. Wan, L. Liu and C. Lin: Inverse optimal control of Korteweg-de Vries-Burgers equation. In: Proc. 22nd IFAC World Congress, Yokohama 2023, pp. 1430-1435.   CrossRef
  11. X. Cai, J. Wu, X. Zhan and X. Zhang: Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika 55 (2019), 727-739.   DOI:10.14736/kyb-2019-4-0727
  12. E. Crepeau and M. Sorine: A reduced model of pulsatile flow in an arterial compartment. Chaos Solitons $\&$ Fractals 34 (2007), 594-605.   DOI:10.1016/j.chaos.2006.03.096
  13. B. Chentouf and A. Guesmia: Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach. Nonlinear Analysis: Real World Appl. 65 (2022), 103508.   DOI:10.1016/j.nonrwa.2022.103508
  14. H. Demiray: Nonlinear waves in a thick-walled viscoelastic tube filled with an inviscid fluid. Int. J. Engrg. Sci. 36 (1998), 345-357.   DOI:10.1016/S0020-7225(97)00056-6
  15. K. Ding and Q. Zhu: Intermittent observer-based dissipative saturation control for Korteweg-de Vries-Burgers equation with stochastic noise and incomplete measurable information. J. Franklin Inst. Engrg. Appl. Math. 359 (2022), 10206-30.   DOI:10.1016/j.jfranklin.2022.10.001
  16. K. Ding and Q. Zhu: Intermittent static output feedback control for stochastic delayed-switched positive systems with only partially measurable information. IEEE Trans. Automat. Control 68 (2023), 8150-8157.   DOI:10.1109/TAC.2023.3293012
  17. A. Freeman and P. V. Kokotovic: Inverse optimality in robust stabilization. SIAM J. Control Optim. 34 (1996), 1365-1391.   DOI:10.1137/S0363012993258732
  18. M. Krstic: On global stabilization of Burgers' equation by boundary control. Systems Control Lett. 37 (1999), 123-141.   DOI:10.1016/S0167-6911(99)00013-4
  19. M. Krstic: Optimal adaptive control-contradiction in terms or a matter of choosing the right cost functional? IEEE Trans. Automat. Control 53 (2008), 1942-1947.   DOI:10.1109/TAC.2008.929464
  20. M. Krstic and Z. Li: Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1996), 336-350.   DOI:10.1109/9.661589
  21. S. Liang, K. Wu and M. He: Finite-time boundary stabilization for Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 116 (2023), 106836 (1-10).   DOI:10.1016/j.cnsns.2022.106836
  22. W. Liu and M. Krstic: Controlling nonlinear water waves: boundary stabilization of the Korteweg-de Vries-Burgers equation. In: Proc. American Control Conference, San Diego 1999, pp. 1637-1641.   CrossRef
  23. Z. Liu, J. Wang, H. Ge and R. Cheng: KdV-Burgers equation in the modified continuum model considering the "backward looking'' effect. Nonlinear Dynamics 91 (2018), 2007-2017.   DOI:10.1007/s11071-017-3999-7
  24. S. Liang, D. Ding and K. Wu: Exponential input-to-state stability of delay Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 121 (2023), 107218 (1-13).   DOI:10.1016/j.cnsns.2023.107218
  25. V. Komornik and C. Pignotti: Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay. Nonlinear Analysis: Theory, Methods Appl. 191 (2020), 111646.   DOI:10.1016/j.na.2019.111646
  26. N. Smaoui: Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dynamics 37 (2004), 75-86.   DOI:10.1023/B:NODY.0000040023.92220.09
  27. N. Smaoui and R. Al-Jamal: Dynamics and control of the modified generalized Korteweg-de Vries-Burgers equation with periodic boundary conditions. Nonlinear Dynamics 103 (2021), 987-1009.   DOI:10.1007/s11071-020-06130-3
  28. E. D. Sontag: A `universal' construction of Artsteins theorem on nonlinear stabilization. SIAM J. Control Optim. 13 (1989), 117-123.   DOI:10.1016/0167-6911(89)90028-5