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EQUILIBRIUM ANALYSIS OF DISTRIBUTED
AGGREGATIVE GAME WITH MISINFORMATION

Meng Yuan, Zhaoyang Cheng, and Te Ma

This paper considers a distributed aggregative game problem for a group of players with
misinformation, where each player has a different perception of the game. Player’s deception
behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model
the above problems and adopt ϵ-Nash equilibrium for hypergame to investigate whether players
believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a
player implementing deception and demonstrate the algorithm converges to ϵ-Nash equilibrium
for hypergame. Further, we provide conditions for the deceptive player to enhance its profit and
offer the optimal deceptive strategy at a given tolerance ϵ. Finally, we present the effectiveness
of the algorithm through numerical experiments.
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rium for hypergame
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1. INTRODUCTION

In recent years, aggregative games have received extensive attention, due to their
widespread applications in fields such as the Cournot oligopoly model in the management
of smart grids [2], the route selection of road network [21], and so on. The aggregative
game of multi-agent systems is an important subclass of non-cooperative games, where
the cost function of participants not only depends on their own actions but also the ag-
gregative function of actions taken by all participants. Specifically, due to the expansion
of communication network scale, communication burden, and the demand for individual
privacy protection, distributed aggregative games are widely used to depict complex
real-life scenarios, where players achieve their goals through communication networks
and local data [15, 31].

Misinformation in games describes that players have different perceptions of the game,
and commonly arises in numerous practical scenarios and the player’s deception behavior
is inevitably in these complex situations [1, 4, 30]. For example, [16] used evolutionary
game theory to study the impact of spreading erroneous/misleading messages on the
evolution of network collective cooperation. Based on this, [17] further analyzed the
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effect of dynamic updates and elimination of erroneous information in collective coop-
eration under personalized strategies. Moreover, in order to analyze how a player with
more information benefits from the misinformation situation, many deception methods
have been deployed in the game model. Actually, deception typically stems from the
manipulation and concealment of beliefs by other players. Combining cooperative game
theory and reinforcement learning methods, the problem of false information dissemina-
tion in online social networks was investigated [29]. [1] designed a mechanism to combat
misinformation attacks for each battlefield Internet of Battlefield Things (IoBT) node
by finding the optimal probability of receiving given information. In non-cooperative
stochastic games aimed at military action control, defenders increased their rewards by
manipulating the information available to attackers [5]. Therefore, deception are one
popular method for a player to improve its own utility when it has some knowledge of
the misinformation situation.

However, whether players trust their own cognition is very important in the situa-
tion with players’ deception behaviors and different observations [24]. Indeed, players’
doubts about their own perceptions could disturb the equilibrium or potentially lead to
the collapse of the game. For instance, players might recognize biased misperceptions
and aim to uncover the truth [3]. Regrettably, existing research failed to adequately
address the role of trusting their own cognition in distributed aggregative games with
different players’ cognition. In addition, in aggregative games with misinformation, it
is also crucial for players to increase their own profits through actively engaging in de-
ceptive behavior [22]. This is important for enhancing the competitiveness of players in
non-cooperative game processes. For example, [9] pretends to attack successfully and
provides false data to mislead the attacker and collect their information (such as IP
addresses). In [22], defenders actively send deceptive signals to attackers; In [7], players
relieve insider threat mitigation through deceptive behavior. Motivated by the above
consideration, the capabilities of the player to have high utility and trust in their own
cognition are important and rarely considered in existing literature.

Fortunately, hypergames provide an effective tool for analyzing whether players trust
their own cognition. Roughly speaking, hypergames describe complex situations where
players have different understandings by breaking down a game into multiple subjective
games. Hyper Nash Equilibrium (HNE) [23] is a core concept in hypergames that rep-
resents the best response of each player in the subjective game. Considering the strict
conditions for implementing HNE and referring to ϵ-NE [28], the definition of ϵ-NE is
needed to be analyzed in many practical problems. ϵ-NE for hypergame allows play-
ers to have a certain degree of deviation from the subjective optimal strategy, which
is measured by ϵ. When players reach ϵ-NE for hypergame, everyone not only trusts
their cognition but also does not need to change their strategies with a tolerance of ϵ.
A similar discussion on HNE and ϵ-NE has been applied to various situations, including
resource allocation, military conflicts, and economics [12].

The following are the main contributions of the paper:

• We propose a distributed aggregative game problem with misinformation, where
each player has a biased estimate of the cost function of other players, and only one
player is aware of the existence of misinformation and intends to adopt deceptive
strategies. We model the above problem as a hypergame and propose ϵ-NE for
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hypergame as the criterion.

• We design a distributed deceptive strategy to guide player’s deception behavior
and prove its convergence to the ϵ-NE for hypergame. Moreover, we give an upper
bound of the tolerance metric ϵ, where the bound is related to the corresponding
deceptive strategy.

• Furthermore, we provide the condition for a player to be willing to adopt the
deception and get the optimal utility in the aggregative game with quadratic form.
Speciffcally, we show the range of deceptive behavior that can reduce costs, and for
a fixed tolerance ϵ, we present the optimal deception behavior from the perspective
of the deceptive player.

Notations: 1N denotes an N -dimensional column vector whose elements are all 1. The
transpose of Ψ is denoted by ΨT , where Ψ is either a matrix or a vector. The notation
[gi]vec for i ∈ {1, 2, . . . , N} denotes a column vector whose ith element is gi.

2. PROBLEM FORMULATION

In this section, we first formulate our problem and then give some preliminary knowledge.

2.1. Problem statement

Consider a game with N players or agents, where the players are indexed by V =
{1, . . . , N}. For each player i ∈ V, player i has an action strategy xi in local constraint

set Xi ⊆ Rn. Denote X ≜
∏N

i=1 Xi ⊂ RnN , x ≜
(
xT
1 , . . . , x

T
N

)T
as the action profile for

all players, and x−i ≜
(
xT
1 , . . . , x

T
i−1, x

T
i+1, . . . , x

T
N

)T
as the action profile for all players

except player i. Player i has its own cost function fi(xi,x−i) : RnN → R. Furthermore,
define the aggregate term of all players as follows:

σ(x) ≜
1

N

N∑
i=1

φi(xi),

where ϕi : Rn → Rm is a map for the local contribution to the aggregate term. Given
x−i, the objective of player i is to solve the following optimization problem:

min
xi∈Xi

fi (xi,x−i) , (1)

where fi(xi,x−i) = f̃i(xi, σ(x)).
The game in a normal form is defined as a triple Γ = {V, X, f}. The Nash equilibrium

is a core concept of Γ, defined as follows.

Definition 2.1. (Nash Equilibrium) An action profile x∗ =
(
x∗
i ,x

∗
−i

)
∈ X is a Nash

equilibrium if for i ∈ V, xi ∈ Xi,

fi
(
x∗
i ,x

∗
−i

)
≤ fi

(
xi,x

∗
−i

)
,

where x−i = [x1, x2, . . . , xi−1, xi+1, . . . , xN ]
T
.
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The Nash equilibrium is an action profile on which no player can reduce its cost
by unilaterally changing its own action, In other words, x∗ is an NE if no player can
decrease its cost by unilaterally deviating from its strategy x∗

i .

Due to the fact that NE may not exist or be difficult to calculate in real situations,
the following definition is introduced.

Definition 2.2. (ϵ-Nash Equilibrium) A profile x∗ is said to be an ϵ-Nash equilib-
rium of game (1) if

fi
(
x∗
i ,x

∗
−i

)
≤ fi

(
xi,x

∗
−i

)
+ ϵ,∀i ∈ V,∀xi ∈ Xi

where the constant ϵ > 0. Particularly, x∗ is said to be an NE when ϵ = 0.

Consider the aggregative game (1), where each player only knows its own cost func-
tion and can not have access to the aggregate term δ(x), while players may exchange
information with neighbors through the network G to update their estimates of the ag-
gregate value. The information exchange among the N players is described by a graph
G(V, E), where E = {(i, j) | i, j ∈ V } denotes the edge set where (i, j) ∈ E when agent i
and agent j have information exchanges. Define N ×N -dimensional matrix W = [wij ]
as the adjacency matrix of the communication graph, where wij > 0 if (i, j) ∈ E and
wij = 0, otherwise.

In fact, players may receive some information of other players’ cost functions. For
example, in non-cooperative games of various circumstances, players aim to obtain the
private information of other players to enrich their information base, in order to generate
better results for themselves, e. g., [27] has considered the existence of honest-but-curious
adversaries in stochastic aggregative games, who follow all protocol steps correctly but
collect all intermediate and input/output information in an attempt to learn sensitive
information about other participating players. In the rest of this paper, we consider that
players have a cognition of others’ cost function before players take actions.

However, the cognition of cost functions among players may be different, due to
external environmental interference or self-awareness. For instance, external interference
in communication channels may result in imperfect observations in sensor systems [19],
while individuals with bounded rationality may exhibit biased observations within the
IoT [3]. Specially, the jth player may not know the actual cost function fi of player i,
but only receive a fictitious cost function with biased errors. We denote the cost function
of player i under player j’s cognition by fij , where i, j ∈ V. Actually, fii = fi, since the
ith player knows its own real cost function.

Moreover, throughout the entire network, we suppose that only one player is aware
of the observed differences. It is common in the actual agent interactions. For instance,
[4] describes the leader realizes the fact that all followers are not aware of the observed
differences in the single-leader-multiple-followers Stackelberg security game. Without
loss of generality, we consider player r is aware of others’ cost functions and their partial
perceptions. In this situation, player r intends to adopt a deceptive strategy to receive
as beneficial results as possible for itself.
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2.2. Hypergame model

Note that hypergame theory is very advantageous in modeling complex situations, where
players’ cognition is observed by others, we use hypergame theory to model distributed
aggregative games with misinformation. Hypergame theory delineates varying cogni-
tive perspectives among players within strategic interactions occurring in contexts rife
with misinformation. At its core, the hypergame theory seeks to break down intricate
scenarios involving misinformation into several subjective games [12].

There are different levels for describing cognitive situations [26]. For convenience,
we denote Γ(f1, . . . , fN ) as a game where fi represents the local cost function of player
i. Thus, as mentioned before, for j ̸= r, player j supposes that they are playing a
first-level hypergame HI

j = {Gj}, where Gj = Γ(f1j , . . . , fNj), since it does not notice
that they mutually estimate the local cost function and have the different cognitions
among them. For player r, the first level hypergame observed by player r is denoted
by HI

r = {G′
1, . . . , G

′
N}, where G′

j is the perception of player r towards the first level
game of player j since it perceives misinformation from other players and receives partial
information on their cognitions of cost functions. Then, this second level hypergame is
denoted as HII = {HI

1 , . . . ,H
I
N}.

In reality with various uncertainties, the conditions for meeting NE may be too strin-
gent. Therefore, similar to the ϵ-NE proposed in definition 2.2, we relax the restrictions
and introduce the following loose inequality, ϵ-Nash equilibrium for hypergame. A profile
x∗ is said to be a ϵ-Nash equilibrium for hypergame of game Γ if for all i ∈ V,

fji
(
x∗
j ,x

∗
−j

)
≤ fji

(
xj ,x

∗
−j

)
+ ϵ, for all xj ∈ Xj , j ∈ V,

with a constant ϵ > 0.

In fact, ϵ-NE for hypergame is such a strategy profile that near the best response
strategy in everyone’s subjective game. Moreover, due to the overly stringent conditions
for implementing NE, we relaxed the conditions and proposed a definition for ϵ-NE for
hypergame. ϵ-NE for hypergame allows players to have a certain degree of deviation
from the subjective optimal strategy, which is measured by ϵ.

When the strategies of other players do not match their cognition, some players may
doubt their observation of the game. According to [4], suspicions about their cognitions
may lead to the updation of their observations, and even make the game model collapse.

Actually, the communication network G(V, E) can be utilized by player r to spread
its own deceptive strategy. Each player sends a message through the communication
network. Player r is able to send a deceptive strategy to others through the network
such as adding strategy θ ∈ Rm when updating the local aggregate variable. For ex-
ample, in sensor systems, false data injection (FDI) attacks modify data at the network
communication layer to achieve network attacks [32].

The main task of this paper is to design a distributed deceptive strategy or algorithm
for distributed aggregative games with misinformation and prove the proposed algorithm
converges to ϵ-NE for hypergame, and provide an upper bound for ϵ and the condition
for promoting the benefit of the deceptive player.
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2.3. Assumptions

To establish main results, we impose some assumptions as follows.
The following assumptions were widely used for the strategy sets and the cost func-

tions [11].

Assumption 2.3. For each player i ∈ V,

(a) the strategy set Xi is convex and compact;

(b) the cost function fi (·,x−i) is convex over Xi for every x−i ∈ X−i;

(c) fi(·, u) is continuously differentiable in xi over Xi for every fixed u ∈ Rn, and
fi (xi, u) is continuously differentiable in u ∈ Rn for any fixed xi ∈ Xi.

Assumption 2.3 is a standard assumption that guarantees the existence of a Nash
equilibrium.

In order to explicitly show the aggregate term of the game, we define map Gi :
Rn × Rm → Rn, i ∈ V as

Gi (xi, ηi) ≜ ∇xi
fi (·,x−i)

∣∣∣
σ(x)=ηi

=

(
∇xi

f̃i(·, σ) +
1

N
∇σ f̃i (xi, ·)T ∇φi

)∣∣∣∣
σ=ηi

.

Also, let G(x,η) ≜ col (G1 (x1, η1) , . . . , GN (xN , ηN )). Clearly, G (x,1N ⊗ σ(x)) =
F (x), where the pseudo-gradient map F : Rn → Rn is defined as

F (x) ≜ col {∇x1
f1 (·,x−1) , . . . ,∇xN

fN (·,x−N )} .

Assumption 2.4. F (x) is k-Lipschitz continuous and µ-strongly monotone for some
constants k > 0 and µ > 0,

∥F (x)− F (y)∥ ≤ k∥x− y∥,
(x− y)⊤(F (x)− F (y)) ≥ µ∥x− y∥2, ∀x,y ∈ X .

Assumption 2.5. G(x,η) is k1-Lipschitz continuous with respect to x ∈ Ω and k2-
Lipschitz continuous with respect to η for some constants k1, k2 > 0,

∥G(x, ·)−G(y, ·)∥ ≤ k1∥x− y∥,
∥G(·,η1)−G(·,η2)∥ ≤ k2∥η1 − η2∥.

Assumption 2.6. For any i ∈ V, φi is k3-Lipschitz continuous on Xi for constant k3 >
0,

∥φi(x)− φi(y)∥ ≤ k3∥x− y∥, ∀x, y ∈ Xi.

Assumption 2.4-2.6 are needed to ensure the existence and uniqueness of the Nash
equilibrium and also to facilitate algorithm design. Note that the strong monotonicity
of the pseudo-gradient map F has been widely adopted in the literature such as [14].

Assumption 2.7. The communication graph G is undirected and connected. Moreover,
The associated adjacent matrix of graph A satisfies
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1) aij > 0, if (i, j) ∈ E and aij > 0, if (i, j) /∈ E ;

2) A = AT , A1N = 1N .

The network model in Assumption 2.7 was widely used in distributed multi-agent
systems (see, e. g., [18]). It is easy to achieve in a distributed setting.

Assumption 2.8. For every fixed x ∈ X , the difference between the cost function of
each player i’s own perception of other players and the actual cost function is bounded,
i. e., there exists B1,B2 ∈ Rn, such that

B⊤
1 xi ≤ fij(x)− fii(x) ≤ B⊤

2 xi, i, j ∈ V.

Remark 2.9. Assumption 2.8 ensures that even if each player’s cognition is different,
the difference in their cognition of the same player’s cost function is bounded by linear
functions.

3. MAIN RESULTS

In this section, we develop our distributed projected deception algorithm, followed by
the analysis of the proposed algorithm convergence to ϵ-NE for hypergame and a bound
analysis of ϵ. Moreover, for aggregative games with quadratic functions, we also provide
conditions that enhance the benefits of the deceptive player and completely avoid sus-
picion from other players. Additionally, for a fixed tolerance ϵ, we provide the optimal
deceptive strategy from the perspective of deceptive player.

3.1. Distributed deceptive algorithm

For the distributed aggregative game, each player has different perceptions of the ongoing
game. Suppose that only one player realizes the existence of this difference. The player
aims to use this information gap to adopt deceptive strategies in order to produce as
favorable results as possible for itself. We use the hypergame model, which focuses
on the cognitive stability of players with misinformation, as it displays the conditions
under which each player trusts their current cognition. Otherwise, once the player’s
expectations are inconsistent with the strategies of others, the player will doubt their
own cognition, which may cause the game model to collapse. Motivated by it, we design
a distributed projected deception algorithm and prove the proposed algorithm converges
to ϵ-NE for hypergame. The detailed algorithm is given in Algorithm 1 as follows.

The updation for deceptive player r is:

i = r,


ẋi = PΩi

(xi − αGi (xi, ηi))− xi, xi(0) ∈ Xi,

δ̇i = β
∑N

j=1 aij (ηj − ηi) + β(arr − 1)θ, δi(0) = 0m,

ηi = δi + φi (xi) .

The updation for others is:

i ̸= r,


ẋi = PΩi

(xi − αGi (xi, ηi))− xi, xi(0) ∈ Xi,

δ̇i = β
∑N

j=1 aij (ηj − ηi) + βairθ, δi(0) = 0m,

ηi = δi + φi (xi) .



Equilibrium analysis of distributed aggregative game with misinformation 761

Firstly, each player initializes their decision values and aggregated estimates. In each
iteration, each player updates their local decision values using the projected gradient
method. Since each player i has their own perceived games, perturbation θ is used to
mask the real aggregate estimate ηki . Furthermore, as player r becomes aware of the
existence of deceptive information from others, it subtracts the deceptive value when
updating the local estimate ηkr .

In Algorithm 1, parameters α and β satisfy

0 < α <
2µβλ2 − 4k2k3
k2βλ2 + 2µk2k3

, β >
2k2k3
µλ2

,

where λ2 is the smallest positive eigenvalue of L ( L is the Laplacian matrix of commu-
nication graph G).

The compact form can be written as
ẋ = PΩ(x− αG(x,η))− x, x(0) ∈ Ω,

δ̇ = −β (L⊗ Imη +W ⊗ Imθ) , δ(0) = 0mN ,

η = δ +φ(x),

where φ(x) = col (φ1 (x1) , . . . , φN (xN )) and W = [−a1r, . . . ,
∑N

i=1 air −
arr, . . . ,−aNr]

⊤. Furthermore, we can rewrite the above form as{
ẋ = PΩ(x− αG(x,η))− x, x(0) ∈ Ω,

η̇ = −β (L⊗ Imη +W ⊗ Imθ) + d
dtφ(x), δ(0) = φ(x(0)).

(2)

Since the communication graph is doubly stochastic, 1⊤
NL = 0⊤

N and 1⊤
NW = 0.

Therefore,

1

N

N∑
i=1

η̇i =
d

dt
σ(x).

As a result,

M ≜

{
col(x,η) ∈ Ω× RN

∣∣∣∣∣ 1

N

N∑
i=1

ηi = σ(x)

}
is an invariant set of (2).

Similar to reference [14], the analysis in this problem is limited to M rather than
the entire space, and the Nash equilibrium point of this problem is unique and can be
expressed as [

x
η

]
=

[
x∗

η∗

]
=

[
x∗

1N ⊗ σ (x∗)

]
.

3.2. Convergence analysis

In this subsection, the convergence of the proposed deceptive algorithm is analyzed.
As we model this distributed aggregative game with a second-level hypergame for the

situation where players have cognitive errors, a quantitative analysis for the approxima-
tion of the hyper Nash equilibrium is given in the following.
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Theorem 3.1. (Convergence to ϵ-NE for hypergame) Under Assumptions 2.3-
2.7, the sequence x generated by Algorithm 1 converges to ϵ-NE for hypergame, with

ϵ ≤ 2ρ

√
c2
c1

∥θ∥+ 2BM,

where ρ = 1

min
{

2
cθ
(ω1− ξ1

2 − ξ2
2 ),

2
3cθ

(ω2− ξ1
2 − ξ2

2 )
} .

P r o o f .
Step 1: Denote y ≜ η − 1N ⊗ σ(x). Then, it follows from L1N = 0N and (2) that

ẋ = PΩ(x− αG(x,y + 1N ⊗ σ(x)))− x, (3)

ẏ = η̇ − d

dt
(1N ⊗ σ (x)) (4)

= −β (L⊗ Imη +W ⊗ Imθ) +
d

dt
φ(x)− d

dt
(1N ⊗ σ (x))

= −β ⊗ ImL− β ⊗ ImWθ + (∇φ(x)− 1N ⊗∇σ (x))
⊤
(PΩ(x− αG(x,η))− x) .

Denote
H(x) ≜ x− PΩ(x− αF (x)),

H̃(x,y) ≜ x− PΩ (x− αG (x,1N ⊗ σ(x) + y)) ,

ξ(x,y) ≜ H̃(x,y)−H(x).

Then,

∥ξ(x,y)∥ = ∥H̃(x,y)−H(x)∥
≤ ∥PΩ(x− αF (x))− PΩ (x− αG (x,1N ⊗ σ(x) + y)) ∥
≤ α∥F (x)−G (x,1N ⊗ σ(x) + y) ∥
≤ αk2∥y∥.

Then,

(x− y)T (H(x)−H(y))

=∥x− y∥2 − (x− y)T · (PΩ(x− αF (x))− PΩ(y − αF (y)))

≥∥x− y∥(∥x− y∥ −∥PΩ(x− αF (x))− PΩ(y − αF (y))∥)
≥∥x− y∥(∥x− y∥ − ∥x− αF (x)− (y − αF (y))∥,

and

∥x− y∥ − ∥x− αF (x)− (y − αF (y))∥

=
∥x− y∥2 − ∥x− αF (x)− (y − αF (y))∥2

∥x− y∥+ ∥x− αF (x)− (y − αF (y))∥

≥2α(x− y)T (F (x)− F (y))− α2∥F (x)− F (y)∥2

(2 + α · k)∥x− y∥

≥2α · µ− α2 · k2

2 + α · k
∥x− y∥.
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In addition, there holds the identity H (x∗) = 0, since x∗ is the Nash equilibrium. It
can be conclude that the map H is ω1-strongly monotone.

Define Lyapunov candidate function as

V1(x) =
1

2
∥x− x∗∥2 . (5)

Its time derivative along the trajectory of (3) is

V̇1 = − (x− x∗)
T
H̃(x,y)

= − (x− x∗)
T
(H(x) + ξ(x,y))

= − (x− x∗)
T
(H(x)−H (x∗))− (x− x∗)

T
ξ(x,y)

≤ − (x− x∗)
T
(H(x)−H (x∗)) + ∥x− x∗∥ ∥ξ(x,y)∥

≤ −2α · µ− α2 · κ2

2 + α · κ
∥x− x∗∥2 + αk2 ∥x− x∗∥ ∥y∥

≤ −ω1 ∥x− x∗∥2 + ξ1 ∥x− x∗∥ ∥y∥

≤ −ω1 ∥x− x∗∥2 + ξ1
2
∥x− x∗∥2 + ξ1

2
∥y∥2

= −
(
ω1 −

ξ1
2

)
∥x− x∗∥2 −

(
−ξ1

2

)
∥y∥2.

Next, we focus on dynamics (4). Let

g(x,y) ≜
d

dt
(φ(x)− 1N ⊗ σ(x))

= (∇φ(x)− 1N ⊗∇σ(x))
T
(PΩ (x− αG (x,1N ⊗ σ(x) + y))− x) ,

where the time derivative ẋ is along the dynamics (3). Clearly, 1T
N ⊗ Img(x,y) = 0.

Also, since

∥PΩ (x− αG (x,1N ⊗ σ(x) + y))− x∗∥
≤∥PΩ (x− αG (x,1N ⊗ σ(x) + y))− PΩ (x− αG (x,1N ⊗ σ(x))) ∥
+ ∥PΩ(x− αF (x))− PΩ (x∗ − αF (x∗))∥

≤αk2∥y∥+ ∥x− x∗∥+ αk ∥x− x∗∥ ,

there holds

∥g(x,y)∥ ≤∥∇φ(x)− 1N ⊗∇σ(x)∥ ∥PΩ (x− αG (x,1N ⊗ σ(x) + y))− x∥

≤k3 ∥PΩ (x− αG (x,1N ⊗ σ(x) + y))− x∗∥+ 2
√
Nk3 ∥x− x∗∥

≤2
√
Nk3(2 + αk) ∥x− x∗∥+ 2

√
Nαk2k3∥y∥.

Define the following Lyapunov candidate function

V2(y) =
1

2
∥y∥2.
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The time derivative of V2 along the trajectory of (4) is

V̇2 = y⊤ẏ

= y⊤
(
−βLη − βWθ +

d

dt
(φ(x)− 1N ⊗ σ (x))

)
= −βyTLy + yTg(x,y)− βy⊤Wθ

≤ −βλ2∥y∥2 + yTg(x,y)− βy⊤Wθ

≤ −βλ2∥y∥2 + ∥y∥∥g(x,y)∥+ β∥y∥∥W∥∥θ∥

≤ −βλ2∥y∥2 + ∥y∥
[
2
√
Nκ3(2 + ακ) ∥x− x∗∥+ 2

√
Nακ2κ3∥y∥

]
+ β∥W∥∥θ∥∥y∥

= −
(
βλ2 − 2

√
Nακ2κ3

)
∥y∥2 + 2

√
Nκ3(2 + ακ) ∥x− x∗∥ ∥y∥+ β∥W∥∥θ∥∥y∥,

where λ2 is the smallest positive eigenvalue of L.

Denote cθ = β∥W∥ and ∥θ∥ = kθ

√
∥x− x∗∥2 + ∥y∥2, then ∥θ∥ ≤

kθ (∥x− x∗∥+ ∥y∥). Then,

V̇2 ≤ −
(
βλ2 − 2

√
Nακ2κ3

)
∥y∥2 + 2

√
Nκ3(2 + ακ) ∥x− x∗∥ ∥y∥+ cθkθ∥y∥ (∥x− x∗∥+ ∥y∥)

≜ −ω2∥y∥2 + ξ2 ∥x− x∗∥ ∥y∥+ cθkθ ∥x− x∗∥ ∥y∥+ cθkθ∥y∥2

≤ − (ω2 − cθkθ) ∥y∥2 +
ξ2
2
∥x− x∗∥2 + ξ2

2
∥y∥2 + cθkθ

2
∥x− x∗∥2 + cθkθ

2
∥y∥2

= −
(
−ξ2

2
− cθkθ

2

)
∥x− x∗∥2 −

(
ω2 −

ξ2
2

− 3cθkθ
2

)
∥y∥2.

Take

V = V1 + V2.

Then,

V̇ =V̇1 + V̇2

≤−
(
ω1 −

ξ1
2

)
∥x− x∗∥2 −

(
−ξ1

2

)
∥y∥2

−
(
−ξ2

2
− cθkθ

2

)
∥x− x∗∥2 −

(
ω2 − cθkθ −

cθkθ
2

)
∥y∥2

≤−
(
ω1 −

ξ1
2

− ξ2
2

− cθkθ
2

)
∥x− x∗∥2 −

(
ω2 −

ξ1
2

− ξ2
2

− 3cθkθ
2

)
∥y∥2.

The following inequality is required{
ω1 − ξ1

2 − ξ2
2 − cθkθ

2 > 0,

ω2 − ξ1
2 − ξ2

2 − 3cθkθ

2 > 0.
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Then, apply

kθ < min

{
2

cθ

(
ω1 −

ξ1
2

− ξ2
2

)
,

2

3cθ

(
ω2 −

ξ1
2

− ξ2
2

)}
.

Let

ρ =
1

min
{

2
cθ

(
ω1 − ξ1

2 − ξ2
2

)
, 2
3cθ

(
ω2 − ξ1

2 − ξ2
2

)} .
Also, there exists 0 < c1 < 1

2 < c2, such that

c1

(
∥x− x∗∥2 + ∥y∥2

)
≤ V =

1

2
∥x− x∗∥2 + 1

2
∥y∥2 ≤ c2

(
∥x− x∗∥2 + ∥y∥2

)
.

Then we obtain

γ = ρ

√
c2
c1

.

Thus,

∥x− x∗∥ ≤
√
∥x− x∗∥2 + ∥y∥2 ≤ β

(
∥x0 − x∗∥2 + ∥y0∥2, t− t0

)
+ γ∥θ∥.

Step 2: Assume that the mapping of the proposed Algorithm 1 reaches equilibrium
(xi,x−i). For ∀x′

i ∈ Xi, i ∈ [N ], we have

fij(xi,x−i)− fij(x
′
i,x−i)

=fij(x
′
i,x

∗
−i)− fij(x

′
i,x−i)

+ fij(xi,x−i)− fij(x
∗
i ,x

∗
−i)

+ fij(x
∗
i ,x

∗
−i)− fij(x

′
i,x−i)

≜ Term 1 + Term 2 + Term 3 .

Denote [x′
i,x

∗
−i] vec =

[
x∗
1, . . . , x

∗
i−1, x

′
i, x

∗
i+1, . . . , x

∗
N

]⊤
,

Term 1 =fij(x
′
i,x

∗
−i)− fij(x

′
i,x−i)

≤⟨∇fij(x
′
i,x

∗
−i), [x

′
i,x

∗
−i] vec − [x′

i,x−i] vec ⟩
≤∥∇fij(x

′
i,x

∗
−i)∥∥x∗ − x∥

=C∥x∗ − x∥,

where the first inequality comes from the cost function fij is convex, the second in-
equality comes from Cauchy-Swartch inequality and the third inequality comes from the
gradient of cost function is bounded.

Term 2 =fij(xi,x−i)− fij(x
∗
i ,x

∗
−i)

≤⟨∇fij(xi,x−i),x− x∗⟩
≤∥∇fij(x)∥∥x− x∗∥
=C∥x− x∗∥,
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where the first inequality comes from the cost function fij is convex, the second in-
equality comes from Cauchy-Swartch inequality, and the third inequality comes from
the gradient of cost function fij is bounded.

fij(x
∗
i ,x

∗
−i) ≤ fii(x

∗
i ,x

∗
−i) + B⊤

2 x
∗
i ,

−fij(x
′
i,x

∗
−i) ≤ −fii(x

′
i,x

∗
−i)− B⊤

1 x
′
i.

Thus,

Term 3 =fij(x
∗
i ,x

∗
−i)− fij(x

′
i,x

∗
−i)

≤fii(x
∗
i ,x

∗
−i) + B⊤

2 x
∗
i − fii(x

′
i,x

∗
−i)− B⊤

1 x
′
i

≤B⊤
2 x

∗
i − B⊤

1 x
′
i

≤∥B⊤
2 x

∗
i − B⊤

1 x
′
i∥

≤∥B⊤
2 x

∗
i ∥+ ∥B⊤

1 x
′
i∥

≤2BM,

where M =
∑N

i=1 maxxi∈Xi
∥xi∥, B = max{B1,B2} and the first inequality comes from

Assumption 2.8. □

Theorem 1 demonstrates that the influence of deceptive behavior, where we provide
an upper bound on ϵ, and show the convergence of the proposed distributed deceptive
algorithm. Different from existing literature [11], in our work, we consider the existence
of players with deceptive behavior and other players as little unaware of the existence
of misinformation as possible. This leads to the instability of the network system,
thereby affecting ϵ. From (3.1), as the level of deception by such players increases
(as θ becomes higher), the network system becomes more difficult to reach the true
hyper Nash equilibrium point, and consequently, the upper bound of ϵ also increases.
Therefore, considering the tolerance of other players towards profit differences, player r
can control its own deceptive strategy θ to make other players as little unaware of the
existence of misinformation as possible.

Remark 3.2. In the absence of misinformation and deception, the algorithm can
achieve exponential convergence to the optimal value, as in reference [14].

3.3. Deceptive analysis

In this section, we analyze the motivation behind players adopting deceptive strategies.
Typically, players prioritize minimizing their cost functions. We outline how player r
can reduce its costs by deceptive behavior, which is the condition under which the player
is willing to engage in deceptive strategy.

Suppose that there are N players in a quadratic aggregative game [20], where each
player i aims at minimizing a quadratic cost function fi(xi,x−i) : RNn → R

fi(xi,x−i) := xT
i Qixi + (Cσ(x) + ci)

Txi,

where Qi ∈ Rn×n, Ci ∈ Rn×n, ci ∈ Rn and σ(x) := 1
N

∑N
j=1 xj .
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Note that the cost of each agent depends on the other players’ strategies only via the
interaction function Ciσ(x) + ci. Assuming that player j’s estimation of the parameter
ci in the cost function of any player i is biased, denoted as fij . Thus, the cost function
of player i under the cognition of player j is

fij(xi,x−i) := xT
i Qixi + (Cσ(x) + cij)

Txi.

The deceptive player r will increase or decrease its own cost after adopting the de-
ceptive strategy. Obviously, player r is willing to adopt a deceptive strategy when its
own cost can be reduced.

The following theorem provides the conditions, under which the deceptive player is
willing to adopt a deceptive strategy.

γi =

(
Qi +Q⊤

i +
C⊤

N

)−1

,

µ = C

NE +

N∑
j=1

(
Qj +Q⊤

j +
C⊤

N

)−1

C

−1

,

µ̃ =

E +
C

N

N∑
j=1

(
Qj +Q⊤

j +
C⊤

N

)−1
−1

,

λi =

NC−1 +

N∑
j=1

(
Qj +Q⊤

j +
C⊤

N

)−1
 cir, η̃ =

N∑
j=1

(
Qj +Q⊤

j +
C⊤

N

)−1

cjr,

A1 =

(γrµ̃CW2)
⊤Qr +

1

N

(
N∑
i=1

γiµ̃CW2

)⊤ (γrµCW2) , (6)

A2 =

(γrµ̃CW2)
⊤Qr +

1

N

(
N∑
i=1

γiµ̃CW2

)⊤ (−γrµ̃cr) , (7)

A3 =

(−γrµ̃cr)
⊤Qr −

1

N

(
N∑
i=1

γiµ̃ci

)⊤

C⊤ + c⊤r

 (γrµCW2) , (8)

B =

[
γµ(λr + η̃) +

C

N

N∑
i=1

γiµ(−λi + η̃) + cr

]
γrµ(−λr + η̃)

−

(−γrµ̃cr)
⊤Qr −

1

N

(
N∑
i=1

γiµ̃ci

)⊤

C⊤ + c⊤r

 (−γrµ̃cr) . (9)
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Theorem 3.3. When θ⊤A1θ + θ⊤A2 +A3θ < B,, the inequality

fr(x̂) < fr(x
∗
r),

is satisfied, where A1, A2, A3 and B are defined as (6), (7), (8) and (9).

P r o o f . Consider Algorithm 1. When the player cost function is a quadratic function,
for each agent the gradients of the first and second term of the cost function depend
only on the local strategy xi and on the aggregate quantity σ(x), that is,

∇xi
fi (xi,x−i) =

(
Qi +Q⊤

i +
C⊤

N

)
xi + Cσ(x) + ci

=: Fi (xi, σ(x)) ∈ Rn.

Therefore, the equilibrium point in the above map can be simplified as

x̂i =

(
Qi +Q⊤

i +
C⊤

N

)−1
E +

C

N

N∑
j=1

(
Qj +Q⊤

j +
C⊤

N

)−1
−1

(CW2θ − ci)

= γiµ̃ (CW2θ − ci) .

The deceptive player r believes that the Nash equilibrium is x∗
r = {x∗

1r, . . . , x
∗
Nr},

x∗
ir = γiµ (−λi + η̃) ,∀i ∈ [N ].

Only by reducing its own cost can player r be willing to adopt deceptive strategies,
that is to say, when

fr(x̂) < fr(x
∗
r), (10)

is satisfied, player r is willing to adopt deceptive strategies. Simplifying inequality (10),
we obtain

θ⊤A1θ + θ⊤A2 +A3θ < B,

which is the condition for player r to be willing to adopt the deceptive strategy. □

Theorem 3.3 outlines how player r can increase profit through deceptive behavior and
provides conditions for player r to be willing to engage in deceptive behavior. It can
be concluded from the above theorem that the player r is willing to adopt a deceptive
strategy θ which meets the above condition, as this can reduce the player’s own costs.
For instance, in CPS, while the hacker is probing the system, the network administrator
might change the system’s TCP/IP stack and obfuscate the services running on the por
to ensure the confidence and security of users in the network.

Then we consider the optimal deceptive strategy of the deceiver under a fixed tol-
erance ϵ, that is, what deceptive strategy does the deceiver adopt to minimize its own
costs. For a given tolerance ϵ, if the deceptive strategy θ is taken according to the
following theorem, the deceptive player obtains the minimum costs.
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Theorem 3.4. If ϵ ∈ (0, 2ρ
√

c2
c1
∥
[
(S3 + S2) + (S3 + S2)

⊤]−1 [
(R3S2)

⊤ + (S3R2)
]
∥ +

2BM ], then θ∗ = −
[
(S3 + S2) + (S3 + S2)

⊤]−1 [
(R3S2)

⊤ + (S3R2)
]

is optimal for
player r to implement deception.

Moreover, if ϵ ∈ [2BM +
√

c2
Nc1

1
λB′

min

[
(R3S2)

⊤ + (S3R2)
]
1N ,∞), then the player r’s

optimal deception θ∗ is the solution of the following equation:

∥θ∗∥
2Mρ

√
c2
c1

[
(R3S2)

⊤ + (S3R2) + [(S3S2) + (S3S2)
⊤]θ∗

]
=
[
R3S2θ

∗ + (S2R2)
⊤θ∗ + θ∗⊤[(S3S2) + (S3S2)

⊤]θ∗
]
θ∗,

where M = 1[
2ρ

√
c2
c1

1
∥θ∗∥

]
θ∗⊤θ∗

and λB′
min

is the smallest eigenvalue of [(S3S2)+(S3S2)
⊤].

P r o o f . Consider the deception algorithm shown in Algorithm 1. For the case where
the player cost function is a quadratic function, for each agent the gradients of the first
and second term of the cost function depend only on the local strategy xi and on the
aggregate quantity σ(x), that is,

∇xifi (xi, x−i) =

(
Qi +Q⊤

i +
C⊤

i

N

)
xi + Ciσ(x) + ci

=: Fi (xi, σ(x)) ∈ Rn.

Assume that the sequence values after each gradient descent fall within the constraint
set. Then, there is iterative formulas as follows, for ∀i

ẋ = PΩ(x− αG(x,η))− x,

ẏ = −βL− βWθ + (∇φ(x)− 1N ⊗∇σ (x))
⊤
(PΩ(x− αG(x,η))− x) .

(11)

Then, the equilibrium point in the above map can be simplified as

x̂i = γiµ̃ (CW2θ − ci) .

Denote x̂r = γrµ̃ (CW2θ − cr) ≜ R2 + S2θ. Therefore,

N∑
i=1

x̂i =

N∑
i=1

[αiCiβ (−γi − µicii + η̃)]

+

[
αrCrβ(NE + 2λ)−

N∑
i=1

αiCiβ(E + λ)

]
θ

≜R1 + S1θ.
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Then, the deceptive player’s cost function can be calculated as follows

fr(x̂r, x̂−r)

=

[(
R⊤

2 Qr +
1

N
R⊤

1 C
⊤
r + C⊤

r

)
+ θ⊤

(
S⊤
2 Qr +

1

N
S⊤
1 C⊤

r

)]
(R2 + S2θ)

≜(R3 + θ⊤S3) (R2 + S2θ)

=R3R2 +R3S2θ + θ⊤S3R2 + θ⊤S3S2θ ≜ h(θ).

From Theorem 3.1,

ϵ ≤ 2ρ

√
c2
c1

∥θ∥+ 2BM.

Given a tolerance of ϵ, our goal is to seek the minimum cost function of the deception
player, that is, to solve the following optimization problem with inequality constraint:

minh(θ) = R3R2 +R3S2θ + θ⊤S3R2 + θ⊤S3S2θ,

s.t. ϵ ≤ 2ρ

√
c2
c1

∥θ∥+ 2BM,

The above optimization problem is equivalent to

minh(θ) = R3R2 +R3S2θ + θ⊤S3R2 + θ⊤S3S2θ,

s.t. g(θ) = ϵ− 2ρ

√
c2
c1

∥θ∥ − 2BM ≤ 0.

Next, KKT condition is applied to optimization problems with inequality constraints.

min h(θ)
s.t. g(θ) ≤ 0

⇒
KKT

condition


∇h (θ∗) + λ∇g (θ∗) = 0

λg (θ∗) = 0

λ ≥ 0

g (θ∗) ≤ 0

∇h(θ) = (R3S2)
⊤ + (S3R2) + [(S3S2) + (S3S2)

⊤]θ,

∇g(θ) = −2ρ

√
c2
c1

θ

∥θ∥
.

Case 1:
If λ = 0, then ∇h(θ∗) = 0 ⇒ θ∗ = −

[
(S3 + S2) + (S3 + S2)

⊤]−1 [
(R3S2)

⊤ + (S3R2)
]
,

Substituting into g(θ∗) ≤ 0, we have

g(θ∗) = ϵ− 2ρ

√
c2
c1

∥θ∗∥ − 2BM ≤ 0,

i. e., ϵ ≤ 2ρ
√

c2
c1
∥θ∗∥+ 2BM .
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Case 2:
If λ ̸= 0, then g(θ∗) = 0, i. e.,

g(θ∗) = ϵ− 2ρ

√
c2
c1

∥θ∗∥ − 2BM = 0.

Then we have

∥θ∗∥ =

√
c1
c2

ϵ− 2BM
2ρ

. (12)

Substituting θ∗ into ∇h (θ∗) + λ∇g (θ∗) = 0, we have

(R3S2)
⊤ + (S3R2) + [(S3S2) + (S3S2)

⊤]θ∗ + λ

[
−2ρ

√
c2
c1

θ∗

∥θ∗∥

]
= 0.

Then,

(R3S2)
⊤ + (S3R2) + [(S3S2) + (S3S2)

⊤]θ∗ = λ

[
2ρ

√
c2
c1

1

∥θ∗∥

]
θ∗,

θ∗⊤(R3S2)
∗⊤ + θ∗⊤(S3R2) + θ∗⊤[(S3S2) + (S3S2)

⊤]θ∗ = λ

[
2ρ

√
c2
c1

1

∥θ∗∥

]
θ∗⊤θ∗.

Denote M = 1[
2ρ

√
c2
c1

1
∥θ∗∥

]
θ∗⊤θ∗

, and then

λ = M
[
R3S2θ

∗ + (S2R2)
⊤θ∗ + θ∗⊤[(S3S2) + (S3S2)

⊤]θ∗
]
.

The optimal deception θ∗ a is the solution of the following equation:

∥θ∗∥
2Mρ

√
c2
c1

[
(R3S2)

⊤ + (S3R2) + [(S3S2) + (S3S2)
⊤]θ∗

]
=
[
R3S2θ

∗ + (S2R2)
⊤θ∗ + θ∗⊤[(S3S2) + (S3S2)

⊤]θ∗
]
θ∗.

(13)

Then, verify λ > 0 by combining equations (12) and (13). Therefore,

ϵ ≥ 2BM +

√
c2
Nc1

1

λB′
min

[
(R3S2)

⊤ + (S3R2)
]
1N ,

where λB′
min

is the smallest eigenvalue of the symmetric matrix [(S3S2) + (S3S2)
⊤].

□

From Theorem 3.4, it can be concluded that when the tolerance ϵ meets certain
conditions, player r can achieve the lowest cost consumption by adopting the above-
mentioned deceptive strategy.

4. NUMERICAL SIMULATION

In this section, we provide simulations to illustrate the convergence performance and
the effectiveness of the deceptive strategy.
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4.1. Convergence

For simulation, we first discretize the continuous-time algorithm as follows

x[k + 1] = x[k] + h
d

dt
x(t)

∣∣∣∣
t=kh

,

η[k + 1] = η[k] + h
d

dt
η(t)

∣∣∣∣
t=kh

,

where h > 0 is a fixed stepsize. Here, we consider the 5-player energy consumption
game, where player i’s objective function is given by

fi(x) = (xi − x̂i)
2
+

(
0.04

5∑
i=1

xi + 5

)
xi,

with x̂1 = 50, x̂2 = 55, x̂3 = 60, x̂4 = 65, x̂5 = 70. The game has the unique pure-
strategy Nash equilibrium at x∗ = (41.5, 46.4, 51.3, 56.2, 61.1). In the following, fixed
communication topologies and time-varying communication topologies will be consid-
ered.

Fig. 1. The communication graph for the players.

In the simulation, the players are supposed to communicate via a cycle depicted in
Figure 1. Correspondingly, the weight matrix is given as

W =


0.5 0.2 0 0 0.3
0.2 0.5 0.3 0 0
0 0.3 0.5 0.2 0
0 0 0.2 0.5 0.3
0.3 0 0 0.3 0.4

 ,

Moreover, the proposed method is run for 50 times for the observation of the simu-
lation results.

Figure 2 shows the players’ squared equilibrium errors, i. e., ∥xk
i − x∗

i ∥2 for
i ∈ {1, 2, . . . , 5} from which we see that the proposed method drives ∥xk

i − x∗
i ∥2 to a

small neighborhood of zero even with a deceptive strategy θ.
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0 100 200 300 400 500
0

50

100

150

200

250

300

player 1

player 2

player 3

player 4

player 5

Fig. 2. Convergence to NE (θ = 100).

Next, we implement Algorithm 1 with step-size α as in Theorem 1, and display the
empirical result (maximize across sampling trajectories with the same initial points) in
Figure 3. Besides, we compare our algorithm with the projected gradient method [11] and
extra-gradient method [8] when applied to the considered aggregative game, while the
network aggregate value is still estimated with the dynamical average tracking. It can be
seen that the distributed aggregative game problem with misinformation proposed in this
paper, compared to the existing non-deceptive algorithm, when selecting an appropriate
deceptive strategy, our deceptive algorithm is more in line with the cognition of each
player.

0 100 200 300 400 500
200

400

600

800

1000

Fig. 3. Comparison of Algorithm 1 with the projected gradient

method (PGA) and the extra-gradient method (Extra-G). The

trajectories are derived by maximizing with 5 player paths).
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In Figure 4, when there is no deceptive strategy θ, the vertical axis is not the lowest
point, and it can be seen from Figure 4 that selecting a suitable deception strategy θ
can improve the player’s cognitive stability and make them less skeptical of their own
cognition compared to the case without adopting a deceptive strategy.

-800 -600 -400 -200 0 200

0

200

400

600

800

1000

1200

1400

Fig. 4. Comparison of Algorithm 1 with different deceptive strategy

θ. The trajectories are derived by maximizing with 5 player paths).

4.2. Deceptive analysis

The cost function of player i can be written as

fi(x) = x2
i −

(
0.04

5∑
i=1

xi + 5 + 2x̂i

)
xi.

The cost functions of other players under the perspective of player 5 are as follows:

f15(x) = x1
2 +

(
0.04

5∑
i=1

x1 + 40

)
x1,

f25(x) = x2
2 +

(
0.04

5∑
i=1

x2 + 50

)
x2,

f35(x) = x3
2 +

(
0.04

5∑
i=1

x3 + 60

)
x3,

f45(x) = x4
2 +

(
0.04

5∑
i=1

x4 + 70

)
x4,

f5(x) = x5
2 +

(
0.04

5∑
i=1

x5 + 5

)
x5.



Equilibrium analysis of distributed aggregative game with misinformation 775

As shown in Figure 5, when θ = 0, the cost function value of player 5 under the Nash
equilibrium on the vertical axis is not the lowest for deceiving player 5. This is because
the Nash equilibrium is a strategy combination, which means that when adopting such
a strategy, players will not only change their own strategy to reduce costs, but it is not
necessarily the best choice for each player.

Below is the condition under which the deceptive player is willing to adopt a deceptive
strategy. f5(x̂) is the cost function after adopting the deception strategy and f5(x

∗
5) is

the optimal cost function for player 5’s own cognition. When f5(x̂) < f5(x
∗
5), i. e.f5(x̂)−

f5(x
∗
5) < 0, the deceptive player is willing to engage in deceptive behavior. Figure 5

illustrates the relationship between the difference and the deceptive strategy θ. It can be
seen that when the deceptive strategy θ meets certain conditions, player 5 can reduce its
own costs, which means that the deceptive player 5 will sample the deceptive strategy
within this range for deception.

-1200 -1000 -800 -600 -400 -200 0 200 400

-1000

-500

0

500

1000

1500

2000

Fig. 5. f5(x̂)− f5(x
∗
5) vs deceptive θ (T = 50).

5. CONCLUSION

This paper has explored the distributed aggregative game problem with misinformation,
with each player holding a biased estimate of the cost function pertaining to other players
in the game. We have formulated this issue as a hypergame and proposed a distributed
deception algorithm. Then we have provided convergence analysis for our proposed
algorithm, where the metric ϵ correlates with the deceptive strategy. Moreover, for the
distributed quadratic game problem, we have outlined the conditions under which the
deceptive player is inclined to adopt deceptive strategy. Specifically, we have determined
the range of deceptive strategy values capable of reducing costs. In addition, for a given
tolerance ϵ, we have proposed the optimal deceptive strategy from the perspective of
the deceptive player. Finally, we have validated the effectiveness of the algorithm via
numerical experiments.
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