Kybernetika 60 no. 5, 624-651, 2024

New constructions of uni-nullnorms on certain classes of bounded lattices by closure (interior) operators

Tao WuDOI: 10.14736/kyb-2024-5-0624

Abstract:

The primary aim of this article is to put forward new classes of uni-nullnorms on certain classes of bounded lattices via closure (interior) operators. Due to the new classes of uninorms combining both a t-norm $T$ and a t-conorm $S$ by various kinds of closure operators or interior operators, the relationships and properties among the same class of uninorms on $L$, we obtain new classes of uni-nullnorms on $L$ via closure (interior) operators. The constructions of uni-nullnorms on some certain classes of bounded lattices can provide another different perspective of t-norms and the dual of t-norms, uninorms and some other associative aggregation operations on bounded lattices. That is, the constructions seem to be the ordinal like sum constructions, but not limited to the ordinal like sum constructions.

Keywords:

bounded lattice, nullnorm, uni-nullnorm, closure operator, construction, ordinal like sum construction

Classification:

03B52, 06B20, 03E72

References:

  1. E. Aşıcı: An order induced by nullnorms and its properties, Fuzzy Sets Syst. 325 (2017), 35-46.   DOI:10.1016/j.fss.2016.12.004
  2. S. Abramsky: Domain Theory and The Logic of Observable Properties. PhD. Thesis, Queen Mary College, University of London, 1987.   CrossRef
  3. G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island, 1973.   CrossRef
  4. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014.   DOI:10.1109/sisy.2014.6923558
  5. H. Bustince, J. Fernández, R. Mesiar, J. Montero and R. Orduna: Overlap functions. Nonlinear Anal. 72 (2010), 1488-1499.   DOI:10.1016/j.na.2009.08.033
  6. T. Calvo, B. De Baets and J. C. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/S0165-0114(99)00125-6
  7. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  8. G. D. Çaylı: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorm. Int. J. Gen. Syst. 47 (2018), 8, 772-793.   DOI:10.1080/03081079.2018.1513929
  9. G. D. Çaylı: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139.   DOI:10.1016/j.ins.2019.03.007
  10. G. D. Çaylı: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26.   DOI:10.1016/j.fss.2018.07.012
  11. G. D. Çaylı: Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131.   DOI:10.1016/j.fss.2019.03.010
  12. G.D. Çaylı: Nullnorms on bounded lattices derived from t-norms and t-conorms. Inf. Sci. 512 (2020), 1134-1154.   DOI:10.1016/j.ins.2019.10.059
  13. G. D. Çaylı: Generating nullnorms on some special classes of bounded lattices via closure and interior operators. Inf. Sci. 552 (2021), 118-141.   DOI:10.1016/j.ins.2020.11.016
  14. G. D. Çaylı: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 2, 139-158.   CrossRef
  15. Y. X. Dan, B. Q. Hu and J. S. Qiao: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.   DOI:10.1080/03081079.2020.1863397
  16. C. A. Drossos: Generalized t-norm structures. Fuzzy Sets Syst. 104 (1999), 53-59.   DOI:10.1016/S0165-0114(98)00258-9
  17. B. De Baets and R. Mesiar: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.   DOI:10.1016/S0165-0114(98)00259-0
  18. B. De Baets: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642.   DOI:10.1016/S0377-2217(98)00325-7
  19. P. Drygaś, D. Ruiz-Aguilera and J. Torrens: A characterization of uninorms locally internal in A(e) with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153.   DOI:10.1016/j.fss.2015.07.015
  20. D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121.   DOI:10.1016/0020-0255(85)90027-1
  21. A. Dvořák and M. Holčapek: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inf. Sci. 515 (2020), 116-131.   DOI:10.1016/j.ins.2019.12.003
  22. A. Dvořák, M. Holčapek and J. Paseka: On ordinal sums of partially ordered monoids: A unified approach to ordinal sum constructions of t-norms, t-conorms and uninorms. Fuzzy Sets Syst. 446 (2022), 4-25.   DOI:10.1016/j.fss.2021.04.008
  23. Ü. Ertu\v{g}rul, M. N. Kesicio\v{g}lu and F. Karaçal: Construction methods for uni-nullnorms and null-uninorms on bounded lattices. Kybernetika 55 (2019), 6, 994-1015.   DOI:10.14736/kyb-2019-6-0994
  24. Ü. Ertu\v{g}rul and M. Yeşilyurt: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216.   DOI:10.1016/j.ins.2019.12.056
  25. Ü. Ertu\v{g}rul: Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109.   DOI:10.1016/j.fss.2017.07.020
  26. F. Esteva and L. Godo: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271-288.   DOI:10.1016/S0165-0114(01)00098-7
  27. C. J. Everett: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525.   DOI:10.1090/S0002-9947-1944-0010556-9
  28. J. C. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  29. J. C. Fodor and B. De Baets: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99.   DOI:10.1016/j.fss.2011.12.001
  30. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott: Continuous Lattices and Domains. Cambridge University Press, 2003.   CrossRef
  31. M. Grabisch, J. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   CrossRef
  32. S. W. Han and B. Zhao: The Basis of Quantale Theory (in Chinese). Science Press, Beijing 2016.   CrossRef
  33. P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998.   CrossRef
  34. W. Ji: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.   DOI:10.1016/j.fss.2019.12.003
  35. F. Karaçal and D.Khadjiev: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352.   DOI:10.1016/j.fss.2004.06.013
  36. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  37. F. Karaçal, M. A. Ince and R. Mesiar: Nullnorms on bounded lattices. Inf. Sci. 325 (2015), 227-236.   DOI:10.1016/j.ins.2015.06.052
  38. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.   CrossRef
  39. H. W. Liu: Semi-uninorms and implications on a complete lattice. Fuzzy Sets Syst. 191 (2012), 72-82.   DOI:10.1016/j.fss.2011.08.010
  40. M. Mas, G. Mayor and J. Torrens: The modularity condition for uninorms and t-operators. Fuzzy Sets Syst. 126 (2002), 207-218.   DOI:10.1016/S0165-0114(01)00055-0
  41. M. Mas, G. Mayor and J. Torrens: T-operators. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7 (1999), 1, 31-50.   CrossRef
  42. M. Mas, G. Mayor and J. Torrens: T-operators and uninorms on a finite totally ordered set (special issue). Math. Fuzzy Sets, Int. J. Intell. Syst. 14 (1999), 909-922.   DOI:10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B
  43. Y. Ouyang and H. P. Zhang: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.   DOI:10.1016/j.fss.2019.05.006
  44. Y. Ouyang, H. P. Zhang, Z. Wang and B. De Baets: On triangular norms representable as ordinal sums based on interior operators on a bounded meet semilattice. Fuzzy Sets Syst. 439 (2022), 89-101.   DOI:10.1016/j.fss.2021.04.002
  45. F. Qin and B. Zhao: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458.   DOI:10.1016/j.fss.2005.04.010
  46. F. Qin: Uninorm solutions and (or) nullnorm solutions to the modularity condition equations. Fuzzy Sets Syst. 148 (2004), 231-242.   DOI:10.1016/j.fss.2004.04.012
  47. K. I. Rosenthal: Quantales and Their Applications. Longman Scientific and Technical, New York 1990.   CrossRef
  48. Y. Su, W. W. Zong and P. Drygaś: Properties of uninorms with the underlying operations given as ordinal sums. Fuzzy Sets Syst. 357 (2019), 47-57.   DOI:10.1016/j.fss.2018.04.011
  49. F. Sun, X. P. Wang and X. B. Qu: Uni-nullnorms and null-uninorms. J. Intell. Fuzzy Syst. 32 (2017), 1969-1981.   DOI:10.3233/jifs-161495
  50. X. R. Sun and H. W. Liu: Representation of nullnorms on bounded lattices. Inf. Sci. 539 (2020), 269-276.   DOI:10.1016/j.ins.2020.06.013
  51. M. H. Stone: The theory of representations of Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37-111.   DOI:10.1090/S0002-9947-1936-1501865-8
  52. S. Vickers: Topology via Logic. Cambridge University Press, Cambridge, 1989.   CrossRef
  53. G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning (in Chinese). Science Press, Beijing 2000 .   CrossRef
  54. Y. M. Wang, H. Zhan and H. W. Liu: Uni-nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 132-144.   DOI:10.1016/j.fss.2019.01.001
  55. M. Ward and P. R. Dilworth: Residuated lattice. Trans. Amer. Math. Soc. 45 (1939), 335-354.   DOI:10.1090/S0002-9947-1939-1501995-3
  56. T. Wu and H. B. Wu: Embedding of Quantale system (in Chinese). J. Jilin Univ. Sci. Edit. 55 (2017), 5, 1084-1088.   CrossRef
  57. T. Wu and H. B. Wu: The properties of Quantale system and its subsystem (in Chinese). Fuzzy Syst. Math. 32 (2018), 2, 121-127.   DOI:10.5117/MADOC2018.2.009.KRON
  58. T. Wu and B. Zhao: The properties of $\models$-filters of a topological system. Soft Comput. 23 (2019), 24, 12951-12960.   DOI:10.1007/s00500-019-04257-z
  59. T. Wu and B. Zhao: Distributivity of implication operations over overlap and grouping functions in interval-valued fuzzy set theory (in Chinese). J. Jilin Univ. Sci. Edit. 57 (2019), 5, 1014-1022.   CrossRef
  60. T. Wu and B. Zhao: Solutions to distributive equations of overlap and grouping functions (in Chinese). J. Jilin Univ. Sci. Edit. 58 (2020), 1, 54-64.   CrossRef
  61. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  62. D. X. Zhang: Triangular norms on partially ordered sets. Fuzzy Sets Syst. 153 (2005), 195-209.   DOI:10.1016/j.fss.2005.02.001
  63. H. P. Zhang, Y. Ouyang and B. De baets: Constructions of uni-nullnorms and null-uninorms on a bounded lattice. Fuzzy Sets Syst. 403 (2021), 78-87.   DOI:10.1016/j.fss.2019.10.010
  64. H. P. Zhang, Y. Ouyang, Z. D. Wang and B. De Baets: A complete representation theorem for nullnorms on bounded lattices with ample illustrations. Fuzzy Sets Syst. 439 (2022), 157-169.   DOI:10.1016/j.fss.2021.08.012
  65. B. Zhao and T. Wu: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.   DOI:10.1016/j.ijar.2020.12.008
  66. C. Y. Zheng, L. Fan and H. B. Cui: Introduction to Frames and Continuous Lattices. Capital Normal University Press, Beijing 2000.   CrossRef
  67. H. J. Zhou and B. Zhao: Stone-like representation theorems and three-valued filters in $R_{0}$-algebras (nilpotent minimum algebras). Fuzzy Sets Syst. 162 (2011), 1-26.   DOI:10.1016/j.fss.2010.09.005