Kybernetika 60 no. 5, 652-681, 2024

Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems

Julie Khatri and Ashish Kumar PrasadDOI: 10.14736/kyb-2024-5-0652

Abstract:

Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.

Keywords:

interval-valued problem, multiobjective programming, exact l$_1$ penalty function, LU-efficient solution

Classification:

49J52, 49M30, 90C29, 90C46

References:

  1. T. Antczak: $(p,r)$-invex sets and functions. J. Math. Anal. Appl. 263 (2001), 355-379.   CrossRef
  2. T. Antczak: Exact penalty functions method for mathematical programming problems involving invex functions. Europ. J. Oper. Res. 198 (2009), 29-36.   DOI:10.1016/j.ejor.2008.07.031
  3. T. Antczak: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems. In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470.   DOI:10.1007/978-3-642-36062-6-46
  4. T. Antczak: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems. J. Optim. Theory Appl. 176 (2018), 205-224.   DOI:10.1007/s10957-017-1204-2
  5. T. Antczak: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150.   DOI:10.1016/S0252-9602(17)30062-0
  6. T. Antczak and A. Farajzadeh: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions. J. Industr. Management Optim. 19(8) (2023), 1-26.   DOI:10.3934/jimo.2022196
  7. T. Antczak and M. Studniarski: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming. Functional Anal. Optim.37 (2016), 1465-1487.   DOI:10.1080/01630563.2016.1233118
  8. M. S. Bazaraa, H. D. Sherali and C. M. Shetty: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991.   CrossRef
  9. A. Ben-Israel and B. Mond: What is invexity. J. Austral. Math. Soc. Series B 28 (1986). 1-9.   CrossRef
  10. D. P. Bertsekas and A. E. Koksal: Enhanced optimality conditions and exact penalty functions. In: Proc. Allerton Conference, 2000.   CrossRef
  11. B. D. Craven: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24 (1981), 357-366.   CrossRef
  12. F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York 1983.   CrossRef
  13. R. Fletcher: An exact penalty function for nonlinear programming with inequalities. Math. Programm. 5 (1973), 129-150.   DOI:10.1007/BF01580117
  14. N. X. Ha and D. V. Luu: Invexity of supremum and infimum functions. Bull. Austral. Math. Soc. 65 (2002), 289-306.   DOI:10.1017/S0004972700020335
  15. M. A. Hanson: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550.   CrossRef
  16. A. Jayswal, I. Stancu-Minasian and I. Ahmad: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.   DOI:10.1016/j.amc.2011.09.041
  17. A. Jayswal and J. Banerjee: An exact l$_1$ penalty approach for interval-valued programming problem. J. Oper. Res. Soc. China 4 (2016), 461-481.   DOI:10.1007/s40305-016-0120-8
  18. O. L. Mangasarian: Sufficiency of exact penalty minimization. SIAM J. Control Optim. 23 (1985), 30-37.   DOI:10.1137/0323003
  19. D. H. Martin: The essence of invexity. J. Optim. Theory Appl. 42 (1985), 65-76.   CrossRef
  20. R. E. Moore: Interval Analysis. Prentice-Hall, Englewood Cliffs 1966.   CrossRef
  21. R. E. Moore: Methods and applications of interval analysis. Soc. Industr. Appl. Math., Philadelphia 1979.   CrossRef
  22. T. Pietrzykowski: An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6 (1969), 299-304.   DOI:10.1137/0706028
  23. T. W. Reiland: Nonsmooth invexity. Bull. Austral. Math. Soc. 42 (1990), 437-446.   DOI:10.1017/S0004972700028604
  24. S. Khatri and A. K. Prasad: Duality for a fractional variational formulation using $\eta $-approximated method. Kybernetika 59(5) (2023), 700-722.   DOI:10.14736/kyb-2023-5-0700
  25. T. Weir and V. Jeyakumar: A class of nonconvex functions and mathematical programming. Bull. Austral. Math. Soc. 38 (1988), 177-189.   CrossRef
  26. H. C. Wu: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Europ, J. Oper. Res. 176 (2007), 46-59.   DOI:10.1016/j.ejor.2005.09.007
  27. H. C. Wu: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138 (2008), 497-509.   DOI:10.1007/s10957-008-9396-0
  28. W. I. Zangwill: Non-linear programming via penalty functions. Management Sci. 13 (1967), 344-358.   DOI:10.1287/mnsc.13.5.344
  29. J. Zhang: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems. J. Appl. Math. Article ID 641345 (2013).   DOI:10.1155/2013/641345
  30. H. C. Zhou and Y. J. Wang: Optimality condition and mixed duality for interval-valued optimization. Fuzzy Inform. Engrg.2 (2009), 1315-1323.   DOI:10.1007/978-3-642-03664-4-140