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BOUNDS ON GUESSING NUMBERS AND SECRET
SHARING COMBINING INFORMATION THEORY
METHODS

Emirhan Gürpınar

This paper is on developing some computer-assisted proof methods involving non-classical
inequalities for Shannon entropy.

Two areas of the applications of information inequalities are studied: Secret sharing schemes
and hat guessing games. In the former a random secret value is transformed into shares dis-
tributed among several participants in such a way that only the qualified groups of participants
can recover the secret value. In the latter each participant is assigned a hat colour and they try
to guess theirs while seeing only some of the others’. The aim is to maximize the probability
that every player guesses correctly, the optimal probability depends on the underlying sight
graph. We use for both problems the method of non-Shannon-type information inequalities
going back to Z. Zhang and R. W. Yeung. We employ the linear programming technique that
allows to apply new information inequalities indirectly, without even writing them down explic-
itly. To reduce the complexity of the problems of linear programming involved in the bounds
we extensively use symmetry considerations. Using these tools, we improve lower bounds on
the ratio of key size to secret size for the former problem and an upper bound for one of the
ten vertex graphs related to an open question by Riis for the latter problem.
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linear programming, symmetries, copy lemma, entropy region, guessing games,
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1. INTRODUCTION

The aim of this paper is to show how the techniques of computer-assisted proofs for
information inequalities (for the Shannon entropy) can be used in various applications.
Each ingredient of our approach has already been known, but we argue that a properly
chosen combination of these methods is quite powerful, to the point that we can improve
several previously known bounds. We apply the techniques to two targets: we prove
lower bounds for the efficiency of secret sharing schemes (for several specific access
structures) and upper bounds for hat guessing games. Our new bounds are proven using
heavy computations and it seems that the same results would be very hard to achieve
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manually, without a computer. Our main goal is to show the efficiency of the right
combination of technical tools; this is why we have deliberately chosen problems (in
secret sharing and in hat-guessing games) that were already studied earlier by other
researchers, so that we can compare our results with previously known bounds.

We go on with a brief review of the fields of secret sharing and hat guessing games
in which we apply our techniques.

The notion of secret sharing introduced by Shamir [30] and Blakley [6], is nowadays
pretty standard in cryptography. In what follows the motivation and the basic definition
of secret sharing is recalled.

Imagine that we want to share a secret between some participants in such a way that

• some coalitions (subsets of participants), the authorized ones, can reconstruct the
secret combining their shares;

• the other coalitions are not qualified, they get no information about the secret.

One can easily imagine practical situations when such a tool is useful, and Shamir’s
famous secret sharing scheme deals with the case when all sufficiently large groups (at
least t participants for some threshold t) are authorized while small groups with less
than t participants are not. Given the description of the authorized coalitions for a set
of participants, we want to find how small the maximal share size can be made, with
respect to the size of the secret. In general this is an open problem, thus we look for
lower bounds on this quantity as frequently done in the literature. Such questions are
of interest in their own right. Also, they can be used as benchmarks for the techniques
based on information inequalities.

In this article we study several particular access structures. We improve some previ-
ously known lower bounds for their information ratios. The previously known bounds
were obtained using the Ahlswede–Körner (AK) lemma in [15]. We use a different
technique – the general version of the copy lemma [36] combined with symmetry con-
siderations. For every given access structure, we reduce the question of the information
ratio to a linear problem (of very large size) and then use linear programming solvers
to obtain a lower bound for this information ratio. Our results on secret sharing are
summarized in Theorem 4.2 and compared with the previously known bounds in Table 2.

The hat guessing games is a family of recreational mathematics problems [33], some
variants of which are known to be connected to coding theory [28]. Each player gets a
hat of some colour (invisible to them) and has to guess this colour (knowing only the
colours of the hats they see). There are many versions of these games [8, 19]. We consider
a version introduced by Riis in [26, 27] as it is connected with some other interesting
problems. In this version the visibility (who can see whose hats) is determined by a
graph named the sight graph. The challenge is to maximize the probability that each
player guesses their hat colour correctly. No communication between players is allowed
during the game, but a strategy can be agreed upon before the game.

This problem for an arbitrary graph remains open. Moreover there exists a specific
graph with 10 vertices for which the question is open (the single smallest such undirected
graph). We improve the upper bound on the probability of ‘correct guessing’ for this
graph. Our main result here is given in Theorem 5.2 and compared with the previously
known bound in Section 5.
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To bound the quantities that arise in both of these problems (secret sharing and hat
guessing games), we use a combination of several techniques. To prove the bounds, we
use non-classical inequalities for entropy (non-Shannon-type inequalities). We derive the
necessary inequalities with the copy lemma. More precisely, we use these new inequalities
indirectly, without writing them explicitly. To this end, we combine the copy lemma with
the linear programming approach. To decrease the complexity of the linear program and
improve the results we use symmetry considerations (the symmetries of the authorized
coalitions for problems of secret sharing and the symmetries of the sight graphs for the
hat guessing games). Each of these techniques has already been known. However their
combination proves to be so efficient that we improve some known bounds for these
problems. Our improved bounds are given in the Results sections (in Section 4.2 and
Section 5.2).

In the next section we give preliminaries and explain the context in more detail. In
Section 3 we discuss symmetries. In the following sections we formulate more precisely
the particular problems on which we apply our method.

2. PRELIMINARIES

2.1. Entropy region

Definition 2.1. (Entropy Vector) Let X = (Xi)i∈J1,nK
1 be a sequence of jointly dis-

tributed random variables with a finite range. We denote by hX the vector, the coordi-
nates of which are the values of Shannon entropy for all sub-tuples of X. This vector is
called the entropy vector (also known as the entropy profile) of X. Note that it consists
of 2n − 1 real components hI = H((Xi)i∈I)

2 for each ∅ ̸= I ⊆ J1, nK, so it is in R2n−1.

Definition 2.2. (Entropy Region) For n > 0, the set of all entropy vectors of dimension
2n−1 (for every distribution of n-tuples of random variables) is called the entropy region.
Following [36], we use the notation Γ∗

n ⊂ R2n−1 for it.

Definition 2.3. (Almost Entropic) The closure of Γ∗
n is noted Γ∗

n, and its elements are
called almost entropic vectors. Any non-strict inequality that is satisfied by all elements
of Γ∗

n is also satisfied by all elements of Γ∗
n by limit.

Remark 2.4. Γ∗
n is a convex cone [35]. In particular it is invariant under multiplication

by a non-negative scalar in R+.

So Γ∗
n is defined solely by the linear inequalities satisfied by Γ∗

n.
The characterization of Γ∗

n and that of its closure are open problems.

2.2. Information Inequalities for entropy

Definition 2.5. (Information Inequality) An information inequality for entropy is a
linear inequality for the entropy quantities of jointly distributed random variables with
real coefficients.

1The traditional notation J1, nK to denote the set {1, 2, . . . n} of integers from 1 to n, is used through-
out the article.

2The Shannon entropy of a random variable X is denoted as H(X) throughout the article.
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By definition of Γ∗
n, the information inequalities for n random variables are exactly the

linear inequalities for 2n − 1 coordinates that are true for all vectors in Γ∗
n.

The first universally true information inequalities were given in the seminal paper
[31] by Shannon.

Definition 2.6. (Shannon and Shannon-type inequalities) Let us denote (Xi)i∈I by
XI in short. The inequalities of the form

I(XI : XJ |XK) ≥ 0

3 are called Shannon inequalities. They can be expanded as

H(XI∪K) +H(XJ∪K) ≥ H(XI∪J∪K) +H(XK).

The inequalities that are linear combinations with positive coefficients of Shannon in-
equalities are called Shannon-type (classical) inequalities.

The set of vectors with 2n − 1 coordinates (not necessarily entropic) satisfying all
classical inequalities is noted Γn.

Note that Γ∗
n ⊂ Γ∗

n ⊂ Γn, that Γ∗
n is closed under addition and that Γ∗

n is a convex
cone [35].

Definition 2.7. (Elemental Information Inequalities) Let X1, . . . Xn be random vari-
ables. The inequalities of the form

I(Xi : Xj |XK) ≥ 0

where i ̸= j and K ⊆ J1, nK \ {i, j} or i = j and K = J1, nK \ {i} are called elemental
information inequalities or shortly elemental inequalities.

Fact 2.8. Elemental inequalities for n variables imply all Shannon inequalities for n
variables by linear combinations with positive coefficients, see [34, Chapter 13].

Remark 2.9. There are
(
n
2

)
2n−2 + n elemental inequalities for n variables.

2.3. How to prove an information inequality

Consider a Shannon-type inequality, i. e. a linear combination of Shannon inequalities.
Here the situation is simple: for a given number n of random variables (or strings) we
have 2n − 1 entropic quantities and can write down all the Shannon inequalities for
these quantities. Then we want to know whether the inequality in question is a non-
negative linear combination of Shannon inequalities. This is a classical question of linear
programming, a linear program solver finds out whether it is true or not. One should
have in mind, however, that the dimension of the linear program grows exponentially in
n, so the linear program could be quite large. There are cases which could be checked

3The mutual information of two random variables X and Y is denoted I(X : Y ) throughout the
article. If Z is another random variable, I(X : Y |Z) denotes the conditional mutual information of X
and Y given Z.
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by hand, and quite soon we bump into a system of linear inequalities that is inaccessible
even for computer programs. To make it smaller, we can use dependencies between
Shannon inequalities for different tuples and omit some inequalities that can be derived
from the elemental ones.

Let Ii(X1, . . . Xn) be linear combinations of entropies of subsets of {X1, . . . Xn} for
i ∈ I. Statements of the form

∧i∈IIi(X1, . . . Xn) ≥ 0 =⇒ I(X1, . . . Xn) ≥ 0

are called conditional or constraint inequalities. They often appear in applications. The
same technique of linear programming can be applied by adding the conditions

Ii(X1, . . . Xn) ≥ 0, i ∈ I

to the linear program.
In this way we can derive the Shannon-type inequalities starting from Shannon in-

equalities. Of course, we may as well add some known non-Shannon-type inequalities to
the list of inequalities that we combine.

To get and prove non-Shannon-type inequalities, the most common tool is the copy
lemma that we are going to formulate now. Let us split all the random variables
X1, . . . Xn into two groups A1, . . . Ak and B1, . . . Bℓ (in an arbitrary way). We can
assume that A1, . . . Ak are sampled first according to their marginal distribution and
then B1, . . . Bℓ are sampled according to their conditional distribution. In this way we
get the same distribution A1, . . . Ak, B1, . . . Bℓ, so nothing new is obtained yet. But we
can, for the same values of A1, . . . Ak, consider another independent sample (‘twins’)
B′

1, . . . B
′
ℓ using the same conditional distribution. Then, instead of k + ℓ variables

A1, . . . Ak, B1, . . . Bℓ that we started with, we get a joint distribution for k+2ℓ variables

A1, . . . Ak, B1, . . . Bℓ, B′
1, . . . B

′
ℓ

that have the following properties:

• the distribution of A1, . . . Ak, B1, . . . Bℓ is the same as before;

• the distribution of A1, . . . Ak, B
′
1, . . . B

′
ℓ is the same as for A1, . . . Ak, B1, . . . Bℓ;

• the tuples B1, . . . Bℓ and B′
1, . . . B

′
ℓ are independent given A1, . . . Ak.

Formally we state the copy lemma in the following two forms. X below corresponds to
A1, . . . Ak above. Y and Z correspond to a partition of B1, . . . , Bℓ, such that we discard
the duplicates of Y but keep those of Z. This discarding is useful for not increasing the
number of total variables of the linear program we use.

Lemma 2.10. (Copy Lemma [36, 12]) Let X,Y, Z be three jointly distributed ran-
dom vectors.

1. There exists a random vector Z ′ such that

• X,Z and X,Z ′ are identically distributed,
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• Z ′ and Y, Z are independent given X.

2. There exists a random vector Z ′ such that

• every sub-vector of X,Z has the same entropy as the sub-vector of X,Z ′ that
consist of the same coordinates,

• I(Z ′ : Y, Z|X) = 0.

Z ′ is called a Y -copy of Z over X or simply Y -copy of Z when X consist of all the
other variables (when ‘all variables’ are clear from the context).

Item 1 above is the probabilistic statement, which implies the entropic statement
item 2. We use the latter in our applications.

Now we can use linear programming to derive consequences of all the Shannon in-
equalities for all variables (X,Y, Z, Z ′) and the equalities that are guaranteed by our
constructions. Zhang and Yeung [36] discovered that this way we get new inequalities
that include only original variables X,Y, Z. By ‘new’, we mean inequalities that are
non-Shannon-type, i.e. they are not linear combinations of Shannon inequalities for
original variables. Then these new inequalities can be used explicitly, by adding them
to the list of Shannon inequalities, or implicitly.

We also extensively use the symmetries of the problem, which guarantee that an
optimal solution can be found among the symmetric ones. This helps to reduce the
dimension of the linear program and let the solver work faster.

We discuss these tricks in detail in the corresponding sections.

2.4. Preliminaries of secret sharing

Secret sharing was independently introduced by Blakley [6] and Shamir [30]. These
original papers studied a class of secret sharing schemes which are now called threshold
schemes. A more general definition of secret sharing was introduced by Ito, Saito and
Nishizeki [18]. One of the relatively recent surveys on the topic is [3], see also the lecture
notes [24] for general definitions such as access structures, information ratio and ideal
secret sharing.

Definition 2.11. (Secret Sharing Scheme) We formally define a secret sharing scheme
for a given access structure with participants 1, . . . n as a joint distribution (a tuple of
random variables) (S0, S1, . . . Sn) satisfying the following conditions for each coalition
J :

H(S0|SJ) = 0, if J is a qualified coalition,
H(S0|SJ) = H(S0), if J is not a qualified coalition.

(1)

The random variable S0 is called the secret, and Sj for j ∈ J1, nK are the shares given
to each party and SJ is short for (Sj)j∈J .

Ito, Saito and Nishizeki proved in [18] that for every access structure there exists a
secret sharing scheme.

Fact 2.12. (Ito et al. [18]) Every access structure admits a secret sharing scheme.
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Benaloh and Leichter [5] noted that the construction of the proof is a special case of
a more general one that starts from the monotone boolean function that describes the
access structure.

Currently known lower bounds on information ratio of general access structures are
much weaker than ideal secret sharing schemes (such as threshold scheme proposed by
Shamir): it was proven by Csirmaz [11] that there exist an n-participant access structure
the information ratio of which is at least n/ log2 n, also that Shannon inequalities cannot
give a better lower bound than n, see [3] for a discussion.

The common approach to prove a lower bound for the information ratio of a certain
access structure is to use the technique of information inequalities. We write down the
equalities (1) and all Shannon-type inequalities for the involved random variables and
then use linear programming to combine these equalities and inequalities to derive a
result

max
i

H(Si) ≥ r ·H(S0) (2)

for a certain real number r. If we succeed, this means that the information ratio of this
access structure is at least r. Such an argument can be found in [9] among others.

This simple scheme can be improved. One can add non-Shannon-type inequalities as
well; these additional constraints may help to prove (2) with a larger value of r. Proofs
following this scheme can be found, for instance in [4] and [22]. However, we do not
follow this scheme and do not explicitly add non-Shannon-type inequalities to our linear
program. Instead, we do as follows:

1. We write the conditions (1);

2. instead of looking for non-Shannon-type inequalities for the variables that appear
in these conditions, we apply one or several times the copy lemma, thus get some
new random variables and some equalities for their entropies;

3. then we write down only Shannon-type inequalities but for all the involved random
variables and then deduce (2) for some specific r.

This type of argument is discussed in [17]. A similar approach (with the AK lemma
instead of the copy lemma) was used earlier in [14] and later in [2].

2.5. Preliminaries of hat guessing games

Hat guessing game has been a well known recreational mathematics problem with many
variants. In this article we are interested in the variant introduced by Riis [27, 26], which
uses some concepts from graph theory. It is connected to the multiple unicast problem in
network information theory. This connection, among other similar problems mentioned
in [27], the definition of the multiple unicast network problem and the theorem that
relates it to guessing number are omitted (see the literature) as they are out of scope
of this article. Guessing games also have recent applications in combinatorics (more
precisely extremal graph theory and forbidden sub-graphs) by Martin and Rombach
[21].
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Let G = (V,E) be a finite undirected4 graph where V is the set of vertices and
E ⊆ V × V the set of edges, note that (x, y) ∈ E if and only if (y, x) ∈ E since G is
undirected. Note also that all the graphs we consider in this article are loopless. Let
s > 1 be an integer, and let us denote As the set of colours. The game is played on such
a graph G called the sight graph.

1. At every node v ∈ V there is a player.

2. Every player is assigned a hat colour sv from J1, sK = {1, 2, . . . s} uniformly ran-
domly and independent of the hats of the other players.

3. The edges of the graph show who can see whom, if the vertices x and y are visible
from each other, then there is an edge x ↔ y, see Figure 1.

4. The players win as a team if every single one of them guesses their own hat colour
correctly and lose otherwise.

x y z

Fig. 1. On the graph above, x and y can see each other, but x and z

cannot.

So the players do not compete but cooperate to win. Although they cannot communicate
after the game starts (not even hear what another guesses), that is when the hat colours
are determined; they can agree on a strategy beforehand and they a priori know G, s and
which player is on which vertex. This is shortly called a game on (G, s) or a (G, s)-game.
As G is loopless, clearly there is no strategy to win with probability 1. The aim is to
maximize the probability of winning. Below we give a formalization of what a strategy
is.

Definition 2.13. (Strategy) Let G = (V,E) be the graph on which the game is played
with s colours.

A guessing function for the player on x ∈ V is a mapping from J1, sK{y∈V |(x,y)∈E}

to J1, sK. Intuitively, a guessing function is a table that shows what to guess for every
possible configuration of what this player can see. Note that these configurations are
equiprobable.

A strategy is a family of guessing functions F = (fv)v∈V for every vertex of the graph.

Note that there are finitely many guessing functions for a player and thus finitely many
strategies for a given (G, s)-game.

In case we want to talk about random strategy, we call strategy defined above deter-
ministic and define random strategy as probability distribution on deterministic strate-
gies. However, no random strategy can do any better than the best deterministic strat-
egy in terms of probability of winning. Indeed the probability of winning for a random
strategy is a weighted average of the probabilities of winning of deterministic strategies.
Therefore we only concentrate on deterministic strategies.

4For simplicity we restrict ourselves to undirected graphs. This is sufficient as our improvement in
this article is on an undirected graph.
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Definition 2.14. (Guessing Number) The guessing number of a game measures the
increase in the probability of correctly guessing the colours when playing with an op-
timal strategy, compared to a trivial strategy of choosing arbitrary colours as answers.
Formally we denote it gn(G, s):

gn(G, s) := max
F strategy

logs
Prob[winning with F ]

s−|V |

= max
F str.

logs
∣∣{winning config. in J1, sKV for F}

∣∣
Remark 2.15. Intuition behind this definition: the guessing number of the graph is k,
if a best strategy gives the probability of winning that is sk times larger compared to
the naive strategy where each player chooses an arbitrary colour independently of what
hats the neighbours receive. This value is the same as the logarithm on base s of the
cardinality of the largest set of configurations on which there is a winning strategy.

Remark 2.16. The guessing number of an acyclic graph is 0 [27, Lemma 3].

Definition 2.17. (Asymptotic Guessing Number, Theorem 3.6 and Definition 3.7 in
[10]) The following limit exists.

lim
s→∞

gn(G, s)

It is called the asymptotic guessing number of G and noted gn(G). In particular, it is
equal to sups≥2 gn(G, s).

There is no known efficient algorithm to compute these numbers for a given graph,
and for some graphs only upper and lower bounds (that do not match each other) are
known.

The lower bounds are proven using fractional clique cover of the graph and the upper
bounds using information inequalities see [10, 1]. For (undirected) graphs with less
than 10 vertices, the upper bounds given by Shannon-type inequalities match the lower
bounds [1] thus the guessing numbers are known.

Let us give a brief sketch of how to reduce the problem of finding an upper bound
on the guessing number to a question about entropies and inequalities: Define jointly
distributed random variables (Xv)v∈V associated with the vertices of the graph, for the
(G, s)−game. Each random variable represents the hat colour of the player at vertex v.
Let F be an optimal strategy on (G, s). Instead of considering the independent uniformly
random distribution for the colour of each hat, we consider the uniform distributions
over all the configurations on which F wins. In other words, the colour configurations
on which F loses all have probability 0, and those on which F win are all equiprobable.
Two things are special about this distribution.

1. The entropy Hs((Xv)v∈V ) in base s (using logs instead of log2 in the definition of
entropy) of all the variables is the logarithm of the cardinality of the set on which
F wins, i.e. the guessing number by Definition 2.14.
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2. In this distributions the colours that are guessed are the same as the actual colours,
hence the hat colour of a player is determined by the colours of the hats they see,
therefore, H(Xv|(Xu)u∈→(v)) = 05.

Proposition 2.18. (As discussed after Theorem V.1 in Baber et al. [1]) Let G be a
graph, let us define a random variable Xv for every vertex v ∈ V as described above,
then the optimization problem over random variables (and therefore, their entropies)
below gives an upper bound on the guessing number gn(G, s) for any s ≥ 2, hence for
the asymptotic guessing number gn(G).

Maximize H((Xv)v∈V)
subject to:

H(Xv) ≤ 1

H(Xv|(Xu)u∈→(v)) = 0

The linear program that we obtain by linear relaxation of this problem (we can add to
the list of constraints of this linear program any universally true information inequalities
for (Xv)v∈V ) also gives an upper bound on the asymptotic guessing number.

3. SYMMETRIES

Symmetries of the underlying structures (access structures for secret sharing, sight
graphs for guessing games, or other applications for optimization problems on almost en-
tropic vectors) can be exploited in the optimization problems to decrease the complexity
of the problem. When combined with the copy lemma, the symmetry constraints force
symmetric solutions to our linear programs without the symmetric applications of the
copy lemma, thus the use of symmetries may improve the resulting optimal value. From
another perspective, by removing the symmetric applications of the copy lemma, which
are costly in complexity, the objective value might worsen but symmetry constraints
may help decrease the loss.

3.1. Symmetries and Linear Programming

Consider an optimization problem of the following form

max f(v)
subject to:

v ∈ E ⊂ R2n−1
(3)

where f : RP(J1,nK)\∅ → R is a linear form. Then we make the following simple obser-
vation.

Lemma 3.1. Suppose

• E is convex,

• there exists a group G which acts on vectors R2n−1 such that:

5From here on, by log we mean logs.
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– E is invariant under G, i.e. for all u ∈ E, σ ∈ G, we have σ · u ∈ E,

– f is invariant under G, i.e. for all u ∈ E, σ ∈ G, we have f(u) = f(σ · u).

Then we have an optimal solution of (3) invariant under G.

P r o o f . Let v ∈ E be an optimal solution. Since E is invariant under G, for all σ ∈ G,
σ · v is also in E. Moreover since E is convex, average of these vectors, namely

v′ =
1

|G|
∑
σ∈G

σ · v

is also in E. By definition v′ is symmetric under G. By linearity of f and then by
invariance of f under G we have the following:

f(v′) = f( 1
|G|

∑
σ∈G σ · v)

= 1
|G|

∑
σ∈G f(σ · v)

= 1
|G|

∑
σ∈G f(v)

= f(v)

Therefore v′ too is an optimal solution of (3). □

We can apply this observation to linear programs for secret sharing and hat guessing
games. The set E ⊂ Γ∗

n will correspond to particular restrictions that stem from the
application (access structure for secret sharing and sight graph for guessing games).
Since we know (from the lemma above) that there exists a symmetric solution, we can
simply add symmetry constraints in the conditions of the linear program without any
loss in the optimal value.

Remark 3.2. In what follows we take E to be an n-dimensional slice of the closure
of entropy region Γ∗

(n+ℓ). Therefore the convexity condition for E, which enable us to

apply symmetries, is satisfied.

It is not known whether these operations in the other order, namely first taking a
lower-dimensional section of the entropy region and then the closure of this slice, would
give a convex set.

Remark 3.3. The general strategy for the applications below involves using one or
repeated application(s) of the copy lemma to introduce additional variables (increasing
the dimension) and using the symmetry conditions instead of the symmetric versions of
the application(s) of the copy lemma (which would be more costly in terms of dimension).

Note that our symmetry conditions only involve equalities of entropies, and that
the translation of the statement Z ′ is a Y−copy of Z into linear equalities for entropy
already describes the symmetry by-definition between Z ′ and Z, unlike the inherent
symmetries of the particular problem (underlying structure).
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Lemma 3.4. Suppose E can be expressed with linear inequalities and let us consider
the following optimization problem on almost entropic points Γ∗

n.

min f(h)
subject to:
h ∈ E

Then the following linear program gives a lower bound on the above optimization prob-
lem.

min f(h)
subject to:

(i) (h, r) ∈ R2n+ℓ−1, h satisfies inequalities that define E
(ii) the equalities for entropies which define ℓ extra

random variables by one or repeated application(s) of the copy lemma
(iii) some information inequalities for n+ ℓ random variables

P r o o f . Applying copy lemma and adding information inequalities as extra conditions
to the optimization problem does not change its value, since (almost) entropic points
already satisfy these conditions. Then loosening the constraints of the obtained problem
by removing the ‘almost entropic’ restriction we obtain indeed the linear program, which
hence gives an upper bound to the former.

Note that the information inequalities and the applications of the copy lemma are not
(necessarily) redundant conditions for the linear program, unlike what they categorically
would be for the optimization problem. □

3.2. Applications of symmetries

The method of reducing an optimization problem for entropies to a linear program was
used in [25] and [14] to find lower bounds on the information ratio of an access structure
in the context of secret sharing as well as to find upper bounds on the guessing number
of sight graphs in the context of hat guessing games in [10] and [1]. Below we combine
this approach with symmetries and the applications of the copy lemma as in [17].

Proposition 3.5. Let (X1, . . . Xn) be random variables associated with an optimization
problem the conditions of which are linear inequalities for entropies and f a function
expressible as a linear combination of entropies of tuples.

min f(X1, . . . Xn)
subject to:
the inequalities which define the problem

Suppose also that G is the symmetry group of the underlying structure of (X1, . . . Xn)
for entropies of tuples. (G acts on vectors by permuting the coordinates σ·(hXI

)∅ ̸=I∈J1,nK =
(hSσ·I )∅ ̸=I∈J1,nK.)

Let us extend the distribution by adding ℓ random variables Xn+1, . . . Xn+ℓ using
one or repeated applications of the copy lemma as in Lemma 3.4. The linear program
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described below provides a lower bound on the initial optimization problem:

min f(X1, . . . Xn)
subject to:

(i) the inequalities which define the problem
(ii) the equalities for entropies that define each of the random

variables Xn+1, . . . Xn+ℓ as a copy of other variables
(with smaller indices), obtained using the copy lemma

(iii) classical information inequalities for X1, . . . Xn+ℓ

(iv) the symmetry constraints for entropies of tuples of Xi, i ∈ J1, nK
under the symmetry group G

P r o o f . The proposition follows from Lemma 3.4, which justifies the constraints (ii)
and (iii), and Lemma 3.1 which justifies the constraint (iv). □

We have already presented in (1) the equalities which define the access structure
for secret sharing. An additional normalization condition H(S0) = 1 where S0 is the

secret suffices to make the information ratio maxi
H(Si)
H(S0)

expressible in linear terms with

inequalities as minx with x ≥ H(Si), i = 1, . . . n.

Corollary 3.6. The following linear program provides a lower bound on the information
ratio of an access structure A.

minx
subject to:

(i) x ≥ hSi for every i ∈ J1, nK
(i)’ the equalities (1) for the entropies of tuples of

S0, . . . Sn which define the access structure A
(i)” hS0

= 1 normalization
(ii) the equalities for entropies that define each of the random

variables Sn+1, . . . Sn+ℓ as a copy of other variables
(with smaller indices), obtained using the copy lemma

(iii) classical information inequalities for S0, . . . Sn+ℓ

(iv) the symmetry constraints on the variables Si, i ∈ J1, nK
under the symmetry group of the access structure A

The set of constraints 1 for the access structure A is indeed invariant under the
symmetry group G = Aut(A) by definition, the other constraints and the objective
function too.

See the appendix for the symmetry groups of the access structures we study in this
work.

Applying Proposition 3.5 to the optimization problem in Proposition 2.18, we get the
following corollary.

Corollary 3.7. Let G = (V,E) be a sight graph with n vertices and X1, . . . Xn the
associated random variables as in [10]. The linear program described below provides a
lower bound on the asymptotic guessing number of G.
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maxhXJ1,nK

subject to:
(i) hXi

≤ 1 for every i ∈ J1, nK
(i)’ h{Xi,Xj |(j,i)∈E} − h{Xj |(j,i)∈E} = 0 for each i ∈ J1, nK
(ii) the equalities for entropies that define each of the random

variables Xn+1, . . . Xn+ℓ as a copy of other variables
(with smaller indices), obtained using the copy lemma

(iii) classical information inequalities for X1, . . . Xn+ℓ

(iv) the symmetry constraints on the variables Xi, i ∈ J1, nK
under the symmetry group of the sight graph G

Remark 3.8. In [1] non-Shannon-type inequalities were added to such a linear program
instead of item (ii) (the copy lemma constraints).

4. SECRET SHARING

There is a large class of access structures called linear access structures (also known as
vector space access structure) that are ideal. Let us give their definition.

Definition 4.1. An access strucure is called linear if the secret and the participants
1, . . . n can be associated respectively to some vectors v0, v1, . . . vn in a vector space such
that a coalition I is

• a qualified coalition if v0 ∈ V ect((vi)i∈I), that is v0 belongs to the linear subspace
span by the set of vectors Vi for i ∈ I,

• not qualified otherwise.

Note that, in particular, threshold access structures are linear: we can take a vector
space of dimension equal to the threshold t. Then choose vectors associated to partici-
pants one by one such that any t of them are independent. This can be done by choosing
the field large enough6.

There is a more general class of access structures, based on matroids. See [23] for a
detailed introduction to matroids and [11] for a brief discussion of matroid and poly-
matroid structures in secret sharing. In this text, we are only interested in connected
matroids, more particularly matroid ports ([29]) and matroid port access structures (see
[13], [14] and [15] for the definition, an excellent overview and why they are interesting,
as well as [7] and [20]).

4.1. Access structures from matroids

Let us give a simple way to obtain some matroids: Let E be a set, if we choose some
vector space and a vector ve for each e ∈ E and then declare a subset of E to be
independent when the corresponding vectors are linearly independent, this gives us a
matroid. Matroids that can be obtained this way are called linearly representable.

6If the field has k elements, the vector space has kt elements. Suppose we have chosen n vectors so
far, this can forbid no more than

( n
t−1

)
kt−1 choices for the next vector. Thus k >

( n
t−1

)
suffices.
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The matroids with a ground set E of cardinality 7 or less, as well as those with
a ground set of cardinality 8 and rank different than 4, are all known to be linearly
representable [16]. There exists 940 non-isomorphic matroids of rank 4 on 8 points (see
[23]). There exist matroids with a ground set of cardinality 8 and rank 4 that are not
linearly representable, and the first known such example among them is the Vámos
matroid ([32], [23, Proposition 2.2.26]).

Below we discuss seven other matroids (Table 1) with a ground set of cardinality 8
and rank 4 which are not linearly representable.

Acccess
Structure

List of Minimal
Authorized Sets

A 123, 145, 167, 246,
257, 347, 356, 1247

A∗ 123, 145, 167, 246, 257,
347, 1356, 2356, 3456, 3567

F 123, 145, 167, 246, 257,
347, 356, 1247, 1256

F∗ 123, 145, 167, 246, 257, 1347, 1356,
2347, 2356, 3456, 3457, 3467, 3567

F̂ 123, 145, 167, 246, 257, 347,
1256, 1356, 2356, 3456, 3567

Q 123, 145, 167, 246, 257, 347,
1247, 1256, 1356, 2356, 3456, 3567

Q∗ 123, 145, 167, 246, 257, 1247, 1347,
1356, 2347, 2356, 3456, 3457, 3467, 3567

Tab. 1. Access structures.

Access
structure

previously known lower
bound based on
AK lemma [15]

bounds we prove
using symmetries

weaker bounds we can
prove without symmetries

A 9/8 = 1.125 57/50 = 1.14 135/119 = 1.134 . . .
A∗ 33/29 = 1.137 . . . 52/45 = 1.15 33/29 = 1.137 . . .
F 9/8 = 1.125 17/15 = 1.13 26/23 = 1.130 . . .
F∗ 42/37 = 1.135 8/7 = 1.142 . . . 42/37 = 1.135

F̂ 42/37 = 1.135 23/20 = 1.15 42/37 = 1.135
Q 9/8 = 1.125 17/15 = 1.13 17/15 = 1.13
Q∗ 33/29 = 1.137 . . . 8/7 = 1.142 . . . 33/29 = 1.137 . . .

Tab. 2. The access structures of which we have improved lower

bounds on the information ratio.

We focus on a few access structures whose study was initiated in [15] (as they are
among smallest non-linear matroids). All these access structures have some nice geomet-
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ric interpretation, so do the matroids of which they are ports. In [15], they are named
after the matroids AG(3, 2)′ (faces, diagonal planes and a twisted plane of a cube), F8

and Q8 (faces and five of the six diagonal planes of a cube) from the appendix of [23],
from which they are derived. We follow their notation. As usual, each access structure
can be defined by its minimal authorized coalitions, see Table 1.

The ultimate goal of this line of research is to find the information ratio for each of
these access structures (and study the connection of information ratio with the combi-
natorial properties of matroids). This goal was not achieved in [15], nor is it in our work.
However, we take a new step in this direction and improve the known lower bound for
the information ratio of these access structures.

4.2. Results

We improve the lower bounds for the seven access structures.

Theorem 4.2. The information ratios of A, A∗, F , F∗, F̂ , Q and Q∗ are 57/50 =
1.14, 52/45 = 1.15, 17/15 = 1.13, 8/7 = 1.142 . . . , 23/20 = 1.15, 17/15 = 1.13 and 8/7 =
1.142 . . . respectively. In the column 3 of Table 2 we show these are lower bounds on
the information ratio.

P r o o f . For each of the seven access structures we construct a linear program as in
Corollary 3.6. In this linear program we use auxiliary random variables with one or two
applications of the copy lemma inspired from the applications of the AK lemma in [15].
We also add the constraints to express for each access structure the symmetry conditions
(see Section 3.2 and the appendix).

We use the following applications of the copy lemma to create four additional variables
for each access structure. To denote a copy of X, we use X ′ in the first application of
the copy lemma, X ′′ in the second copy step etc. and X(i) in the ith:

• A: we introduce new variables (S′
0, S

′
3, S

′
4, S

′
7) as a copy of (S0, S3, S4, S7).

• A∗: we introduce (S′
0, S

′
3) as a (S5, S6)-copy of (S0, S3) and then another pair

(S′′
1 , S

′′
2 ) as a (S0, S

′
0, S3, S

′
3)-copy of (S1, S2).

• F : we introduce new variables (S′
0, S

′
2, S

′
4, S

′
6) as a copy of (S0, S2, S4, S6).

• F∗: we introduce (S′
0, S

′
4) as a (S3, S7)-copy of (S0, S4) and then (S′′

1 , S
′′
4 ) as a

(S0, S
′
0, S

′
4, S5)-copy of (S1, S4).

• F̂ : we introduce (S′
0, S

′
4) as a (S2, S6)-copy of (S0, S4) and then (S′′

1 , S
′′
4 ) as a

(S0, S
′
0, S

′
4, S5)-copy of (S1, S4).

• Q: we introduce (T ′, V ′) as a (S0, S2, S4, S6)-copy of (T, V ) over (S1, S3, S5, S7)
and then (T ′′, V ′′) as a (S0, S2, S4, S6, T

′, V ′)-copy of (T, V ) over (S1, S3, S5, S7),
where T = (S0, S4) and V = (S2, S6).

• Q∗: we introduce a (S′
0, S

′
4) as a (S3, S7)-copy of S0, S4 and (S′′

1 , S
′′
5 ) as a (S0, S

′
0, S4, S

′
4)-

copy of (S1, S5).
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For comparison, in column 4 of Table 2, we show the weaker bound (strictly except
for Q) that can be proven with the same use of the copy lemma but without symmetry
conditions. □

5. HAT-GUESSING GAMES

We discussed hat guessing games in the preliminaries section2.5, here we show our
results. Our main result is on an undirected graph called R− with 10 vertices. The best
known lower bound on its guessing number is 20/3 = 6.6̄ and the previously known best
upper bound was 59767/8929 = 6.693 . . .. We get an upper bound 1847/276 = 6.6920 . . .
(≊ 6.692028986). The other result is to use our tools to get another proof of a known
lower bound (for RL, a directed graph) from [1].

For the lower bounds on asymptotic guessing number using fractional clique cover
number (definition just below) see [10] by Christofides and Markström.

Definition 5.1. (Fractional Clique Cover Number) Let G = (V,E) be a graph
and K be the set of its cliques. A fractional clique cover is a weighting w : K → [0, 1]
of cliques such that, for every vertex v ∈ V , the sum of weights of the cliques it belongs
to is 1. Formally

∀v ∈ V,
∑
k∈K
v∈k

w(k) = 1.

Among all fractional clique covers, one that minimizes the sum of all weights defines the
fractional clique partition number of G:

cpf (G) = min
w fractional clique cover

∑
k∈K

w(k)

5.1. Upper bounds on guessing number via entropy

In [10], upper bounds on the asymptotic guessing numbers of some graphs were proven
with the help of Shannon-type information inequalities (the proofs are traditional, with-
out use of computer). In [1] this method was extended: the authors explicitly used the
formalism of linear programming and the assistance of a computer; these proofs involved
non-Shannon-type inequalities.

In [10] it was conjectured (Conjecture 6.4) that the asymptotic guessing number of a
graph G with n vertices is always equal to n − cpf (G).7 The authors of [1] wanted to
check this conjecture for graphs with small number of vertices. They used the method
of Proposition 2.18 firstly with only Shannon-type inequalities and compared the upper
bound given by this method to the lower bound given by the fractional clique cover on
all (undirected) graphs with 9 or less vertices. They found that the bounds match (they
performed the verification numerically, using floating point arithmetic). On graphs with
10 vertices they found only 2 graphs (up to isomorphism) for which the lower and upper
bounds do not match, called R and R−. The graph R− is given in Figure 2 which is
obtained from R by removing the edge 9 ↔ 10 from it.

7The authors use the notation χf (G) instead of cpf (G), since the chromatic number of the comple-
ment is clique cover number of G.
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Fig. 2. The graph R−.

The fractional clique cover number for R and R− are both 10/3 = 3.3, which implies
the lower bound 10− 10/3 = 20/3 = 6.6 by [10].

The guessing number of R is proven to be 27
4 = 6.75 in [1] by an upper bound using

Shannon-type inequalities and the construction of a strategy.
The best upper bound for R− found in [1] using the non-Shannon-type inequalities

from [12] is 59767/8929 = 6.693 . . ..
In [1], the authors looked for an undirected graph such that the guessing number can

be increased by adding one directed edge. They could not find such an example, and
this motivated the question whether making a vertex ‘Superman’ (visible by all others)
by adding directed edges increases the guessing number. This led to the definition of
the graph RS which is just as R up to three outgoing edges from the vertex 1 to vertices
8, 9 and 10. The guessing number of RS is found to be 27/4 = 6.75.

Another question on guessing games on graphs: are there any graphs where the
guessing number changes when the direction of all of its edges are reversed? This
question has been motivated by the connection of guessing games with information
networks (and the natural question of reversibility of networks). The authors of [1]
looked at the candidates RS and its reverse RL in which 1 is a ‘Luthor’ vertex (sees all
other vertices). A better lower bound for RL than its fractional clique cover number is
given by the guessing number 27/4 of R. The best upper bound they found on RL is
359/53 = 6.773 . . . using the non-Shannon-type inequalities from [12].

5.2. Our results

Using Corollary 3.7 we improve the upper bound on R− and give an alternative proof of
the previously known bound on RL. For both of these graphs, the asymptotic guessing
numbers remain unknown. See the appendix for the symmetry groups.

We get the following linear program and upper bounds for gn(R−), thus improve the
bound given in [1].
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Theorem 5.2. For the above defined graph R−,

gn(R−) ≤ 1847/276 = 6.6920 . . . .

P r o o f . We construct a linear program as in Corollary 2.18 with the following con-
straints.

1. The following applications of the copy lemma:

(a) X ′
2 be a X3-copy of X2;

(b) • (X ′′
4 , X

′′
5 ) be a X10-copy of (X4, X5)

over X1, X2, X3, X6, X7, X8, X9,

• and X ′′′
7 be a (X ′′

4 , X5, X10)-copy of X7

over X1, X2, X3, X4, X
′′
5 , X6, X8, X9;

(c) • (X ′′′′
6 , X ′′′′

7 ) be a copy of (X6, X7)
over X1, X2, X3, X4, X5, X8, X9, X10,

• and X ′′′′′
8 be a (X7, X

′′′′
7 )-copy of X8

over X1, X2, X3, X4, X5, X6, X
′′′′
6 , X9, X10;

2. the elemental inequalities for the following sets of random variables

• those that appear in the copy step in the item 1a above:

X1, X2, X
′
2, X3, X4, X5, X6, X7, X8, X9, X10,

• those that appear in the copy steps of the item 1b above:

X1, X2, X3, X4, X
′′
4 , X5, X

′′
5 , X6, X7, X

′′′
7 , X8, X9, X10,

• those that appear in the copy steps of the item 1c above:

X1, X2, X3, X4, X5, X6, X
′′′′
6 , X7, X

′′′′
7 , X8, X

′′′′′
8 , X9, X10;

3. the symmetry constraints.

The optimal value of this linear program is 1847/276 ≊ 6.692028986, which proves the
claim. □

We confirm the upper bound proven in [1].

Theorem 5.3. For the graph RL defined above,

gn(RL) ≤ 359/53 = 6.7735849 . . . .

P r o o f . We construct a linear program as in the previous proof. We use the following
constraints.

1. The following applications of the copy lemma:

(a) • (X ′
4, X

′
5) be a copy of (X4, X5),

• X ′′
5 be a (X1, X4, X

′
4)-copy of X5,

• and X ′′′
1 be a (X4, X

′
4)-copy of X1;
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(b) • (X ′′′′
2 , X ′′′′

7 ) be a copy of (X2, X7) over X1, X3, X4, X5, X6, X8, X9, X10,

• andX ′′′′′
1 be a (X7, X

′′′′
7 )-copy ofX1 overX2, X

′′′′
2 , X3, X4, X5, X6, X8, X9, X10;

2. the elemental inequalities for the following sets of random variables

• X1, X
′′′
1 , X2, X3, X4, X

′
4, X5,

X ′
5, X

′′
5 , X6, X7, X8, X9, X10

• X1, X
′′′′′
1 , X2, X

′′′′
2 , X3, X4, X5,

X6, X7, X
′′′′
7 , X8, X9, X10;

3. the symmetry constraints.

The optimal value of this linear program confirms the upper bound≤ 359/53 ≊ 6.773584906.
□

Remark 5.4. Note that in the linear programs constructed in the proofs above, unlike
those in secret sharing, we did not take all the elemental information inequalities for all
the combinations of old and new random variables. For example there is no Shannon-
type inequality involving both X ′

2 and X ′′
4 in the first linear program and none involving

both X ′
4 and X ′′′′

2 in the second. The reason is that the number of elemental inequalities
involving all possible combinations of random variables is enormous. If we included all
these constraints in the linear program, the computational complexity of the problem
would increase so much that the existing linear program solvers (for our computers)
could not handle it. Our choice of the sets of variables for which we write elemental
information inequalities follows from the applications of the copy lemma: a copy variable
used in order to define another copy variable is put in the same set as the latter.

6. CONCLUSION

In this paper we studied the application of computer-assisted proofs involving non-
Shannon-type inequalities. Though each separate ingredient used in our construction
was known earlier, the resulting combination proved to be surprisingly efficient.

We improved lower bounds for the information ratio of the access structures on Table 1
based on rank-4 8-point not-linearly-representable matroids. We believe that the used
method is quite strong and it might be interesting to extend to the other instances of
the problem of secret sharing.

We also improved the upper bound for the single smallest undirected graph, the
asymptotic guessing number of which is unknown, namely R−. Not only our bound
improves upon the previous one, but also the fraction is simpler (i. e. the denominator is
smaller). Note that there is no evidence that the obtained number is the exact guessing
number for this graph, a finer analysis may improve our upper bound.
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APPENDICES

A. Symmetry groups of access structures

To find the symmetry constraints to be written in item (iv) of the Corollary 3.6, one
needs to find the symmetries of the access structures under consideration, so here we
give the symmetry groups of the access structures we previously described.

The reader can check manually or by computer since the structures are small.

• A,A∗: ⟨(12)(56), (14)(36), (17)(35)⟩

• F ,F∗: ⟨(12)(4576), (46)(57)⟩

• Q, F̂ ,Q∗: ⟨(12)(47), (12)(56)⟩

B. Symmetry groups of sight graphs

The reader can check the symmetry groups by analysing the blocks or by brute-force
since the graphs are small.

The symmetry group ofR− is generated by two permutations: σ = (18)(2 10 5 9)(3746)
and τ = (25)(36)(47). Aut(R−) = ⟨σ, τ⟩.

Aut(R−) = ⟨(18)(2 10 5 9)(3746), (25)(36)(47)⟩

The symmetry group of RL is same as that of R, namely

Aut(RL) = ⟨(25)(36)(47), (26)(35)(8 10), (24)(57)(89)⟩.

C. A certificate of 1847⁄276 bound

The 1920 inequalities with their respective non-zero coefficients derived from the ra-
tional solution of the shortened linear program, which has optimal value 1847

276 can be
downloaded from:

https://archive.org/details/anx-c-rmns-1847ovr-276crtfcte.

https://archive.org/details/anx-c-rmns-1847ovr-276crtfcte
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