Kybernetika 60 no. 6, 694-722, 2024

Conditional distributivity of overlap functions over uninorms with continuous underlying operators

Hui Liu and Wenle LiDOI: 10.14736/kyb-2024-6-0694

Abstract:

The investigations of conditional distributivity are encouraged by distributive logical connectives and their generalizations used in fuzzy set theory and were brought into focus by Klement in the closing session of Linzs 2000. This paper is mainly devoted to characterizing all pairs $(O,F)$ of aggregation functions that are satisfying conditional distributivity laws, where $O$ is an overlap function, and $F$ is a continuous t-conorm or a uninorm with continuous underlying operators.

Keywords:

uninorm, aggregation function, overlap function, conditional distributivity

Classification:

08A72, 94A08

References:

  1. B. De Baets: Idempotent uninorm. European J. Oper. Res. 118 (1999), 3, 631-642.   DOI:10.1016/S0377-2217(98)00325-7
  2. B. De Baets, J. Fodor, D. Ruiz-Aguilera and J. Torrens: Idempotent uninorms on finite ordinal scales. Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 17 (2009), 1-14.   DOI:10.1142/S021848850900570X
  3. D. Dubois, E. Pap and H. Prade: Hybrid probabilistic-possibilistic mixtures and utility function. In: Preferences and Decisions under Incomplete Knowledge, Studies in Fuzziness and Soft Computing, Springer-Verlag Press, Berlin Heidelberg 2000, vol. 51, pp. 51-73.   CrossRef
  4. D. Gómez, J. T. Rodríguez, J. Yáñez and J. Montero: A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions. Int. J. Approx. Reason. 74 (2016), 88-107.   CrossRef
  5. D. Jočić and I. Štajner-Papuga: Distributivity equations and Mayor's aggregation operators. Knowledge-Based Systems 52 (2013), 194-200.   DOI:10.1016/j.knosys.2013.08.013
  6. D. Jočić and I. Štajner-Papuga: Restricted distributivity for aggregation operators with absorbing element. Fuzzy Sets Systems 224 (2013), 23-35.   DOI:10.1016/j.fss.2012.12.008
  7. D. Jočić and I. Štajner-Papuga: Some implications of the restricted distributivity of aggregation operators with absorbing elements for utility theory. Fuzzy Sets Systems 291 (2016), 54-65.   DOI:10.1016/j.fss.2015.06.003
  8. D. Ruiz and J. Torrens: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190.   DOI:10.1109/TFUZZ.2005.864087
  9. D. Ruiz, J. Torrens, B. De Baets and J. Fodor: Some remarks on the characterization of idempotent uninorms. In: Lecture Notes in Artificial Intelligence(E. Hüllermeier, R. Kruse, and F. Hoffmann ed.), Springer-Verlag Press, Berlin, Heidelberg 2010, vol. 6178, pp. 425-434.   CrossRef
  10. E. Pak: Distributivity equation for nullnorms. J. Electr. Engrg. 56 (2005), 12, 53-55.   DOI:10.1016/j.outlook.2005.02.001
  11. E. P. Klement, R. Mesiar and E. Pap: Integration with respect to decomposable measures based on conditionally distributive semirings on the unit interval. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 8 (2000), 701-717.   DOI:10.1016/S0218-4885(00)00051-4
  12. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  13. G. Li, H. W. Liu and Y. Su: On the conditional distributivity of nullnorms over uninorms. Inform. Sci. 317 (2015), 157-169.   DOI:10.1016/j.ins.2015.04.040
  14. H. Bustince, J. Fernández, R. Mesiar, J. Montero and R. Orduna: Overlap functions. Nonlinear Analysis 72 (2010), 1488-1499.   DOI:10.1016/j.na.2009.08.033
  15. H. Bustince, J. Fernández, R. Mesiar, J. Montero and R. Orduna: Overlap index, overlap functions and migrativity. In: Proc. IFSA/EUSFLAT Conference 2009, pp. 300-305.   CrossRef
  16. H. Bustince, M. Pagola, R. Mesiar, E. Hüllermeier and F. Herrera: Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Systems 20 (2012), 3, 405-415.   DOI:10.1109/TFUZZ.2011.2173581
  17. H. Liu and B. Zhao: New results on the distributive laws of uninorms over overlap functions. IEEE Trans. Fuzzy Systems 29 (2021), 7, 1927-1941.   DOI:10.1109/TFUZZ.2020.2988850
  18. J. Aczél: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966.   CrossRef
  19. J. Drewniak, P. Dryga\`{s} and E. Rak: Distributivity between uninorms and nullnorms. Fuzzy Sets Systems 159 (2008), 1646-1657.   DOI:10.1016/j.fss.2007.09.015
  20. J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.   CrossRef
  21. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411-427.   CrossRef
  22. J. Martín, G. Mayor and J. Torrens: On locally internal monotonic operations. Fuzzy Sets Systems 137 (2003), 27-42.   DOI:10.1016/S0165-0114(02)00430-X
  23. J. S. Qiao: On distributive laws of uninorms over overlap and grouping functions. IEEE Trans. Fuzzy Systems 27 (2019), 2279-2292.   DOI:10.1109/TFUZZ.2019.2896846
  24. J. S. Qiao and B. Q. Hu: On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Systems 323 (2017), Suppl. C, 19-55.   DOI:10.1016/j.fss.2017.03.007
  25. K. Y. Zhu, J. R. Wang and B. H. Jiang: On distributive laws of overlap and grouping functions over uninorms. J. Intell. Fuzzy Syst. 38 (2020), 4441-4446.   DOI:10.3233/JIFS-191168
  26. L. D. Miguel, D. Gómez, J. T. Rodríguez, J. Montero, H. Bustince, G. P. Dimuro and J. A. Sanz: General overlap functions. Fuzzy Sets Systems 372 (2019), 81-96.   DOI:10.1016/j.fss.2018.08.003
  27. M. Elkano, M. Galar, J. A. Sanz, P F. Schiavo, S. Pereira, G. P. Dimuro, E. N. Borges and H. Bustince: Consensus via penalty functions for decision making in ensembles in fuzzy rulebased classification systems. Appl. Soft Comput. 67 (2018), 728-740.   DOI:10.1016/j.asoc.2017.05.050
  28. M. Kuczma: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality. PWN - Polish Scientific Publishers, Warszawa 1985.   CrossRef
  29. P. Benvenuti and R. Mesiar: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inform. Sci. 160 (2004), 1-11.   CrossRef
  30. P. Drygaś and E. Rak: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Systems 291 (2016), 82-97.   DOI:10.1016/j.fss.2015.02.014
  31. P. Drygaś and E. Rak: Distributivity equations in the class of semi-t-operators. Fuzzy Sets Systems 291 (2016), 66-81.   DOI:10.1016/j.fss.2015.01.015
  32. T. Calvo: On some solutions of the distributivity equation. Fuzzy Sets Systems 104 (1999), 85-96.   DOI:10.1016/S0165-0114(98)00261-9
  33. T. H. Zhang and F. Qin: On distributive laws between 2-uninorms and overlap (grouping) functions. Int. J. Approx. Reason. 119 (2020), 353-372.   CrossRef
  34. T. H. Zhang, F. Qin and W. H. Li: On the distributivity equations between uni-nullnorms and overlap (grouping) functions. Fuzzy Sets Systems 403 (2021), 56-77.   DOI:10.1016/j.fss.2019.12.005
  35. W. Sander and J. Siedekum: Multiplication, distributivity and fuzzy integral I. Kybernetika 41 (2005), 397-422.   CrossRef
  36. W. Sander and J. Siedekum: Multiplication, distributivity and fuzzy integral II. Kybernetika 41 (2005), 469-496.   CrossRef
  37. W. Sander and J. Siedekum: Multiplication, distributivity and fuzzy integral III. Kybernetika 41 (2005), 497-518.   CrossRef
  38. Y. F. Zhao and K. Li: On the distributivity equations between null-uninorms and overlap (grouping) functions. Fuzzy Sets Systems 433 (2022), 122-139.   DOI:10.1016/j.fss.2021.06.002
  39. Y. Su, H. W. Liu, D. Ruiz-Aguilera, J V. Riera and J. Torrens: On the distributivity property for uninorms. Fuzzy Sets Systems 287 (2016), 184-202.   DOI:10.1016/j.fss.2015.06.023
  40. Y. Su, W. Zong and H. W. Liu: On distributivity equations for uninorms over semi-t-operators. Fuzzy Sets Systems 299 (2016), 41-65.   DOI:10.1016/j.fss.2015.08.001
  41. Y. Su, W. Zong, H. W. Liu and P. Xue: The distributivity equations for semi-t-operators over uninorms. Fuzzy Sets Systems 287 (2016), 172-183.   DOI:10.1016/j.fss.2015.03.009