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ON SPARSITY OF APPROXIMATE SOLUTIONS
TO MAX-PLUS LINEAR SYSTEMS

Pingke Li

When a system of one-sided max-plus linear equations is inconsistent, the approximate
solutions within an admissible error bound may be desired instead, particularly with some
sparsity property. It is demonstrated in this paper that obtaining the sparsest approximate
solution within a given L∞ error bound may be transformed in polynomial time into the set
covering problem, which is known to be NP-hard. Besides, the problem of obtaining the sparsest
approximate solution within a given L1 error bound may be reformulated as a polynomial-sized
mixed integer linear programming problem, which may be regarded as a special scenario of
the facility location-allocation problem. By this reformulation approach, this paper reveals
some interesting connections between the sparsest approximate solution problems in max-plus
algebra and some well known problems in discrete and combinatorial optimization.

Keywords: max-plus algebra, max-plus linear systems, sparsity, set covering, mixed inte-
ger linear programming

Classification: 15A80, 90C24, 90C11

1. INTRODUCTION

The theory of max-plus algebra provides an attractive approach to handling some non-
linear problems in a linear-like manner and has been applied to solve many real-world
problems in scheduling, production, transportation, etc. See, e. g., Baccelli et al. [1],
Heidergott et al. [6], Gondran and Minoux [4], Butkovič [2], and Joswig [7].

Let Rmax = R ∪ {−∞} and

a⊕ b = max{a, b}, a⊗ b = a+ b, ∀a, b ∈ Rmax.

Max-plus algebra is the commutative idempotent semiring (Rmax,⊕,⊗), also called as
a dioid, endowed with “addition” ⊕ and “multiplication” ⊗ defined over Rmax. Anal-
ogously, min-plus algebra is the commutative idempotent semiring (Rmin,⊕′,⊗′) with
Rmin = R ∪ {+∞} and

a⊕′ b = min{a, b}, a⊗′ b = a+ b, ∀a, b ∈ Rmin.
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The pair of operations (⊕,⊗), as well as that of (⊕′,⊗′), can be extended to vectors
and matrices of compatible sizes in the same way as in linear algebra, preserving the
analogous commutative, associative, and distributive properties.

A finite system of one-sided max-plus linear equations is defined as

max
j∈N

{aij + xj} = bi, ∀i ∈ M,

where M = {1, 2, . . . ,m} and N = {1, 2, . . . , n} are two index sets. It may be called a
system of max-plus linear equations or a max-plus linear system for short and expressed
in its matrix form

A⊗ x = b

withA = (aij)m×n ∈ Rm×n
max , b = (bi)m×1 ∈ Rm

max, and x = (xj)n×1 ∈ Rn
max, respectively.

It is a fundamental problem in max-plus algebra to determine the solution set

S(A, b) = {x ∈ Rn
max | A⊗ x = b}

for a system of max-plus linear equations with the coefficient matrix A and right-hand
side vector b. The system A⊗ x = b is called consistent if S(A, b) ̸= ∅ and inconsistent
otherwise.

To check whether S(A, b) is empty or not, a principal solution x̂ = (x̂1, x̂2, . . . , x̂n)
T

may be constructed as
x̂j = min

i∈M
{−aij + bi}, ∀j ∈ N,

that is,
x̂ = A♯ ⊗′ b,

where A♯ = −AT is the conjugate matrix of A in the context of max-plus algebra.
Without loss of generality, one may assume that the right-hand side vector b consists of
only finite elements and the coefficient matrix A is doubly R-astic, i. e., A has at least
one finite element in each row and in each column. Under this assumption, the values in
the principal solution x̂ are all finite. By the residuation theory, A⊗ x̂ ≤ b and hence,
S(A, b) ̸= ∅ if and only if A ⊗ x̂ = b, which means that the consistency of the system
A⊗ x = b is fully characterized by its principal solution.

It is clear that the principal solution x̂ is also the maximum solution in S(A, b)
whenever S(A, b) ̸= ∅ because A⊗x ≤ b if and only if x ≤ x̂. Furthermore, S(A, b) can
be determined along with a finite number of minimal solutions so that

S(A, b) =
⋃

x̌∈Š(A,b)

{
x ∈ Rn

max | x̌ ≤ x ≤ x̂
}
,

where Š(A, b) is the set of minimal solutions. A minimal solution in Š(A, b) possesses
the number of finite elements as few as possible, of which the values are the same
with those in the maximum solution. To determine Š(A, b) is therefore equivalent to
the enumeration of all minimal solutions of an associated set covering problem, which
implies that the number of minimal solutions could be exponentially large with respect
to the instance size. For practical purposes, the minimal solutions with some particular
features may be desired, e. g., those with the least number of finite elements.
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Define the support of any vector x ∈ Rn
max as

supp(x) = {j ∈ N | xj ̸= −∞},

that is, the index set corresponding to its finite elements. This is analogous to the
counterpart in conventional linear algebra because −∞ is regarded as the zero element
with respect to “addition” ⊕ in max-plus algebra. A solution in S(A, b) is called the
sparsest solution, which is necessarily a minimal solution, if it has the minimum number
of finite elements. To find the sparsest solution to the system A⊗ x = b is to solve the
optimization problem

min |supp(x)|

s.t. A⊗ x = b,

where |supp(x)| denotes the cardinality of supp(x), i. e., the number of elements in
supp(x). This problem is NP-hard and can be reduced to the classical set covering
problem in polynomial time.

However, the consistency of max-plus linear equations is sensitive to noise or pertur-
bation in the data. When the system A⊗x = b is inconsistent, the approximate solutions
may be considered by minimizing ∥A⊗x− b∥p where ∥ · ∥p denotes the conventional Lp

vector norm, e. g., p = 1, 2, or ∞. A closed form optimal solution for the L∞ scenario
may be directly constructed as x̂+∆ where 2∆ = ∥A⊗ x̂− b∥∞ and the conventional
addition is conducted componentwise, see, e. g., Cuninghame-Green [3], Krivulin [8, 9],
and Butkovič [2]. The L1 scenario, as demonstrated by Li [10], may be reformulated
into a polynomial-sized mixed integer linear programming problem and solved by an
off-the-shelf optimization solver.

When the sparsest approximate solution is concerned, it may be obtained by solving
the optimization problem

min |supp(x)|

s.t. ∥A⊗ x− b∥p ≤ ϵ,

where ϵ > 0 is an admissible error bound, not necessarily the minimum one. This prob-
lem has been investigated on the Lp scenario with p < ∞ by Tsiamis and Maragos [14]
and Tsilivis et al. [15] with the additional “lateness” constraint A ⊗ x ≤ b. The con-
straint A ⊗ x ≤ b implies x ≤ x̂ = A♯ ⊗′ b and makes the corresponding optimization
problem somewhat more tractable by imposing the supermodular properties so that a
greedy algorithm can be implemented. The L∞ scenario without the lateness constraint
has also been tackled by Tsilivis et al. [15] with a two-stage procedure based on the
approximate solutions of the Lp scenarios.

This paper focuses on the sparsest approximate solutions to inconsistent max-plus
linear equations without the lateness constraint, particularly on the scenarios of the
L∞ norm and the L1 norm. It turns out obtaining the sparsest approximate solution
within a given L∞ error bound is equivalent to solving a set covering problem defined
by the characteristic matrix of associated max-plus linear inequalities. Consequently, it
can be solved directly without recourse to the two-stage procedure developed by Tsilivis
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et al. [15]. Furthermore, the problem of obtaining the sparsest approximate solution
within a given L1 error bound can be transformed into a polynomial-sized mixed integer
linear programming problem, which may be tackled directly by some well developed
optimization solvers.

The rest of this paper is organized as follows. Section 2 introduces the well known
connections between the max-plus linear system and the set covering problem. Section 3
deals with the sparsest approximate solutions for the scenarios of the L∞ and the L1 ad-
missible error bounds, respectively, based on a reformulation approach. The conclusions
are addressed in Section 4.

2. MAX-PLUS LINEAR SYSTEMS

Recall that a max-plus linear system A⊗x = b is consistent if and only if A⊗x̂ = b with
x̂ = A♯⊗′ b. Furthermore, it can be reduced into its characteristic matrix Q̃ = (q̃ij)m×n

such that

q̃ij =

{
x̂j , if aij + x̂j = bi

∅, otherwise.

It is straightforward that the system A⊗ x = b is consistent if and only if no row of Q̃
consists of only empty elements, or alternatively,

⋃
j∈N Mj = M where Mj = {i ∈ M |

q̃ij = x̂j}, ∀j ∈ N . Consequently, the characteristic matrix Q̃ may be further simplified
as a 0-1 matrix Q = (qij)m×n such that

qij =

{
1, if q̃ij = x̂j

0, otherwise

and hence, explicitly defines an instance of the set covering problem corresponding to
the system A⊗ x = b.

By this means, a feasible cover is coded as a vector y ∈ {0, 1}n such that Qy ≥ e,
where e is the vector of all ones with its length determined by the context. According
to the construction of Q, any feasible cover y induces a solution x ∈ S(A, b) by

xj =

{
x̂j , if yj = 1

−∞, otherwise.

The transformation also works reversely to convert a solution x ∈ S(A, b), whenever it is
nonempty, to a feasible cover y by considering only those elements with the values of x̂j ’s.
This reveals the well-known one-to-one correspondence between the minimal solutions to
max-plus linear equations and the minimal covers of its associated set covering problem.
Therefore, a solution x ∈ S(A, b) with the minimum cardinality of supp(x) defines a
cover of the minimum cardinality in the conventional sense, and vice versa. It follows
that the optimization problem

min |supp(x)|
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s.t. A⊗ x = b

is equivalent to its corresponding set covering problem, defined by the simplified char-
acteristic matrix Q,

min eTy

s.t. Qy ≥ e

y ∈ {0, 1}n.

Example 2.1. Consider the following system of max-plus linear equations 6 9 9

6 6 8

8 7 4

⊗

 x1

x2

x3

 =

 3

2

1

 .

The associated principal solution is x̂ = (−7,−6,−6)T and the system is consistent.
The corresponding characteristic matrix and its simplified version are, respectively,

Q̃ =

 ∅ −6 −6

∅ ∅ −6

−7 −6 ∅

 , Q =

 0 1 1

0 0 1

1 1 0

 .

There are only two minimal covers associated with Q, i. e.,

y̌1 = (0, 1, 1)T , y̌2 = (1, 0, 1)T ,

which induce two minimal solutions to the max-plus linear equations as

x̌1 = (−∞,−6,−6)T , x̌2 = (−7,−∞,−6)T .

The solution set S(A, b) is therefore determined as

S(A, b) =
⋃

k=1,2

{
x ∈ R3

max | x̌k ≤ x ≤ x̂
}
.

The both minimal solutions are also the sparsest solutions for this instance.

An essentially same procedure may be applied to handle a system of max-plus linear
inequalities in the form

ℓ ≤ A⊗ x ≤ u,

where ℓ = (ℓ1, ℓ2, . . . , ℓm)T and u = (u1, u2, . . . , um)T are the lower bound and the upper
bound vectors, respectively. It is consistent if and only if A⊗ x̂ ≥ ℓ with x̂ = A♯ ⊗′ u.
Analogously, its characteristic matrix Q̃ = (q̃ij)m×n is constructed as

q̃ij =

{
[−aij + ℓi, x̂j ], if aij + x̂j ≥ ℓi

∅, otherwise.



On sparsity of solutions to max-plus linear systems 417

The solution set S(A, ℓ,u), whenever it is nonempty, is still determined by the max-
imum solution x̂ and a finite set Š(A, ℓ,u) of minimal solutions in the same manner for
max-plus linear equations. However, there is no longer a direct one-to-one correspon-
dence between the minimal solutions and the minimal covers as in the case of max-plus
linear equations. This is because the nonempty elements of Q̃ are of interval type so
that a minimal solution to max-plus linear inequalities may assume the values other than
x̂j ’s and −∞. By some routinely used reformulation tricks, the problem of determin-
ing all minimal solutions can be transformed to the enumeration of all minimal covers
of an augmented set covering problem with some additional cardinality constraints, as
illustrated by Li and Fang [13] and Li [11].

Nevertheless, if a solution with the minimum cardinality of its support is desired, it
suffices, taking advantage of the structure of the solution set, to construct the simplified
characteristic matrix Q = (qij)m×n as

qij =

{
1, if q̃ij ̸= ∅

0, otherwise

and solve the corresponding set covering problem defined by Q. Any optimal solution y̌,
a minimal cover of the minimum cardinality, induces the sparsest approximate solution
x̄, not necessarily minimal, by

x̄j =

{
x̂j , if yj = 1

−∞, otherwise.

To make it a minimal solution to the system of max-plus linear inequalities, a modifica-
tion may be performed by either a depth-first or a breadth-first search procedure over
its support using the information recorded in Q̃.

Example 2.2. Consider the following system of max-plus linear inequalities 2

2

0

 ≤

 6 9 9

6 6 8

8 7 4

⊗

 x1

x2

x3

 ≤

 4

3

2

 .

The associated principle solution is x̂ = (−6,−5,−5)T and the system is consistent.
Since only the sparsest solutions are concerned in this context, the characteristic matrix
and its simplified version are therefore constructed, respectively, as

Q̃ =

 ∅ [−7,−5] [−7,−5]

∅ ∅ [−6,−5]

[−8,−6] [−7,−5] ∅

 , Q =

 0 1 1

0 0 1

1 1 0

 .

Consequently, two minimal covers of Q can be identified as

y̌1 = (0, 1, 1)T , y̌2 = (1, 0, 1)T ,

and the induced solutions to the max-plus linear inequalities are, respectively,

x̄1 = (−∞,−5,−5)T , x̄2 = (−6,−∞,−5)T .
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However, the both solutions, although the sparsest, are not minimal. They can be
modified to be the minimal solutions, according to the information in Q̃, as

x̌1 = (−∞,−7,−6)T , x̌2 = (−8,−∞,−6)T .

It can be verified that they are the only two minimal solutions for this particular instance
and are the sparsest solutions as well. The solution set S(A, ℓ,u) of the system of max-
plus linear inequalities under consideration is therefore determined as

S(A, ℓ,u) =
⋃

k=1,2

{
x ∈ R3

max | x̌k ≤ x ≤ x̂
}
.

Roughly speaking, as illustrated by Example 2.1 and Example 2.2, there is no essential
difference in the solution methods between max-plus linear equations and max-plus linear
inequalities as long as the sparsest solutions are concerned, although the patterns of
characteristic matrices are somewhat more complicated for max-plus linear inequalities.

3. SPARSEST APPROXIMATE SOLUTIONS

When a system of max-plus linear equations A⊗x = b is inconsistent, the approximate
solutions may be considered by minimizing the residual error ∥A⊗x−b∥p, with respect
to the Lp norm of vectors.

For the L∞ scenario, the minimum residual error ∆ can be calculated directly by
2∆ = ∥A ⊗ x̂ − b∥∞ with x̂ = A♯ ⊗′ b. If the sparsest approximate solution is desired
with respect to an admissible error bound ϵ, necessarily ϵ ≥ ∆, it needs to solve the
optimization problem

min |supp(x)|

s.t. ∥A⊗ x− b∥∞ ≤ ϵ.

Note that the constraint ∥A⊗x−b∥∞ ≤ ϵ is equivalent to the system of max-plus linear
inequalities

b− ϵ ≤ A⊗ x ≤ b+ ϵ,

of which the corresponding principal solution shifts right by ϵ, that is,

A♯ ⊗′ (b+ ϵ) = x̂+ ϵ.

The characteristic matrix Q̃ = (q̃ij)m×n can be constructed accordingly as

q̃ij =

{
[−aij + bi − ϵ, x̂j + ϵ], if aij + x̂j + 2ϵ ≥ bi

∅, otherwise

and further reduced to the 0-1 matrix Q = (qij)m×n as demonstrated in Section 2 in
order to obtain the sparsest solutions.
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Subsequently, it suffices to solve the set covering problem defined by the simplified
characteristic matrix Q. Any optimal solution y̌ induces the sparsest approximate solu-
tion x̄, within the given L∞ error bound, by

x̄j =

{
x̂j + ϵ, if y̌j = 1

−∞, otherwise,

which is not necessarily a minimal solution to the system b − ϵ ≤ A ⊗ x ≤ b + ϵ. It
can be modified to be a minimal one in polynomial time, if necessarily, according to the
information recorded in the characteristic matrix Q̃.

Example 3.1. Consider the following system of max-plus linear equations 6 9 9

6 6 7

8 7 4

⊗

 x1

x2

x3

 =

 3

3

1

 .

The associated principal solution is x̂ = (−7,−6,−6)T . The system is inconsistent
and 2∆ = ∥A ⊗ x̂ − b∥∞ = 2. Let the admissible error bound be ϵ = ∆ = 1. The
constraint ∥A ⊗ x − b∥∞ ≤ 1 for this instance is equivalent to the system of max-plus
linear inequalities  2

2

0

 ≤

 6 9 9

6 6 7

8 7 4

⊗

 x1

x2

x3

 ≤

 4

4

2

 .

Since the shifted principle solution is x̂+ ϵ = (−6,−5,−5)T , the corresponding charac-
teristic matrix and its simplified version can be constructed, respectively, as

Q̃ =

 ∅ [−7,−5] [−7,−5]

∅ ∅ [−5,−5]

[−8,−6] [−7,−5] ∅

 , Q =

 0 1 1

0 0 1

1 1 0

 .

Similar to Example 2.2, two sparsest approximate solutions, with respect to the admis-
sible L∞ error bound, can be identified as

x̄1 = (−∞,−5,−5)T , x̄2 = (−6,−∞,−5)T ,

of which both can be modified to be minimal, if necessarily, as

x̌1 = (−∞,−7,−5)T , x̌2 = (−8,−∞,−5)T .

Remark 3.2. A two-stage solution method has been developed by Tsilivis et al. [15]
to approximately solve the sparsity problem with respect to the admissible L∞ error
bound by first solving the Lp scenario with the lateness constraint and then performing
a translation operation. This procedure involves the calculation of the Lp norm of vectors
with a large value of p as suggested. However, as addressed by Gotoh and Uryasev [5],
the calculation, when p is large, could suffer from some numerical issues.
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For the L1 scenario, the optimization problem

min |supp(x)|

s.t. ∥A⊗ x− b∥1 ≤ ϵ

is somewhat more complicated since it is difficult to determine the minimum L1 residual
error. Although a feasible admissible error bound ϵ = n∆ is available inherited from
the L∞ scenario, it imposes little restriction on the individual elements of the residual
vector, a feature associated with the L∞ norm. However, as demonstrated by Li [10], the
problem of minimizing ∥A⊗x− b∥1 can be reformulated into a polynomial-sized mixed
integer linear programming problem and solved by some well developed optimization
solvers. Once the minimum L1 residual error δ has been obtained, the admissible error
bound can be set as ϵ ≥ δ. Furthermore, the reformulation approach developed by
Li [10] may be applied with necessary modifications to deal with the sparsity problem
with respect to the admissible L1 error bound.

Let t = (t1, t2, . . . , tm)T be a nonnegative vector such that abs(A⊗x− b) ≤ t, where
the absolute values of a vector are taken componentwise. By this means, the constraint
∥A⊗ x− b∥1 ≤ ∥t∥1 is equivalent to

b− t ≤ A⊗ x ≤ b+ t,

which may be regarded as a system of two-sided max-plus linear inequalities because
the both sides of the inequalities have the unknown vector either x or t. Besides, the
vector x can be written as

x = x̂+ s,

where s = (s1, s2, . . . , sn)
T is nonnegative, to reduce the searching space for the approx-

imate solutions. Consequently, as demonstrated by Li [10], by introducing an additional
group of mn binary variables zij , i ∈ M , j ∈ N , and a large enough positive constant
K, the system b − t ≤ A ⊗ x ≤ b + t can be reformulated as a system of conventional
linear inequalities

−ti + sj ≤ −aij − x̂j + bi, ∀i ∈ M, j ∈ N,

ti + sj +K(1− zij) ≥ −aij − x̂j + bi, ∀i ∈ M, j ∈ N,∑
j∈N zij = 1, ∀i ∈ M

Note that the inequality

ti + sj +K(1− zij) ≥ −aij − x̂j + bi

means
aij + x̂j + sj +K(1− zij) ≥ bi − ti.

When zij = 1, it becomes
aij + x̂j + sj ≥ bi − ti,

which indicates that the variable xj = x̂j+sj is active for the ith inequality in the system
A⊗x ≥ b−t. In other words, the 0-1 matrix Z = (zij)m×n records a set covering pattern
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under the requirement of Ze = e. Therefore, a binary vector y = (y1, y2, . . . , yn)
T may

be introduced to record whether the variable xj is active or not for each j ∈ N , so that
the constraints ∑

i∈M zij ≤ myj , ∀j ∈ N

can be imposed naturally if the sparsest approximate solutions are concerned. Conse-
quently, in order to obtain the sparsest approximate solution within the given L1 error
bound, it suffices to solve the optimization problem

min y1 + y2 + · · ·+ yn

s.t.
−ti + sj ≤ −aij − x̂j + bi, ∀i ∈ M, j ∈ N,

ti + sj +K(1− zij) ≥ −aij − x̂j + bi, ∀i ∈ M, j ∈ N,

t1 + t2 + · · ·+ tn ≤ ϵ,∑
j∈N zij = 1, ∀i ∈ M,∑
i∈M zij ≤ myj , ∀j ∈ N,

ti ≥ 0, ∀i ∈ M,

sj ≥ 0, ∀j ∈ N,

yj , zij ∈ {0, 1}, ∀i ∈ M, j ∈ N.

Remark 3.3. This mixed integer linear programming problem may be regarded as a
special scenario of the facility location-allocation problem with a resource capacity re-
striction where N is the set of candidate facilities to operate and M is the set of demand
positions to serve. This reformulation approach may be applied as well when the L2

error bound is considered.

Remark 3.4. The aggregated constraints
∑

i∈M zij ≤ myj for all j ∈ N in this formu-
lation could be enforced by the disaggregated set of constraints zij ≤ yj for all i ∈ M
and j ∈ N , which, in theory, leads to a better formulation. However, the aggregated
version is preferred in practice for a state-of-the-art optimization solver because such
type of inequalities can be automatically handled by detecting violated minimal cover
inequalities and the size of its linear relaxation is much smaller.

Remark 3.5. The sparsity problem with respect to the Lp residual error, p < ∞, has
been investigated by Tsiamis and Maragos [14] and Tsilivis et al. [15] with the lateness
constraint A ⊗ x ≤ b, or equivalently, x ≤ x̂ = A♯ ⊗′ b. This implies s = 0 and the
constraint A ⊗ (x̂ + s) ≤ b + t is redundant in this context. Consequently, a greedy
algorithm may be implemented to obtain nearly optimal solutions taking advantage of
the supermodular properties.

Once an optimal solution y∗, along with s∗ and t∗, has been obtained, it induces the
sparsest approximate solution x̄ by
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x̄j =

{
x̂j + s∗j , if y∗j = 1

−∞, otherwise.

It is not necessarily a minimal solution to the system b − t∗ ≤ A ◦ x ≤ b + t∗ but can
be modified according to its characteristic matrix as demonstrated in Section 2.

Example 3.6. Consider the inconsistent system of max-plus linear equations in Exam-
ple 3.1  6 9 9

6 6 7

8 7 4

⊗

 x1

x2

x3

 =

 3

3

1

 ,

of which the principal solution is x̂ = (−7,−6,−6)T .

The minimum L1 error bound for this instance is δ = 2 by minimizing ∥A⊗ x− b∥1
via the procedure in Li [10] with the aid of an optimization solver, e. g., lp solve 5.5 in
the R package lpSolve. The corresponding approximate solution is x∗ = (−7,−6,−4)T

so that  6 9 9

6 6 7

8 7 4

⊗

 −7

−6

−4

 =

 5

3

1

 .

It is clear that ∥A⊗x∗−b∥1 = 2 and also ∥A⊗x∗−b∥∞ = 2 > ∆. The optimal solution
with respect to the minimum L1 error bound is usually not unique. For this instance,
it can be verified that, for each α ∈ [0, 1], the approximate solution

x∗(α) = (−7,−6,−5 + α)T

achieves the same error bound δ = 2. Particularly, x∗(0) = (−7,−6,−5)T also reaches
the minimum L∞ error bound ∆ = 1 because A⊗ x∗(0) = (4, 2, 1)T and ∥A⊗ x∗(0)−
b∥∞ = 1.

Subsequently, if the sparsest approximate solution is desired, one may set, say ϵ = 2
and K = 106, and solve the following mixed integer linear programming problem
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min y1 + y2 + y3

s.t.
−t1 + s1 ≤ 4, −t1 + s2 ≤ 0, −t1 + s3 ≤ 0,

−t2 + s1 ≤ 4, −t2 + s2 ≤ 3, −t2 + s3 ≤ 2,

−t3 + s1 ≤ 0, −t3 + s2 ≤ 0, −t3 + s3 ≤ 3,

t1 + s1 +K(1− z11) ≥ 4, t1 + s2 +K(1− z12) ≥ 0, t1 + s3 +K(1− z13) ≥ 0,

t2 + s1 +K(1− z21) ≥ 4, t2 + s2 +K(1− z22) ≥ 3, t2 + s3 +K(1− z23) ≥ 2,

t3 + s1 +K(1− z31) ≥ 0, t3 + s2 +K(1− z32) ≥ 0, t3 + s3 +K(1− z33) ≥ 3,

t1 + t2 + t3 ≤ 2,

z11 + z12 + z13 = 1, z21 + z22 + z23 = 1, z31 + z32 + z33 = 1,

z11 + z21 + z31 ≤ 3y1, z12 + z22 + z32 ≤ 3y2, z13 + z23 + z33 ≤ 3y3,

t1, t2, t3, s1, s2, s3 ≥ 0, y1, y2, y3, z11, z12, . . . , z33 ∈ {0, 1}.

By calling lp solve 5.5, an optimal solution

y∗ = (1, 0, 1)T

can be obtained along with s∗ = (0, 0, 2)T , which leads to the sparsest approximate
solution

x̄ = (−7,−∞,−4)T .

Moreover, it can be verified that for this instance the vector

x̄(α) = (−7,−∞,−5 + α)T

is also the sparsest approximate solution for each α ∈ [0, 1] with the same L1 residual
error. Note that there is another family of sparsest approximate solutions x̄(α) =
(−∞,−6,−5 + α)T , ∀α ∈ [0, 1], for this instance.

In Example 3.6, it shows that one of the sparsest approximate solutions achieves
simultaneously the minimum L∞ error and the minimum L1 error bounds. Such an ap-
proximate solution may not always exist. Therefore, the sparsest approximate solutions
are different in general under the different criteria of admissible error bounds.

Example 3.7. Consider the following inconsistent system of max-plus linear equations 5 1 0

4 4 5

7 7 7

⊗

 x1

x2

x3

 =

 0

0

0

 ,

of which the principal solution is x̂ = (−7,−7,−7)T . This example has been investigated
by Li [10]. It has the minimum L∞ residual error ∆ = 1 and the minimum L1 residual
error δ = 2.
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With respect to ∆ = 1, the characteristic matrix of the max-plus linear system
b−∆ ≤ A⊗ x ≤ b+∆ is

Q̃ =

 [−6,−6] ∅ ∅
∅ ∅ [−6,−6]

[−8,−6] [−8,−6] [−8,−6]

 .

There is only one sparsest approximate solution

x̌ = (−6,−∞,−6)T ,

which is also a minimal solution, such that A⊗ x̌ = (−1,−1, 1)T and ∥A⊗ x̌−b∥∞ = 1.
Note that ∥A⊗ x̌− b∥1 = 3 > δ. Furthermore, it can be verified that for this instance
A⊗x̌ = (−1,−1, 1)T is the unique right-hand side vector for the consistency of max-plus
linear equations within the minimum L∞ error bound.

With respect to δ = 2, the optimal solution is y∗ = (1, 0, 1)T , along with s∗ =
(2, 0, 2)T , by solving the corresponding mixed integer linear programming problem. The
sparsest approximate solution is therefore

x̄ = (−5,−∞,−5)T

such that A ⊗ x̄ = (0, 0, 2)T and ∥A ⊗ x̄ − b∥1 = 2. Since the characteristic matrix of
the max-plus linear system A⊗ x = A⊗ x̄ is

Q̃ =

 −5 ∅ ∅
∅ ∅ −5

−5 −5 −5

 ,

the vector x̄ = (−5,−∞,−5)T is also its unique minimal solution. Besides, it can be
verified that for this instance A⊗ x̄ = (0, 0, 2)T is the unique right-hand side vector for
the consistency of max-plus linear equations within the minimum L1 error bound.

As a result, although x̌ = (−6,−∞,−6)T and x̄ = (−5,−∞,−5)T have the same
support, they are the sparsest approximate solutions with respect to the different criteria
of residual error bounds.

4. CONCLUSIONS

The sparsity problem of approximate solutions is concerned in this paper for an in-
consistent system of max-plus linear equations with respect to admissible residual error
bounds. It turns out that obtaining the sparsest approximate solution within a given L∞
error bound is essentially a set covering problem via a polynomial time transformation.
It also shows that obtaining the sparsest approximate solution within a given L1 error
bound can be reformulated into a polynomial-sized mixed integer linear programming
problem, which may be regarded as a special scenario of the facility location-allocation
problem. Therefore, this paper reveals some interesting connections, old and new, be-
tween the sparsest approximate solution problems in max-plus algebra and some well
known problems in discrete and combinatorial optimization. This also implies that the
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concerned problem may be solved to optimality with the aid of an off-the-shelf opti-
mization solver and in some sense requires no tailored solving method except for very
large instances. Besides, this reformulation approach can be extended, in an analogous
manner as in Li [12], for the problem of minimizing a general linear objective function
of the approximate solutions to max-plus linear equations.

(Received November 6, 2023)
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