Kybernetika 60 no. 6, 740-753, 2024

Additive generators of discrete semi-uninorms

Ya-Ming Wang, Hang Zhan and Yuan-Yuan ZhaoDOI: 10.14736/kyb-2024-6-0740

Abstract:

This work explores commutative semi-uninorms on finite chains by means of strictly increasing unary functions and the usual addition. In this paper, there are three families of additively generated commutative semi-uninorms. We not only study the structures and properties of semi-uninorms in each family but also show the relationship among these three families. In addition, this work provides the characterizations of uninorms in $\mathcal{U}_{\min}$ and $\mathcal{U}_{\max}$ that are generated by additive generators.

Keywords:

aggregation operations, semi-uninorms, additive generators, semi-t-norms, semi-t-conorms, finite chains

Classification:

46F10, 62E86

References:

  1. G. Beliakov, A. Pradera and T. Calvo: Aggregation functions: A guide for practitioners. Stud. Fuzziness Soft Comput. 221 (2007), Springer, Berlin, Heidelberg.   CrossRef
  2. T. Calvo, G. Mayor and R. Mesiar: Aggregation operators: New trends and applications. Stud. Fuzziness Soft Comput. 97 (2002), Springer, Berlin, Heidelberg.   CrossRef
  3. B. De Baets and R. Mesiar: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.   DOI:10.1016/S0165-0114(98)00259-0
  4. B. De Baets and R. Mesiar: Discrete Triangular Norms, in Topological and Algebraic Structures in Fuzzy Sets. Trends in Logic (S. Rodabaugh and E.-P. Klement, eds.), 20 (2003), pp. 389-400.   DOI:10.1007/978-94-017-0231-7\_16
  5. B. De Baets, J. Fodor, D. Ruiz-Aguilera and J. Torrens: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14.   DOI:10.1142/S021848850900570X
  6. F. Durante, E. P. Klement, R. Mesiar and C. Sempi: Conjunctors and their residual implicators: characterizations and construct methods. Mediterr. J. Math. 4 (2007), 343-356.   DOI:10.1007/s00009-007-0122-1
  7. J. Fodor: Smooth associative operations on finite ordinal scales. IEEE Trans. Fuzzy Syst. 8 (2000), 791-795.   DOI:10.1109/91.890343
  8. J. Fodor and T. Keresztfalvi: Nonstandard conjunctions and implications in fuzzy logic. Int. J. Approx. Reason. 12 (1995), 69-84.   DOI:10.1016/0888-613x(94)00012-r
  9. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/S0218488597000312
  10. L. Han and H. W. Liu: On the distributivity of logical operators on a finite chain. School Math., Shandong University 2014, pp. 42-47.   CrossRef
  11. A. Kolesarova, R. Mesiar, J. Mordelova and C. Sempi: Discrete copulas. IEEE Trans. Fuzzy Syst. 14 (2006), 698-705.   DOI:10.1109/TFUZZ.2006.880003
  12. G. Li, H. W. Liu and J. Fodor: On weakly smooth uninorms on finite chain. Int. J. Intell. Syst. 30 (2015), 421-440.   DOI:10.1002/int.21694
  13. H. W. Liu: Semi-uninorms and implications on a complete lattice. Fuzzy Sets Syst. 191 (2012), 72-82.   DOI:10.1016/j.fss.2011.08.010
  14. M. Munar, S. Massanet and D. Ruiz-Aguilera: A review on logical connectives defined on finite chains. Fuzzy Sets Syst. 462 (2023), 108469.   DOI:10.1016/j.fss.2023.01.004
  15. M. Mas, G. Mayor and J. Torrens: T-operators and uninorms on a finite totally ordered set. Int. J. Intell. Syst. 14 (1999), 909-922.   DOI:10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B
  16. M. Mas, M. Monserrat and J. Torrens: On bisymmetric operators on a finite chain. IEEE Trans. Fuzzy Syst. 11 (2003), 647-651.   DOI:10.1109/TFUZZ.2003.817851
  17. M. Mas, M. Monserrat and J. Torrens: On left and right uninorms on a finite chain. Fuzzy Sets Syst. 146 (2004), 3-17.   DOI:10.1016/j.fss.2003.11.002
  18. M. Mas, M. Monserrat and J. Torrens: Smooth t-subnorms on finite scales. Fuzzy Sets Syst. 167 (2011), 82-91.   DOI:10.1016/j.fss.2010.05.006
  19. G. Mayor and J. Monreal: Additive generators of discrete conjunctive aggregation operations. IEEE Trans. Fuzzy Syst. 15 (2007), 1046-1052.   DOI:10.1109/TFUZZ.2007.903321
  20. G. Mayor and J. Monreal: On some classes of discrete additive generators. Fuzzy Sets Syst. 264 (2015), 110-120.   DOI:10.1016/j.fss.2014.09.020
  21. G. Mayor and J. Torrens: Triangular Norms on Discrete Settings, in Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam. 2005, pp. 189-230.   CrossRef
  22. G. Mayor, J. Suñer and J. Torrens: Copula-like operations on finite settings. IEEE Trans. Fuzzy Syst. 13 (2005), 468-477.   DOI:10.1109/TFUZZ.2004.840129
  23. A. Pradera, G. Beliakov and H. Bustince: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329 (2016), 357-380.   DOI:10.1016/j.ins.2015.09.033
  24. D. Ruiz-Aguilera and J. Torrens: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets Syst. 268 (2015), 44-58.   DOI:10.1016/j.fss.2014.10.020
  25. W. Sander: Associative aggregation operators. In: Aggregation Operators (T. Calvo, G. Mayor, R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 124-158.   DOI:10.1007/978-3-7908-1787-4\_3