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DELAY DEPENDENT COMPLEX-VALUED BIDIRECTIONAL
ASSOCIATIVE MEMORY NEURAL NETWORKS
WITH STOCHASTIC AND IMPULSIVE EFFECTS:
AN EXPONENTIAL STABILITY APPROACH

Chinnamuniyandi Maharajan, Chandran Sowmiya and Changjin Xu

This paper investigates the stability in an exponential sense of complex-valued Bidirectional
Associative Memory (BAM) neural networks with time delays under the stochastic and im-
pulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness
of the equilibrium point for the proposed complex-valued neural networks are verified. More-
over, based on the Lyapunov –Krasovskii functional construction, matrix inequality techniques
and stability theory, some novel time-delayed sufficient conditions are attained in linear matrix
inequalities (LMIs) form, which ensure the exponential stability of the trivial solution for the
addressed neural networks. Finally, to illustrate the superiority and effects of our theoretical
results, two numerical examples with their simulations are provided via MATLAB LMI control
toolbox.
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Notations: Throughout this paper, Z+ represents the set of all positive integers and
Cn denotes the n-dimensional complex spaces equipped with the Euclidean norm ∥ · ∥;
I represents the unitary matrix with appropriate dimensions; Cn, Rn×n and Cn×m de-
notes respectively, the set of all n-dimensional complex-valued vectors, the set of all
n×n real-valued matrices and the set of all n×m complex-valued matrices respectively.
The notation CT and C−1 mean the transpose of C and the inverse of a square matrix,
respectively. λmax(C) or λmin(C) stand for the maximum eigenvalue or the minimum
eigenvalue of Hermitian matrix C, respectively. A∗ indicates the complex conjugate
transpose of complex-valued matrix A. For any interval T ⊆ R, set U ⊆ Ck (1 ≤ k ≤ n),
C(T ,U) = {φ : T −→ U is continuous} and PC1(T ,U) = {φ : T −→ U is continuously
differentiable everywhere except at finite number of points t, at which φ(t+), φ(t−),
φ̇(t+) and φ̇(t−) exist and φ(t+) = φ(t), φ̇(t+) = φ̇(t), where φ̇ refers to the deriva-
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tive of φ}. For any x = (x1, x2, . . . , xn) ∈ Cn, f or any t ∈ R+, zt and z̃t are defined
by zt = z(t + s), zt− = z(t− + s), s ∈ [−σ1, 0] and z̃t = z̃(t + s), z̃t− = z̃(t− + s),
s ∈ [−σ2, 0], respectively. The notation M > N means that M and N are Hermi-
tian matrices and that M − N is positive definite. i shows the imaginary unit, i. e.,
i =

√
−1. |a| indicates the module of complex number a ∈ C and ∥z∥ denote the norm

of z ∈ Cn, i. e., ∥z∥ =
√
z∗z. If A ∈ Cn×n, denote by ∥A∥ its operator norm, i. e.,

∥A∥ = sup{∥Ax∥ : ∥x∥ = 1} =
√
λmax(A∗A). For A = (aij)n×n ∈ Cn×n, |A| = |aij |

stands for the modulus of matrix A.

1. PREPARATORY KNOWLEDGE AND MODEL DESCRIPTION

Neural networks containing complex variables is a developing field of focus research that
has garnered a lot of interest from scholars in recent years [12, 34, 36, 62]. As is well
known, state variables, connection weight matrices, and neuron activation functions in
complex-valued neural networks (CVNNs) are expressed in terms of complex variables.
Therefore, one way to think of real-valued neural networks (RVNNs) is as the foundation
for complex-valued neural networks. It appears that the attributes of CVNNs are more
intricate and unique than those of RVNNs. Thus, it is now essential and required to
take complex variables into account while designing neural networks. Complex-valued
neural networks are widely used in dynamical systems for a variety of purposes, including
speech synthesis, filtering, imaging, computer vision, quantum devices, optoelectronics,
imaging, and electronic power grids. Furthermore, because of the amplifiers’ limited
switching rate, time delays will commonly occur during the transmission and storage of
data in real neural networks. Time delay facts in neural networks (NNs) can therefore
result in persistent oscillations, subpar performance, splitting, or instability, all of which
are commonly seen in many technical, physical, and neural-based systems. As a result,
a lot of study has been done on the stability issue of neural networks with temporal
delays; see [7, 30, 32, 35, 40]. Cao and Wang looked at the stability requirements for
time-delayed recurrent neural networks in [17]. Song, Zhao and Liu in [44] proposed the
time delay dependent stability conditions for CVNNs as follows:

dz(t) = [−Az(t) +W0f1(z(t)) +W1g1(z(t− µ1(t))) + Î] dt, t > 0.

Economists and mathematicians have made the most contributions to M-matrix the-
ory. In mathematics, M-matrices are used to set restrictions on eigenvalues and con-
vergence requirements for iterative techniques that solve big sparse systems of linear
equations. Because they are naturally occurring in some discretizations of differential
operators, like the Laplacian, M-matrices are extensively researched in the field of sci-
entific computing. The analysis of linear complementarity issue solutions also involves
M-matrices. In computational mechanics, linear and quadratic programming, and the
challenge of determining the equilibrium point of a bimatrix game, linear complementar-
ity problems can occur. Finally, the study of finite Markov chains in operations research,
such as queuing theory, and probability theory involves M-matrices. Economists have
concurrently investigated M-matrices in relation to Leontief’s input-output analysis,
general equilibrium stability, and gross substitutability in economic systems. In eco-
nomic literature, the term “Hawkins – Simon condition” refers to the need of positivity
of all principal minors. M-matrices are related to Hurwitz matrices in engineering and
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are present in the Lyapunov stability and feedback control problems in control theory.
M-matrices are used in the research of population dynamics in computational biology.

Dynamical analysis networks is an emerging branch of science that combines the
study of network science and network theory with classical social network analysis, link
analysis, social simulation, and multi-agent systems. A collection of graphs corresponds
to a function of time (represented as a subset of the real numbers) in dynamic networks;
a graph exists for every time point. This is similar to how dynamical systems are
defined, where the function is from time to an ambient space, but time is transformed
into interactions between pairs of vertices in place of ambient space.

Nonlinear differential equations are frequently used in neural network architectures.
Thus, it is not possible for us to determine the answers immediately. To solve the NNs,
a Lyapunov –Krasovskii functional (LKF) containing the parameters of the resultant
neural networks is built. Moreover, the solution of the Lyapunov –Krasovskii functional
requires the use of certain lemmas and inequalities relevant to stability theory. The
terminology mentioned above allows us to determine whether or not the NNs are stable
without the need for solutions.

Furthermore, because of the multitude of parallel paths with varying axon lengths
and diameters, neural networks frequently have a spatial scope. As a result, propagation
delays are allocated throughout time [26, 38, 39, 58]. It makes sense that the NNs would
take into account both discrete and distributed time delays as a result of the time delay.
Numerous research studies on neural networks with mixed time delays have been covered
in the literature as of late, including [1, 4, 54] and its references. A review of papers
on discrete time and distributed time delays for neural networks was conducted by the
authors in [6, 48, 53]. Furthermore, the neural system’s negative feedback state variables
exhibit a unique kind of temporal delay known as leakage delay. Neural networks’ sta-
bility behaviour is significantly affected by temporal delays of this kind in the forgetting
(leakage) term, which are difficult to manage. Therefore it becomes sense to take leak-
age delays into account while designing neural networks [21, 29, 43]. Researchers have
studied complex-valued neural networks with leakage terms and stability issues during
the last few decades [2, 20]. The leakage term in the state variable was addressed by Li
and Cao in [14], and the stability performance of neural networks with time delays was
examined. Further, the researchers in [42] considered the following CVNNs with leakage
delays and checked the stability analysis in Lagrange sense

dz(t) =
[
−Az(t− σ1) +W0f1(z(t)) +W1g1(z(t− µ1(t))) +W2

∫ t

t−ρ1(t)

h1(z(s)) ds

+Î
]
dt, t > 0,

where ρ1(t) denotes the time varying delay in distributed term which are bounded with
0 < ρ1(t) < ρ1, ρ̇1(t) ≤ ρ1 < 1, where ρ1 is a constant.

As is well known, Kosko first developed bidirectional associative memory neural net-
works (BAMNNs) in [18, 19] with the capacity for memory and information association.
A particular kind of recurrent neural network, or RNN, known as a BAMNN is made up
of neurons stacked in two layers: a M layer and a N layer. Each layer’s neurons are com-
pletely linked to every other layer’s neuron. Yet, because of its effective uses in artificial
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intelligence, image processing, parallel computing, pattern recognition, automatic con-
trol, and associative memories, it has garnered a lot of interest. Specifically, BAMNNs
are designed to expose only one asymptotic or exponential stable trivial solution for a
given external input. Hence, a great number of adequate criteria have been put forth
to ensure the asymptotic or exponential stability of the suggested neural networks; for
instance, refer to [11, 13, 31, 41]. Recently, a large number of researchers have explored
in great detail the exponential stability of BAMNNs with time delays [10].

However, many physical processes in real-world situations are characterised by sudden
changes at specific times. Additionally, it is likely that a wide range of evolutionary pro-
cesses exhibit the hurried consequence (impulsive effect), which causes states to change
quickly at specific times [27, 33, 45]. Moreover, BAMNNs can experience sudden fluc-
tuations that impair the systems’ dynamic performance. In order to properly analyze
the stability of NNs, the impulsive effects must be considered. It is positive that there
has been much discussion in recent years regarding the stability of neural networks with
impulsive occurrences in the practical use of neural networks. The reader may consult
[25, 63] and the references therein for more information on how to cope with the impul-
sive effects while examining the stability behavior of NNs. Chen et al. examined the
CVNNs with impulses, leakage, and mixed time delays in [2] in the following ways:

dz(t) =
[
−Az(t− σ1) +W0f1(z(t)) +W1g1(z(t− µ1)) +W2

∫ t

t−ρ1

h1(z(s)) ds

+Î
]
dt; t ̸= tk, t > 0,

∆z(tk) = Uk(z(t
−
k ), zt−k

); t = tk, k in Z+.

The delay-dependent stability criteria of impulsive BAM neural networks were thor-
oughly examined by Li et al. in [23]. In actuality, external disturbances can cause a
dynamical system to malfunction regularly. These disturbances might be regarded as
random because they often involve a great deal of uncertainty. As mentioned in [9],
stochastic (random) fluctuations resulting from the release of neurotransmitters and
other probabilistic causes in the actual nervous system, as well as the use of artificial
neural networks, produce the noisy process of synaptic transmission. Consequently, it
makes sense to take stochastic noises into account while designing NNs with temporal
delays. Many unique results on the stability criteria of neural networks with stochas-
tic disturbances and temporal delays have recently been presented in [24, 46, 47, 61],
using various methods. Ganesh Kumar, Syed Ali, et al. addressed the time delay cri-
terion for BAM neural networks with stochastic effects in [5]. In the meanwhile, Wang
and Huang’s description of the discrete time delay CVBAMNNs in [50]. The addressed
neural networks in [50] is given by

dz(t) = [−Az(t) +W0f1(z̃(t)) +W1g1(z̃(t− µ1)) + Î] dt,

dz̃(t) = [−Dz̃(t) + V0f2(z(t)) + V1g2(z(t− µ2)) + J ] dt, t > 0,

where µ1 and µ2 are constant scalars.
Inspired by the above discussions, our current research work is motivated by the

fact that the problem of exponential stability analysis of complex-valued BAM neural
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networks (CVBAMNNs) with mixed time delays has not yet been fully studied due to
the combination of stochastic and impulsive perturbations. In order to close this gap,
we examine the exponential stability problem for CVBAMNNs with temporal delays
and random, impulsive disturbances in this study. Some unique time delay dependent
stability criteria are derived, which guarantee the exponential stability of the trivial solu-
tion. These criteria are based on the Lyapunov –Krasovskii functional (LKF), stochastic
analysis theory, matrix theory, complex analysis theory, and LMIs technique. And the
MATLAB LMI control toolbox makes it simple to verify. Additionally, two numerical
examples are provided to help understand the benefits and relevance of the suggested
research project. The main contributions of this paper are outlined as follows:

1. Impulsive effects, Mixed time-delays, leakage delay and stochastic noises are taken
into account in the stability analysis of CVBAMNNs via exponential sense.

2. In this paper, more general assumptions are equipped for complex-valued activa-
tion functions. Hence our planned work can serve an extensive class of neural
networks.

3. Depend on the contraction mapping theorem, we analyzed the existence and
uniqueness of the trivial solution for the addressed complex-valued BAMNNs.

4. Based on novel Lyapunov –Krasovskii functional, some sufficient conditions for
exponential stability of stochastic BAM-type complex-valued neural networks are
evolving. Furthermore, compared to the existing results, the obtained conclusions
are distinct and advanced.

The rest of the paper is structured as follows. In Section 1, a formulation of the
investigated stochastic complex-valued BAM neural networks model and some prelim-
inary information are presented. Within Section 2, the existence and uniqueness of
the equilibrium point are examined through the application of the contraction mapping
theorem, Lyapunov –Krasovskii functionals, and integral inequality technique. Addi-
tionally, a few time delay-dependent novel conditions are achieved for the exponential
stability of addressing neural networks. The obtained findings are expressed in terms of
LMIs, which are readily confirmed through the use of the MATLAB LMI control tool-
box through two numerical examples. These examples demonstrate the efficacy of the
derived exponential stability criterion in Section 3. In Section 4, conclusions are drawn.

By the above encouraged arguments, we consider the following complex-valued BAM
neural networks (CVBAMNNs) with mixed time delays, leakage time delays and stochas-
tic and impulsive effects as

dz(t) =
[
−Az(t− σ1) +W0f1(z̃(t)) +W1g1(z̃(t− µ1(t))) +W2

∫ t

t−ρ1

h1(z̃(s)) ds

+Î
]
dt+ δ1(z(t− σ1), z̃(t), z̃(t− µ1(t))), t) dω1(t); t ̸= tk, t > 0,

z(t) = Bkhk(z(t
−)) + Cklk(z(t

− − µ1(t
−))) + Īk = Uk(z(t

−
k ), zt−k

); t = tk, k in Z+

dz̃(t) =
[
−Dz̃(t− σ2) + V0f2(z(t)) + V1g2(z(t− µ2(t))) + V2

∫ t

t−ρ2

h2(z(s)) ds
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+J
]
dt+ δ2(z̃(t− σ2), z(t), z(t− µ2(t))), t) dω2(t); t ̸= tk, t > 0,

z̃(t) = Ekmk(z̃(t
−)) +Qkok(z̃(t

− − µ2(t
−))) + J̄k = Yk(z̃(t

−
k ), z̃t−k

); t = tk, k in Z+,

(1)

where z(t) = (z1(t), z2(t), . . . , zn(t))
T ∈ Cn and z̃(t) = (z̃1(t), z̃2(t), . . . , z̃n(t))

T ∈ Cn

denotes the neurons state vectors at time t; f1(·), f2(·), g1(·), g2(·), h1(·), h2(·) are the
neuron activation functions whose elements consist of complex-valued nonlinear func-
tions, where f1(z(t)) = (f11(z(t)), f12(z(t)), . . . , f1n(z(t)))

T ∈ Cn, f2(z̃(t)) = (f21(z̃(t)),
f22(z̃(t)), . . . , f2n(z̃(t)))

T ∈ Cn, g1(z(t−µ1(t))) = (g11(z(t−µ1(t))), g12(z(t−µ1(t))), . . . ,
(g1n(z(t− µ1(t))))

T , g2(z̃(t− µ2(t))) = (g21(z̃(t− µ2(t))), g22(z̃(t− µ2(t))), . . . ,
(g2n(z̃(t − µ2(t))))

T , h1(z(t)) = (h11(z(t)), h12(z(t)), . . . , (h1n(z(t)))
T and h2(z̃(t)) =

(h21(z̃(t)), h22(z̃(t)), . . . , (h2n(z̃(t)))
T all are in Cn; µ1(t)&µ2(t) corresponds to the trans-

mission discrete delays and satisfies 0 ≤ µ1(t) ≤ µ1 and 0 ≤ µ2(t) ≤ µ2, respectively;
µ1, µ2, σ1, σ2, ρ1 and ρ2 are positive constants; A = dia{ai}, D = dia{dj} ∈ Rn×n,
i, j = 1, 2, . . . , n are the self-feedback connection weight matrices, where ai, dj > 0,
i, j = 1, 2, . . . , n; W0, V0 ∈ Cn×n are the connection weight matrices, W1, V1 ∈ Cn×n

represent the discretely delayed connection weight matrices and W2, V2 ∈ Cn×n de-
note the distributively delayed connection weight matrices; Î , J ∈ Cn are the con-
stant input vectors; δ1 : Cn × Cn × Cn × R+ −→ Cn and δ2 : Cn × Cn × Cn ×
R+ −→ Cn denote the stochastic disturbances ω1(t) = (ω11(t), ω12(t), . . . , ω1n(t))

T

and ω2(t) = (ω21(t), ω22(t), . . . , ω2n(t))
T are n-dimensional respective Brownian mo-

tions defined on a complete probability space (A, F ,{Ft}t≥0,P) with a filtration {Ft}t≥0

satisfying the usual conditions (i.e it is right continuous and F0 contains all P-null
sets) and E{dω1(t)} = E{dω2(t)} = 0, E{dω2

1(t)} = E{dω2
2(t)} = dt; Bk, Ck, Ek

and Qk are the impulses gain matrices; Īk and J̄k represents external impulsive con-
stant inputs; hk(z(t

−)) = (hk1(z(t
−)), hk2(z(t

−)), . . . , hkn(z(t
−)))T ∈ Cn, mk(z̃(t

−))
= (mk1

(z̃(t−)),mk2
(z̃(t−)), . . . ,mkn

(z̃(t−)))T ∈ Cn and lk(z(t − µ1(t
−))) = (lk1

(z(t −
µ1(t

−))), lk2
(z(t−µ1(t

−))), . . . , lkn
(z(t−µ1(t

−))))T ∈ Cn, ok(z̃(t−µ2(t
−))) = (ok1

(z̃(t−
µ2(t

−))), ok2
(z̃(t−µ2(t

−))), . . . , okn
(z̃(t−µ2(t

−))))T ∈ Cn be impulsive perturbations; tk
are called impulsive moments and satisfies 0 ≤ t1 < t2 < . . . , limk→+∞ tk = +∞, z(t+k )
= limt→t+k

z(t), z(t−k ) = limt→t−k
z(t) and z̃(t+k ) = limt→t+k

z̃(t), z̃(t−k ) = limt→t−k
z̃(t).

Without loss of generality, we assume that limt→t+k
z(t) = z(tk) and limt→t+k

z̃(t) =

z̃(tk), which means that the solution of (1) is right continuous at time tk.

The initial conditions of complex-valued BAM neural networks (1) are given by

z(s) = ϕ(s), s ∈ [t0 − µ1, t0],

z̃(s) = ψ(s), s ∈ [t0 − µ2, t0], (2)

where ϕ(s) and ψ(s) ∈ Cn are continuous in [t0 − µ1, t0] and [t0 − µ2, t0], respectively.

Throughout this paper, we make the following assumptions:
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Assumption 1 If (z∗, z̃∗) is an equilibrium point of neural networks (1), then the
impulsive jumps of (1) satisfy the following condition

(z∗, z̃∗) = Bkhk(z
∗) + Cklk(z

∗) + Ekmk(z̃
∗) +Qkok(z̃

∗) + T̂ , k ∈ Z+, T̂ = Ik + Jk.

(3)

Assumption 2 The neuron activation functions f1(·), g1(·) and h1(·) satisfy the Lip-
schitz continuity condition in the complex domain, i. e., there exist a positive diago-
nal matrices F1 = diag(F11, F12, . . . , F1n), G1 = diag(G11, G12, . . . , G1n) and H1 =
diag(H11, H12, . . . ,H1n) such that

∥f1i(u1)− f1i(u2)∥ ≤ F1i|u1 − u2|,
∥G1i(v1)−G1i(v2)∥ ≤ G1i|v1 − v2|,

&∥H1i(w1)−H1i(w2)∥ ≤ H1i|w1 − w2|,∀u1, u2, v1, v2, w1, w2 ∈ C, i = 1, 2, . . . , n.

Similarly, f2(·), g2(·) and h2(·) are also satisfying the above conditions in a similar way.

Assumption 3 Uk(·), Yk(·) : Cn×Cn −→ Cn, k ∈ Z+, are some continuous functions.

Assumption 4 There exist some positive diagonal matrices Hk = diag(Hk1 , Hk2 , . . . ,
Hkn), Lk = diag(Lk1 , Lk2 , . . . , Lkn), Mk = diag(Mk1 , Mk2 , . . . , Mkn) and Ok =
diag(Ok1

, Ok2
, . . . , Okn

) such that

|hki(u1) − hki(u2)| ≤ Hki
|u1 − u2|,

|lki(u1) − lki(u2)| ≤ Lki
|u1 − u2|,

|mkj(v1) −mkj(v2)| ≤ Mkj
|v1 − v2|,

|okj(v1) − okj(v2)| ≤ Okj
|v1 − v2|, ∀u1, u2, v1, v2 ∈ C, i, j = 1, 2, . . . , n, k ∈ Z+.

Assumption 5 (Li et al. [22]) The noise intensity function matrices δ1(x(t−σ1), y(t), y(t−
µ1(t))) & δ2(y(t− σ2), x(t), x(t− µ2(t))), i ∈ N in (1) satisfies

trace
[
δT1 (x(t− σ1), y(t), y(t− µ1(t)))Sδ1(x(t− σ1), y(t), y(t− µ1(t)))

]
≤ xT (t− σ1)R1x(t− σ1) + yT (t)R2y(t) + yT (t− µ1(t))R3y(t− µ1(t)).

trace
[
δT2 (y(t− σ2), x(t), x(t− µ2(t)))Tδ2(y(t− σ2), x(t), x(t− µ2(t)))

]
≤ yT (t− σ2)R̂1y(t− σ2) + xT (t)R̂2x(t) + xT (t− µ2(t))R̂3x(t− µ2(t)).

for all x(·) and y(·) ∈ Rn, where R1, R2, R3, R̂1, R̂2, & R̂3, are positive definite matrices
with appropriate dimensions.

Remark 1.1 It should be pointed out that the assumptions on neurons activation func-
tions are weaker, when compared with those generally used in the literature. Specifically,
the differentiability and boundedness of the activation functions are not mandatory in
this manuscript.
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Remark 1.2 Assuming that the activation functions in [28, 60] may be represented
by dividing their real and imaginary components, the writers talked about how stable
CVNNs with delays would be. Alternatively, the obtained stability criteria cannot be
applied if the activation functions in [12, 59] cannot be revealed by the separation of
their real and imaginary components. Therefore, regardless of whether the activation
function in this paper can separate, the stability requirement provided for complex-
valued stochastic BAMNNs is valid.

Before ending this section, we introduce some definition and lemmas, which will play
an important role in the derivation of the main results below.

Definition 1.3 (Zhang et al. [57]) Exponentially stable
The equilibrium point of neural networks (1) is said to be exponentially stable, if

there exists constants M > 0 and η > 0 such that for t ≥ 0

∥x(t)∥2 + ∥y(t)∥2 ≤Me−ηt,

where ∥.∥ denotes the Euclidean norm.

Lemma 1.4 (Park and Kwon [35]) Let a, b ∈ Cn and G ∈ Cn×n be a positive definite
Hermitian matrix, then

aT b+ abT ≤ aTG−1a+ bTGb.

Lemma 1.5 (Gi [8]) For any constant symmetric positive-definite matrix M ∈ Rn×n

with appropriate dimension, a scalar η > 0 and the vector function ω(·) : [α, β] → Rn,
the integrations in the following are well defined, then[∫ β

α

ω(s) ds

]T
M

[∫ β

α

ω(s) ds

]
≤ (β − α)

∫ β

α

ωT (s)Mω(s) ds.

Lemma 1.6 (Park and Kwon [35]) A given matrix L =
[

L11 L12

L21 L22

]
> 0, where

LT
11 = L11, L

T
22 = L22, is equivalent to any one of the following conditions:

(i) L22 > 0, L11 − L12L
T
22L

T
12 > 0;

(ii) L11 > 0, L22 − LT
12L

−1
11 L12 > 0.

Remark 1.7 The neural networks (1) is more advanced than the existing works in the
available literature, see for instance [3, 52, 56]. Hence our research work is distinct from
previous ones in the sense of novelty.

2. EXPONENTIAL STABILITY FOR DETERMINISTIC SYSTEMS

In this section, we investigate the existence, uniqueness and also the exponential stability
of the equilibrium point of complex-valued stochastic impulsive BAM neural networks
with delay components.
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Theorem 2.1 Under the Assumptions 1 –,4, the solution (z, z̃) = (z(t, 0, ϕ), z̃(t, 0, ψ))
of CVBAMNNs (1) – (2) uniquely exists on [−ϱ,∞)× [−ϱ,∞).

P r o o f .
Let us start the proof now. For u and v ∈ C([0, t1], Cn), set

∥u∥∗ = max
t∈[0,t1]

{
e−ω̃1t max

s∈[0,t]
{∥u(s)∥}

}
,

∥v∥∗ = max
t∈[0,t1]

{
e−ω̃2t max

s∈[0,t]
{∥v(s)∥}

}
,

where

ω̃1 =

√√√√ n∑
j=1

d2j + F1

√
n

{√√√√ n∑
i=1

n∑
j=1

w2
0ij

}
+G1

√
n

{√√√√ n∑
i=1

n∑
j=1

w2
1ij

}
+ 1,

ω̃2 =

√√√√ n∑
i=1

a2i + F2

√
n

{√√√√ n∑
i=1

n∑
j=1

v20ij

}
+G2

√
n

{√√√√ n∑
i=1

n∑
j=1

v21ij

}
+ 1. (4)

And then it is easy to see that C([0, t1], Cn) is a Banach space endowed with the norm
∥.∥∗. For any (u,v) ∈ C([0, t1], Cn) × C([0, t1], Cn) define an integral operator J1 by

(J1(u, v))(t) = ϕ(0) +

∫ t

0

{
−Au(s− σ1) +W0f1(v(s)) +W1g1(v(s− µ1(s))) +W2

×
∫ t

t−ρ1

h1(v(s)) ds+ Î
}
ds+ ψ(0) +

∫ t

0

{
−Dv(s− σ2) + V0f2(u(s))

+V1g2(u(s− µ2(s))) + V2

∫ t

t−ρ2

h2(u(s)) ds+ J
}
ds, t ∈ [0, t1]; (5)

where u(s) = ϕ(s) & v(s) = ψ(s), s ∈ [−ϱ, 0].
It is obviously to see that J1 maps C([0, t1], Cn) × C([0, t1], Cn) into C([0, t1], Cn)

× C([0, t1], Cn).
From excellence of Assumptions 1 – 4 and the properties of the Euclidean norm, for any
(u,v), (ũ, ṽ) ∈ C([0, t1], Cn) × C([0, t1], Cn), where

(u(t), v(t)) = (u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . , vn(t))
T .

(ũ(t), ṽ(t)) = (ũ1(t), ũ2(t), . . . , ũn(t), ṽ1(t), ṽ2(t), . . . , ṽn(t))
T .

∥(J1(u, v))(t) −(J1(ũ, ṽ))(t)∥

= ∥ −
∫ t

0

A[u(s− σ1)− ũ(s− σ1)] ds+

∫ t

0

W0[f1(v(s))− f1(ṽ(s))] ds

+

∫ t

0

W1[g1(v(s− µ1(s)))− g1(ṽ(s− µ1(s)))] ds+

∫ t

0

W2
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×
∫ t

t−ρ1

h1(v(s))− h1(ṽ(s)) dsdt∥+ ∥ −
∫ t

0

D[v(s− σ2)− ṽ(s

−σ2)] ds+
∫ t

0

V0[f2(u(s))− f2(ũ(s))] ds+

∫ t

0

V1[g2(u(s− µ2(s)))

−g2(ũ(s− µ2(s)))] ds+

∫ t

0

V2

∫ t

t−ρ2

h2(u(s))− h2(ũ(s)) dsdt∥

≤
∫ t

0

∥A[u(s− σ1)− ũ(s− σ1)]∥ ds+
∫ t

0

∥W0[f1(v(s))− f1(ṽ(s))]∥ ds

+

∫ t

0

∥W1[g1(v(s− µ1(s)))− g1(ṽ(s− µ1(s)))]∥ ds+
∫ t

0

∥W2

×
∫ t

t−ρ1

h1(v(s))− h1(ṽ(s)) ds∥dt+
∫ t

0

∥D[v(s− σ2)− ṽ(s− σ2)]∥

×ds+

∫ t

0

∥V0[f2(u(s))− f2(ũ(s))]∥ds+
∫ t

0

∥V1[g2(u(s− µ2(s)))

−g2(ũ(s− µ2(s)))]∥ ds+
∫ t

0

∥V2
∫ t

t−ρ2

h2(u(s))− h2(ũ(s)) ds∥dt

≤

√√√√ n∑
i=1

a2i

∫ t

0

∥[u(s− σ1)− ũ(s− σ1)]∥ ds+ F1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
0ij

×
∫ t

0

∥v(s)− ṽ(s)∥ds+G1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
1ij

∫ t

0

∥v(s− µ1(s))

−ṽ(s− µ1(s))∥ ds+H1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
2ij

∫ t

0

[∥
∫ t

t−ρ1

[v(s)− ṽ(s)]∥

×ds]dt+

√√√√ n∑
j=1

d2j

∫ t

0

∥[v(s− σ2)− ṽ(s− σ2)]∥ ds+ F2

√
n

×

√√√√ n∑
i=1

n∑
j=1

v20ij

∫ t

0

∥u(s)− ũ(s)∥ds+G2

√
n

√√√√ n∑
i=1

n∑
j=1

v21ij

∫ t

0

∥u(s

−µ2(s))− ũ(s− µ2(s))∥ ds+H2

√
n

√√√√ n∑
i=1

n∑
j=1

v22ij

∫ t

0

[∥
∫ t

t−ρ2

[u(s)

−ũ(s)]∥ ds]dt. (6)

Now ∫ t

t−ρ1

∥[v(s)− ṽ(s)]∥ ds ≤ ∥(v(t)− ṽ(t))− (v(t− ρ1)− ṽ(t− ρ1))∥

≤ ∥(v(t)− ṽ(t))∥ − ∥v(t− ρ1)− ṽ(t− ρ1)∥, (7)
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and

∫ t

t−ρ2

∥[u(s)− ũ(s)]∥ ds ≤ ∥(u(t)− ũ(t))− (u(t− ρ2)− ũ(t− ρ2))∥

≤ ∥(u(t)− ũ(t))∥ − ∥u(t− ρ2)− ũ(t− ρ2)∥. (8)

Substitute (7) and (8) in (6), we have
∥(J1(u, v))(t) −(J1(ũ, ṽ))(t)∥

≤

√√√√ n∑
i=1

a2i

∫ t

0

max
r∈[0,s]

∥u(r)− ũ(r)∥ds+ F1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
0ij

×
∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds+G1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
1ij

×
∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds+H1

√
n

√√√√ n∑
i=1

n∑
j=1

w2
2ij

×
[ ∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds−
∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds
]

+

√√√√ n∑
j=1

d2j

∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds+ F2

√
n

√√√√ n∑
i=1

n∑
j=1

v20ij

×
∫ t

0

max
r∈[0,s]

∥u(r)− ũ(r)∥ ds+G2

√
n

√√√√ n∑
i=1

n∑
j=1

v21ij

×
∫ t

0

max
r∈[0,s]

∥u(r)− ũ(r)∥ ds+H2

√
n

√√√√ n∑
i=1

n∑
j=1

v22ij

×
[ ∫ t

0

max
r∈[0,s]

∥u(r)− ũ(r)∥ ds−
∫ t

0

max
r∈[0,s]

∥u(r)− ũ(r)∥ ds
]

= (ω̃1 − 1)

∫ t

0

max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds+ (ω̃2 − 1)

∫ t

0

max
r∈[0,s]

∥u(r)

−ũ(r)∥ ds

= (ω̃1 − 1)

∫ t

0

eω̃1se−ω̃1s max
r∈[0,s]

∥v(r)− ṽ(r)∥ ds+ (ω̃2 − 1)

∫ t

0

eω̃2s

×e−ω̃2s max
r∈[0,s]

∥u(r)− ũ(r)∥ ds

≤ (ω̃1 − 1)

∫ t

0

eω̃1s max
s∈[0,t1]

{
e−ω̃1s max

r∈[0,s]
∥v(r)− ṽ(r)∥

}
ds+ (ω̃2 − 1)

×
∫ t

0

eω̃2s max
s∈[0,t1]

{
e−ω̃2s max

r∈[0,s]
∥u(r)− ũ(r)∥

}
ds
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= (ω̃1 − 1)

∫ t

0

eω̃1s ds∥v − ṽ∥∗ + (ω̃2 − 1)

∫ t

0

eω̃2s ds∥u− ũ∥∗

≤ ω̃1 − 1

ω̃1
eω̃1t∥v − ṽ∥∗ + ω̃2 − 1

ω̃2
eω̃2t∥u− ũ∥∗, (9)

which implies that,

max
s∈[0,t]

{∥(J1(u, v))(s)− (J1(ũ, ṽ))(s)∥} ≤ max
s∈[0,t]

{
ω̃1 − 1

ω̃1
eω̃1s∥v − ṽ∥∗ + ω̃2 − 1

ω̃2

×eω̃2s∥u− ũ∥∗
}

≤ ω̃1 − 1

ω̃1
eω̃1t∥v − ṽ∥∗ + ω̃2 − 1

ω̃2
eω̃2t∥u− ũ∥∗.

(10)

Put ω̂ = max{ω̃1, ω̃2}, then (10) becomes

max
s∈[0,t]

{∥(J1(u, v))(s)− (J1(ũ, ṽ))(s)∥} ≤ ω̂ − 1

ω̂
eω̂t{∥v − ṽ∥∗ + ∥u− ũ∥∗}.

It follows that

e−ω̂t max
s∈[0,t]

{∥(J1(u, v))(s)− (J1(ũ, ṽ))(s)∥} ≤ ω̂ − 1

ω̂
{∥v − ṽ∥∗ + ∥u− ũ∥∗}.

Therefore, we obtain

∥(J1(u, v))(s)− (J1(ũ, ṽ))(s)∥∗ ≤ ω̂ − 1

ω̂
{∥v − ṽ∥∗ + ∥u− ũ∥∗},

for any (u, v) & (ũ, ṽ) ∈ C([0, t1,Cn]) × C([0, t1,Cn]).

By using the contraction mapping theorem, we know that there exists a unique fixed
point (u∗1, v

∗
1) ∈ C([0, t1,Cn]) × C([0, t1,Cn]) such that J1(u

∗
1, v

∗
1) = (u∗1, v

∗
1). Hence, we

get that (u∗1(t1), v
∗
1(t1)) exists finitely. This implies that Bkhk(u

∗
1(t1)) +Cklk(u

∗
1(t1 −

µ1(t1))) + Ekmk(v
∗
1(t1)) + Qkok(v

∗
1(t1 − µ2(t1))) + T̂ also exists finitely, since As-

sumption 3 holds. Then we replace (u∗1(t1), v
∗
1(t1)) with Bkhk(u

∗
1(t1)) + Cklk(u

∗
1(t1 −

µ1(t1))) + Ekmk(v
∗
1(t1)) + Qkok(v

∗
1(t1 − µ2(t1))) + T̂ and define ζ1 = Bkhk(u

∗
1(t1)) +

Cklk(u
∗
1(t1 − µ1(t1))) + Ekmk(v

∗
1(t1)) + Qkok(v

∗
1(t1 − µ2(t1))) + T̂ for later use.

For u, v ∈ C([t1, t2],Cn), set

∥u∥∗ = max
t∈[t1,t2]

{
e−ω̃1(t−t1) max

s∈[t1,t]
{∥u(s)∥}

}
,

∥v∥∗ = max
t∈[t1,t2]

{
e−ω̃2t max

s∈[t1,t]
{∥v(s)∥}

}
,
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where ω̃1, ω̃2 is defined in (4), Clearly, C([t1, t2],Cn) is also a Banach space endowed
with the norm ∥.∥∗. For any (u, v) ∈ C([t1, t2],Cn) × C([t1, t2],Cn), define the integral
operator J2 by,

(J2(u, v))(t) = ζ1 +

∫ t

t1

{
−Au(s− σ1) +W0f1(v(s)) +W1g1(v(s− µ1(s))) +W2

×
∫ t

t−ρ1

h1(v(s)) ds+ Î
}
ds+

∫ t

t1

{
−Dv(s− σ2) + V0f2(u(s)) + V1

×g2(u(s− µ2(s))) + V2

∫ t

t−ρ2

h2(u(s)) ds+ J
}
ds, for t ∈ [t1, t2];

(11)

where

u(s) =

{
ϕ(s), s ∈ [−ϱ, 0],
u∗1(s), s ∈ [0, t1).

& v(s) =

{
ψ(s), s ∈ [−ϱ, 0],
v∗1(s), s ∈ [0, t1).

It follows from the above definition, we see that J2 maps C([t1, t2],Cn)×C([t1, t2],Cn)
into C([t1, t2],Cn)
× C([t1, t2],Cn). Similarly, it can be proved that

∥(J2(u, v))(s)− (J2(ũ, ṽ))(s)∥∗ ≤ ω̂ − 1

ω̂
{∥u− ũ∥∗ + ∥v − ṽ∥∗}, (12)

for any (u, v) & (ũ, ṽ) ∈ C([t1, t2],Cn) × C([t1, t2],Cn). Again using the contraction map-
ping theorem, we obtain that there exists a unique fixed point (u∗2, v

∗
2) ∈ C([t1, t2],Cn)×

C([t1, t2],Cn) such that J2(u
∗
2, v

∗
2) = (u∗2, v

∗
2).

Moreover, we know that (u∗2(t2), v
∗
2(t2)) exists finitely, which implies thatBkhk(u

∗
2(t2))

+ Cklk(u
∗
2(t2−µ1(t2))) + Ekmk(v

∗
2(t2)) +Qkok(v

∗
2(t2−µ2(t2))) + T̂ also exists finitely, in

view of Assumption 3. Then we replace (u∗2(t2), v
∗
2(t2)) withBkhk(u

∗
2(t2)) + Cklk(u

∗
2(t2−

µ1(t2))) + Ekmk(v
∗
2(t2)) + Qkok(v

∗
2(t2 − µ2(t2))) + T̂ and define ζ2 = Bkhk(u

∗
2(t2)) +

Cklk(u
∗
2(t2 − µ1(t2))) + Ekmk(v

∗
2(t2)) + Qkok(v

∗
2(t2 − µ2(t2))) + T̂ for later use.

With analogous arguments, one may deduce that C([tp−1, tp],Cn), p ∈ Z+, is a
Banach space endowed with a similar norm, ∥.∥∗. Furthermore, the operator Jp which
maps C([tp−1, tp],Cn) × C([tp−1, tp],Cn) into C([tp−1, tp],Cn) × C([tp−1, tp],Cn) has a
unique fixed point. (u∗p, v

∗
p) ∈ C([tp−1, tp], Cn) × C([tp−1, tp],Cn) such that Jp(u

∗
p, v

∗
p)

= (u∗p, v
∗
p), where

(Jp(u, v))(t) = ζp−1 +

∫ t

tp−1

{
−Au(s− σ1) +W0f1(v(s)) +W1g1(v(s− µ1(s))) +W2

×
∫ t

t−ρ1

h1(v(s)) ds+ Î
}
ds+

∫ t

tp−1

{
−Dv(s− σ2) + V0f2(u(s)) + V1

×g2(u(s− µ2(s))) + V2

∫ t

t−ρ2

h2(u(s)) ds+ J
}
ds, for t ∈ [tp−1, tp];

‘ (13)
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in which ζp−1 =Bkhk(u
∗
p−1(tp−1)) + Cklk(u

∗
p−1(tp−1−µ1(tp−1))) + Ik + Ekmk(v

∗
p−1(tp−1))

+ Qk ok(v
∗
p−1(tp−1 − µ2(tp−1))) + Jk and

u(s) =


ϕ(s), s ∈ [−ϱ, 0],
u∗1(s), s ∈ [0, t1).
...

u∗p−1(s), s ∈ [tp−2, tp−1).

and

v(s) =


ψ(s), s ∈ [−ϱ, 0],
v∗1(s), s ∈ [0, t1).
...

v∗p−1(s), s ∈ [tp−2, tp−1).

In view of impulsive properties, we finally define

u(t) =



ϕ(t), t ∈ [−ϱ, 0],
u∗1(t), t ∈ [0, t1).
...

u∗n(t), t ∈ [tn−1, tn), n ∈ Z+.
...

and

v(t) =



ψ(t), t ∈ [−ϱ, 0],
v∗1(t), t ∈ [0, t1).
...

v∗n(t), t ∈ [tn−1, tn), n ∈ Z+

...

Thus, it is easy to verify that (u(t), v(t)) = (u(t, 0, ϕ), v(t, 0, ψ)) is the unique solution
of neural networks (1) – (2) defined on [−ϱ,∞) × [−ϱ,∞). The proof of this theorem is
completed. □

Remark 2.2 The impulsive impacts on complex-valued NNs for stability requirements
were examined by the authors in [37]. The stability performance of time-delayed CVNNs
in the sense of exponential was covered by X. Liu and T. Chen in [28]. The problem
of exponential stability for complex-valued neural networks is only addressed in the
aforementioned references with discrete time delays and impulsive effects; BAM-type,
complex variables, leakage delays, distributed time delays, impulsive effects, and stochas-
tic noise have not been considered, nor have any studies looked into exponentially stable
at a time. As a result, this work takes a very demanding and advanced approach to
considering the facts mentioned above.
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Theorem 2.3 Assume that Assumptions 1 – 5 holds. The equilibrium point of the
system (1) – (2) is exponentially stable if, for given η, η̃ > 0, there exists positive definite

Hermitian matrices S, T, P1, P2, Q1, Q2, positive diagonal matrices R, E, F, F̃ and
positive scalars η∗, λ, µ, µ1 and µ2 such that the LMIs are satisfied as follows:

S < λ I, (14)

T < µ I, (15)

KT
1 SK1 − S ≤ 0, (16)

K̂T
1 TK̂1 − T ≤ 0, (17)

Ω =



Ω11 SW0 0 0 Ω15 0 0 0 0 0
∗ −L1 0 0 Ω25 0 0 0 0 0
∗ ∗ Ω33 0 0 0 0 0 0 0
∗ ∗ ∗ Ω44 Ω45 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 Ω56 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω1010


10×10

< 0, (18)

Ξ =



Ξ11 TV0 0 0 Ξ15 0 0 0 0 0
∗ −L2 0 0 Ξ25 0 0 0 0 0
∗ ∗ Ξ33 0 0 0 0 0 0 0
∗ ∗ ∗ Ξ44 Ξ45 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ1010


10×10

< 0, (19)

where

Ω11 = −SA−ATS + SW1R
−1WT

1 S + SW2R̂
−1WT

2 S + µR̂2, Ω33 = G1RG1 + λR3,

Ω15 = ATSA− ηSA, Ω25 = −ATSW0, Ω56 = −ATSW1, Ω45 = −ATSW2,

Ω77 = λR1, Ω55 = ηATSA, Ω99 = e−ηt(LT
1 FL1) + λR2, Ω44 = R̂− e−ηρ1Q1,

Ω88 = P1 − e−ηtF, Ω66 = (1− µ1)e
−ηµ1P1, Ξ77 = µR̂1, Ξ25 = −DTTV0,

Ξ11 = −TD −DTT + TV1E
−1V T

1 T + TV2Ê
−1V T

2 T + λR2, Ξ33 = G2EG2 + µR̂3,

Ξ15 = DTTD − η̃TD, Ξ88 = P2 − e−η̃tF̃ , Ξ44 = Ê − e−η̃ρ2Q2, Ξ55 = η̃DTTD,

Ξ99 = e−η̃t(LT
2 F̃L2) + µR̂2, Ξ1010 = ρ22Q2, Ω1010 = ρ21Q1, Ξ45 = −DTTV2,

Ξ56 = −DTTV1, Ξ66 = (1− µ2)e
−η̃µ2P2.
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P r o o f . Let (z∗, z̃∗) be an equilibrium point of CVBAMNNs (1). Next, we transform

the equilibrium (z∗, z̃∗) to the origin by taking x(t) = z(t) − z∗, y(t) = z̃(t) − z̃∗.
Subsequently, the system (1) can be rewritten as

dx(t) =
[
−Ax(t− σ1) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t))) +W2

∫ t

t−ρ1

h̄1(y(s)) ds
]

×dt+ δ̄1(x(t− σ1), y(t), y(t− µ1(t))), t)dω1(t); t > 0, t ̸= tk,

x(t) = Bkβk(x(t
−)) + Ckγk(x(t

− − µ1(t
−))) = U∗

k (x(t
−
k ), xt−k

); t = tk, k ∈ Z+.

dy(t) =
[
−Dy(t− σ2) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t))) + V2

∫ t

t−ρ2

h̄2(x(s)) ds
]

×dt+ δ̄2(y(t− σ2), x(t), x(t− µ2(t))), t)dω2(t); t > 0, t ̸= tk,

y(t) = Ekβ̂k(y(t
−)) +Qkγ̂k(y(t

− − µ2(t
−))) = Y ∗

k (y(t
−
k ), yt−k

); t = tk, k ∈ Z+(20)

where f̄1(y(t)) = f1(z̃(t) + z̃∗) − f1(z̃
∗), f̄2(x(t)) = f2(z(t) + z∗) − f2(z

∗),
ḡ1(y(t − µ1(t))) = g1(z̃(t − µ1(t)) + z̃∗) − g1(z̃

∗), ḡ2(x(t − µ2(t))) = g2(z(t − µ2(t)) +
z∗) − g2(z(t − µ2(t))

∗), h̄1(y(t)) = h1(z̃(t) + z̃∗) − h1(z̃
∗), h̄2(x(t)) = h2(z(t) + z∗) −

h2(z
∗), δ̄1(x(t − σ1), y(t), y(t−µ1(t))), t) = δ1(x(t − σ1) + z∗, y(t) + z̃∗, y(t−µ1(t)) +

z̃∗, t) − δ1(z
∗, z̃∗, Z̃∗, t), δ̄2(y(t − σ2), x(t), x(t−µ2(t))), t) = δ2(y(t −σ2) + z̃∗, x(t) + z∗,

x(t− µ2(t)) + z∗, t) − δ2(z̃
∗, z∗, Z∗, t), βk(x(t

−)) = hk(x(t
−) + z∗) − hk(z

∗), β̂k(y(t
−)

= mk(y(t
−) + z̃∗) −mk(z̃

∗), γk(x(t
− −µ1(t

−))) = lk(x(t
− − µ1(t

−)) + z∗) − lk(z
∗),

γ̂k(y(t
− −µ2(t

−))) = ok(y(t
− − µ2(t

−)) + z̃∗) −ok(z̃∗).

Also, the initial condition combined with neural networks (20) is given by

x(s) = ϕ(s)− z∗ and y(s) = ψ(s)− z̃∗, s ∈ [t0 − µ, t0], (21)

Construct a Lyapunov –Krasovskii functional candidate for model (20) as

V (x(t), y(t), t) =

3∑
l=1

Vl(x(t), y(t), t), (22)

where

V1(x(t), y(t), t) = eηt
[
x(t)−A

∫ t

t−σ1

x(s) ds
]T
S
[
x(t)−A

∫ t

t−σ1

x(s) ds
]
+ eη̃t

[
y(t)−D

×
∫ t

t−σ2

y(s) ds
]T
T
[
y(t)−D

∫ t

t−σ2

y(s) ds
]
h̄2(x(s))

V2(x(t), y(t), t) =

∫ t

t−µ1(t)

eηsḡT1 (y(s))P1ḡ1(y(s)) ds+

∫ t

t−µ2(t)

eη̃sḡT2 (x(s))P2ḡ2(x(s)) ds

V3(x(t), y(t), t) = ρ1

∫ 0

−ρ1

∫ t

t+α

eηsh̄T1 (y(s))Q1h̄1(y(s)) dsdα+ ρ2

∫ 0

−ρ2

∫ t

t+β

eη̃sh̄T2 (x(s))

×Q2h̄2(x(s)) dsdβ.
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From Assumption 5 and the conditions (14) and (15), we have

trace
[
δ̄T1 (x(t− σ1), y(t), y(t− µ1(t)))Sδ̄1(x(t− σ1), y(t), y(t− µ1(t)))

]
≤ λ

[
xT (t− σ1)R1x(t− σ1) + yT (t)R2y(t) + yT (t− µ1(t))R3y(t− µ1(t))

]
.

trace
[
δ̄T2 (y(t− σ2), x(t), x(t− µ2(t)))T δ̄2(y(t− σ2), x(t), x(t− µ2(t)))

]
≤ µ

[
yT (t− σ2)R̂1y(t− σ2) + xT (t)R̂2x(t) + xT (t− µ2(t))R̂3x(t− µ2(t))

]
.

It is easy to prove that NNs (20) is equivalent to the following forms

d
[
x(t)−A

∫ t

t−σ1

x(s) ds
]

=
[
−Ax(t) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t)))

+W2

∫ t

t−σ1

h̄1(y(s))

×ds
]
dt+ δ̄1(x(t− σ1), y(t), y(t− µ1(t)), t)dω̄1(t),

d
[
y(t)−D

∫ t

t−σ2

y(s) ds
]

=
[
−Dy(t) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t)))

+V2

∫ t

t−σ2

h̄2(x(s))

×ds
]
dt+ δ̄2(y(t− σ2), x(t), x(t− µ2(t)), t) dω̄2(t).

Now, we consider the case of t ̸= tk. Calculating the derivative of V(t) along the solutions
of (20), we obtain from Lemma 1.4 that LV1(x(t), y(t), t)

= ηeηt
[
x(t)−A

∫ t

t−σ1

x(s) ds
]T
S
[
x(t)−A

∫ t

t−σ1

x(s) ds
]
+ eηt

{
2
[
x(t)−A

×
∫ t

t−σ1

x(s) ds
]T
Sd
[
x(t)−A

∫ t

t−σ1

x(s) ds
]
+ trace

[
δ̄T1 (x(t− σ1), y(t),

y(t− µ1(t)), t)Sδ̄1(x(t− σ1), y(t), y(t− µ1(t)), t)
]}

+ η̃eη̃t
[
y(t)−D

×
∫ t

t−σ2

y(s) ds
]T
T
[
y(t)−D

∫ t

t−σ2

y(s) ds
]
+ eη̃t

{
2
[
y(t)−D

∫ t

t−σ2

y(s) ds
]T

×Td
[
y(t)−D

∫ t

t−σ2

y(s) ds
]
+ trace

[
δ̄T2 (y(t− σ2), x(t), x(t− µ2(t)), t)

×T δ̄2(y(t− σ2), x(t), x(t− µ2(t)), t)
]}
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≤ ηeηt

[
xT (t)Sx(t)− xT (t)SA

∫ t

t−σ1

x(s) ds−ATS
(∫ t

t−σ1

x(s) ds
)T
x(t)

+
(∫ t

t−σ1

x(s) ds
)T
ATSA

(∫ t

t−σ1

x(s) ds
)]

+ eηt

{
2
[
x(t)−A

∫ t

t−σ1

x(s)

×ds
]T
S
[
−Ax(t) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t))) +W2

∫ t

t−ρ1

h̄1(y(s))

×ds
]
+ λ[xT (t− σ1)R1x(t− σ1) + yT (t)R2y(t) + yT (t− µ1(t))R3

×y(t− µ1(t))]

}
+ η̃eη̃t

[
yT (t)Ty(t)− yT (t)TD

∫ t

t−σ1

y(s) ds−DTT

×
(∫ t

t−σ2

y(s) ds
)T
y(t) +

(∫ t

t−σ2

y(s) ds
)T
DTTD

(∫ t

t−σ2

y(s) ds
)]

+ eη̃t

{
2

×
[
y(t)−D

∫ t

t−σ2

y(s) ds
]T
T
[
−Dy(t) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t)))

+V2

∫ t

t−ρ2

h̄2(x(s)) ds
]
+ µ[yT (t− σ2)R̂1y(t− σ2) + xT (t)R̂2x(t)

+xT (t− µ2(t))R̂3x(t− µ2(t))]

}

≤ ηeηt

[
xT (t)Sx(t)− xT (t)SA

∫ t

t−σ1

x(s) ds−ATS
(∫ t

t−σ1

x(s) ds
)T
x(t)

+
(∫ t

t−σ1

x(s) ds
)T
ATSA

(∫ t

t−σ1

x(s) ds
)]

+ eηt

{
− 2xT (t)SAx(t) + 2xT (t)

×SW0f̄1(y(t)) + 2W1x
T (t)Sḡ1(y(t− µ1(t))) + 2xT (t)SW2

∫ t

t−ρ1

h̄1(y(s))

×ds+ 2AT
(∫ t

t−σ1

x(s) ds
)T
SAx(t)− 2AT

(∫ t

t−σ1

x(s) ds
)T
SW0f̄1(y(t))

−2AT
(∫ t

t−σ1

x(s) ds
)T
SW1ḡ1(y(t− µ1(t)))− 2AT

(∫ t

t−σ1

x(s) ds
)T

×SW2

(∫ t

t−ρ1

h̄1(y(s)) ds
)
+ λ[xT (t− σ1)R1x(t− σ1) + yT (t)R2y(t)

+yT (t− µ1(t))R3y(t− µ1(t))]

}
+ η̃eη̃t

[
yT (t)Ty(t)− yT (t)TD

∫ t

t−σ2

y(s)

×ds−DTT
(∫ t

t−σ2

y(s) ds
)T
y(t) +

(∫ t

t−σ2

y(s) ds
)T
DTTD

(∫ t

t−σ2

y(s) ds
)]
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+eη̃t

{
− 2yT (t)TDy(t) + 2yT (t)TV0f̄2(x(t)) + 2V1y

T (t)T ḡ2(x(t− µ2(t)))

+2yT (t)TV2

∫ t

t−ρ2

h̄2(x(s)) ds+ 2DT
(∫ t

t−σ2

y(s) ds
)T
TDy(t)− 2DT

×
(∫ t

t−σ2

y(s) ds
)T
TV0f̄2(x(t))− 2DT

(∫ t

t−σ2

(s) ds
)T
TV1ḡ2(x(t− µ2(t)))

−2DT
(∫ t

t−σ2

y(s) ds
)T
TV2

(∫ t

t−ρ2

h̄2(x(s)) ds
)
+ µ[yT (t− σ2)R̂1y(t− σ2)

+xT (t)R̂2x(t) + xT (t− µ2(t))R̂3x(t− µ2(t))]

}

≤ ηeηt

[
xT (t)Sx(t)− xT (t)SA

∫ t

t−σ1

x(s) ds−ATS
(∫ t

t−σ1

x(s) ds
)T
x(t)

+
(∫ t

t−σ1

x(s) ds
)T
ATSA

(∫ t

t−σ1

x(s) ds
)]

+ eηt

[
xT (t)(−SA−ATS)x(t)

+xTSW0f̄1(y(t)) + f̄T1 (y(t))SWT
0 x(t) + ḡT1 (y(t− µ1(t)))Rḡ1(y(t− µ1(t)))

+xT (t)(SW2R̂
−1WT

2 S)x(t) +
(∫ t

t−ρ1

h̄1(y(s))ds
)T
R̂
(∫ t

t−ρ1

h̄1(y(s)) ds
)

+2AT
(∫ t

t−σ1

x(s) ds
)T
SAx(t)− 2AT

(∫ t

t−σ1

x(s) ds
)T
SW0f̄1(y(t))− 2AT

×
(∫ t

t−σ1

x(s) ds
)
SW1ḡ1(y(t− µ1(t)))− 2AT

(∫ t

t−σ1

x(s) ds
)T
SW2

×
(∫ t

t−ρ1

h̄1(y(s)) ds
)
+ xT (t− σ1)λR1x(t− σ1) + yT (t)λR2y(t)

+yT (t− µ1(t))λR3y(t− µ1(t))

]
+ eη̃t

[
yT (t)Ty(t)− yT (t)TD

∫ t

t−σ2

y(s) ds

−DTT
(∫ t

t−σ2

y(s) ds
)T
y(t) +

(∫ t

t−σ2

y(s) ds
)T
DTTD

(∫ t

t−σ2

y(s) ds
)]

+ eη̃t

×

[
yT (t)(−TD −DTT )y(t) + yTTV0f̄2(x(t)) + f̄T2 (x(t))TV T

0 y(t)

+ḡT2 (x(t− µ2(t)))Eḡ2(x(t− µ2(t))) + yT (t)(TV2Ê
−1V T

2 T )y(t)

+
(∫ t

t−ρ2

h̄2(x(s)) ds
)T
Ê
(∫ t

t−ρ2

h̄2(x(s)) ds
)
+ 2DT

(∫ t

t−σ2

y(s) ds
)T
TDy(t)

−2DT
(∫ t

t−σ2

y(s) ds
)T
TV0f̄2(x(t))− 2DT

(∫ t

t−σ2

y(s) ds
)T
TV1
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×ḡ2(x(t− µ2(t)))− 2DT
(∫ t

t−σ2

y(s) ds
)T
TV2

(∫ t

t−ρ2

h̄2(x(s)) ds
)

+yT (t− σ2)µR̂1y(t− σ2) + xT (t)µR̂2x(t) + xT (t− µ2(t))µR̂3

×x(t− µ2(t))

]
. (23)

LV2(x(t), y(t), t)

≤ eηtḡT1 (y(t))P1ḡ1(y(t))− (1− µ1)e
η(t−µ1(t))ḡT1 (y(t− µ1(t)))P1

×ḡ1(y(t− µ1(t))) + eη̃tḡT2 (x(t))P2ḡ2(x(t))− (1− µ2)e
η̃(t−µ2(t))

×ḡT2 (x(t− µ2(t)))P2ḡ2(x(t− µ2(t))), (24)

LV3(x(t), y(t), t)

≤ ρ1

∫ 0

−ρ1

eηth̄T1 (y(t))Q1h̄1(y(t)) ds− ρ1

∫ t

t−ρ1

eηsh̄T1 (y(s))Q1h̄1(y(s)) ds

+ρ2

∫ 0

−ρ2

eη̃th̄T2 (x(t))Q2h̄2(y(t)) ds− ρ2

∫ t

t−ρ2

eη̃sh̄T2 (x(s))Q2h̄2(x(s))

×ds. (25)

Since R, E, L1 and L2 are real-valued positive diagonal matrices. By Assumption 2,
we can get that

ḡT1 (y(t− µ1(t)))Rḡ1(y(t− µ1(t))) ≤ yT (t− µ1(t))G1RG1y(t− µ1(t)), (26)

ḡT2 (x(t− µ2(t)))Eḡ2(x(t− µ2(t))) ≤ xT (t− µ2(t))G2EG2x(t− µ2(t)), (27)

yT (t)LT
1 FL1y(t)− ḡT1 (y(t))F ḡ1(y(t)) ≥ 0, (28)

xT (t)LT
2 F̃L2x(t)− ḡT2 (x(t))F̃ ḡ2(x(t)) ≥ 0, (29)

and

ρ1

∫ 0

−ρ1

eηth̄T1 (y(t))Q1h̄1(y(t)) ds− ρ1

∫ t

t−ρ1

eηsh̄T1 (y(s))Q1h̄1(y(s)) ds

≤ ρ21e
ηth̄T1 (y(t))Q1h̄1(y(t))− ρ1e

η(t−ρ1)

∫ t

t−ρ1

h̄T1 (y(s))Q1h̄1(y(s)) ds

≤ ρ21e
ηth̄T1 (y(t))Q1h̄1(y(t))− eη(t−ρ1)

(∫ t

t−ρ1

h̄1(y(s)) ds
)T
Q1

(∫ t

t−ρ1

h̄1(y(s)) ds
)
.

(30)

Similarly,

ρ2

∫ 0

−ρ2

eη̃th̄T2 (x(t))Q2h̄2(x(t)) ds− ρ2

∫ t

t−ρ2

eη̃sh̄T2 (x(s))Q2h̄2(x(s)) ds

≤ ρ22e
η̃th̄T2 (x(t))Q2h̄2(x(t))− eη̃(t−ρ2)

(∫ t

t−ρ2

h̄2(x(s)) ds
)T
Q2

(∫ t

t−ρ2

h̄2(x(s)) ds
)
.

(31)

Hence, it follows from (23) – (31) that



Exponential stability of BAM neural networks 337

LV (x(t), y(t), t)

≤ eηt

[
− xT (t)ηSA

(∫ t

t−σ1

x(s) ds
)
− ηATS

(∫ t

t−σ1

x(s) ds
)T
x(t) +

(∫ t

t−σ1

x(s) ds
)T

×ηATSA
(∫ t

t−σ1

x(s) ds
)]

+ eηt{xT (t)[−SA−ATS + SW1R
−1WT

1 S + ηS

+SW2R̂
−1WT

2 S]x(t) + xT (t)SW0f̄1(y(t)) + f̄T1 (y(t))SWT
0 x(t) + yT (t

−µ1(t))[G1RG1 + λR3]y(t− µ1(t)) +
(∫ t

t−ρ1

h̄1(y(s)) ds
)T
R̂
(∫ t

t−ρ1

h̄1(y(s))

×ds
)
+ 2AT

(∫ t

t−σ1

x(s) ds
)T
SAx(t)− 2AT

(∫ t

t−σ1

x(s) ds
)T
SW0f̄1(y(t))

−2AT
(∫ t

t−σ1

x(s) ds
)T
SW1ḡ1(y(t− µ1(t)))− 2AT

(∫ t

t−σ1(t)

x(s) ds
)T
SW2

×
(∫ t

t−ρ1

h̄1(y(s)) ds
)
+ xT (t− σ1)λR1x(t− σ1)}+ eη̃t

[
− yT (t)η̃TD

×
(∫ t

t−σ2

y(s) ds
)
− η̃DTT

(∫ t

t−σ2

y(s) ds
)T
y(t) +

(∫ t

t−σ2

y(s) ds
)T
η̃DTT

×D
(∫ t

t−σ2

y(s) ds
)]

+ eη̃t{yT (t)[−TD −DTT + TV1E
−1V T

1 T + η̃T

+TV2Ê
−1V T

2 T ]y(t) + yT (t)TV0f̄2(x(t)) + f̄T2 (x(t))TV T
0 y(t) + xT (t− µ2(t))

×[G2EG2 + µR̂3]x(t− µ2(t)) +
(∫ t

t−ρ2

h̄2(x(s)) ds
)T
Ê
(∫ t

t−ρ2

h̄2(x(s)) ds
)

+2DT
(∫ t

t−σ2

y(s) ds
)T
TDy(t)− 2DT

(∫ t

t−σ2

y(s) ds
)T
TV0f̄2(x(t))− 2DT

×
(∫ t

t−σ2

y(s) ds
)T
TV1ḡ2(x(t− µ2(t)))− 2DT

(∫ t

t−σ2(t)

y(s) ds
)T
TV2

×
(∫ t

t−ρ2

h̄2(x(s)) ds
)
+ yT (t− σ2)µR̂1y(t− σ2)}+ eηtḡT1 (y(t))P1ḡ1(y(t))

−(1− µ1)e
η(t−µ1(t))ḡT1 (y(t− µ1(t)))P1ḡ1(y(t− µ1(t))) + eη̃tḡT2 (x(t))P2

×ḡ2(x(t))− (1− µ2)e
η̃(t−µ2(t))ḡT2 (x(t− µ2(t)))P2ḡ2(x(t− µ2(t))) + ρ21e

ηt

×h̄T1 (y(t))Q1h̄1(y(t))− eη(t−ρ1)
(∫ t

t−ρ1

h̄1(y(s)) ds
)T
Q1

(∫ t

t−ρ1

h̄1(y(s)) ds
)

+ρ22e
η̃th̄T2 (x(t))Q2h̄2(x(t))− eη̃(t−ρ2)

(∫ t

t−ρ2

h̄2(x(s)) ds
)T
Q2

×
(∫ t

t−ρ2

h̄2(x(s)) ds
)
. (32)
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LV (x(t), y(t), t) ≤ eηtξT (t)Ωξ(t) + eη̃tζT (t)Ξζ(t), (33)

where,

ξ(t) =

[
xT (t), f̄T1 (y(t)), yT (t− µ1(t)),

(∫ t

t−ρ1

h̄1(y(s)) ds
)T
,
(∫ t

t−σ1

x(s) ds
)T
,

ḡT1 (y(t− µ1(t))), x
T (t− σ1), ḡ

T
1 (y(t)), y

T (t), h̄T1 (y(t))

]
.

ζ(t) =

[
yT (t), f̄T2 (x(t)), xT (t− µ2(t)),

(∫ t

t−ρ2

h̄2(x(s)) ds
)T
,
(∫ t

t−σ2

y(s) ds
)T
,

ḡT2 (x(t− µ2(t))), y
T (t− σ2), ḡ

T
2 (x(t)), x

T (t), h̄T2 (x(t))

]
.

where Ω and Ξ are given by (18) and (19), respectively.
According to the conditions (18), (19) and (32), we can get that Ω < 0, Ξ < 0; t ∈

[tk−1, tk), k ∈ Z+. Suppose t = tk, we obtain

V1(x(tk), y(tk), tk)− V1(x(t
−
k ), y(t

−
k ), t

−
k )

= eηtk

{[
Bkβk(x(t

−
k )) + Ckγk(x(t

−
k − µ1(t

−
k )))−A

∫ tk

tk−σ1

x(s) ds
]T
S
[
Bkβk(x(t

−
k ))

+ Ckγk(x(t
−
k − µ1(t

−
k )))−A

∫ tk

tk−σ1

x(s) ds
]}

+ eη̃tk

{[
Ekβ̂k(y(t

−
k )) +Qkγ̂k(y(t

−
k

− µ2(t
−
k )))−D

∫ tk

tk−σ2

y(s) ds
]T
T
[
Ekβ̂k(y(t

−
k )) +Qkγ̂k(y(t

−
k − µ2(t

−
k )))−D

×
∫ tk

tk−σ2

y(s) ds
]}

− eηt
−
k

{[
Bkβk(x(tk)) + Ckγk(x(tk − µ1(tk)))−A

∫ t−k

t−k −σ1

x(s) ds
]T

× S
[
Bkβk(x(tk)) + Ckγk(x(tk − µ1(tk)))−A

∫ t−k

t−k −σ1

x(s) ds
]}

− eη̃t
−
k

{[
Ekβ̂k(y(tk))

+Qkγ̂k(y(tk − µ2(tk)))−D

∫ t−k

t−k −σ2

y(s) ds
]T
T
[
Ekβ̂k(y(tk)) +Qkγ̂k(y(tk − µ2(tk)))

−D

∫ t−k

t−k −σ2

y(s) ds
]}
. (34)

It is easy to compute that

βT
k (x(t

−
k ))B

T
k SBkβk(x(t

−
k )) ≤ λmax(S)

λmin(S)
∥Bk∥2 max

1≤i≤n
{H2

ki
}xT (t−k )Sx(t

−
k ). (35)

β̂T
k (y(t

−
k ))E

T
k TEkβ̂k(y(t

−
k )) ≤ λmax(T )

λmin(T )
∥Ek∥2 max

1≤j≤n
{M2

kj
}yT (t−k )Ty(t

−
k ). (36)
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γTk (x(t
−
k − µ1(t

−
k )))C

T
k SCkγk(x(t

−
k − µ1(t

−
k )))

≤ λmax(S)

λmin(S)
∥Ck∥2 max

1≤i≤n
{L2

ki
}xT (t−k − µ1(t

−
k )). (37)

γ̂Tk (y(t
−
k − µ2(t

−
k )))Q

T
k TQkγ̂k(y(t

−
k − µ2(t

−
k )))

≤ λmax(T )

λmin(T )
∥Qk∥2 max

1≤j≤n
{O2

kj
}yT (t−k − µ2(t

−
k )). (38)

Thus we have,
V1(x(tk), y(tk), tk)− V1(x(t

−
k ), y(t

−
k ), t

−
k )

≤ eηtk

{
λmax(S)

λmin(S)
∥Bk∥2 max

1≤i≤n
{H2

ki
}xT (t−k )Sx(t

−
k ) +

λmax(S)

λmin(S)
∥Ck∥2 max

1≤i≤n
{L2

ki
}

× xT (t−k − µ1(t
−
k ))Sx(t

−
k − µ1(t

−
k )) +

(∫ tk

tk−σ1

x(s) ds
)T

(ATSA)
(∫ tk

tk−σ1

x(s) ds
)}

− eηt
−
k

{
λmax(S)

λmin(S)
∥Bk∥2 max

1≤i≤n
{H2

ki
}xT (tk)Sx(tk) +

λmax(S)

λmin(S)
∥Ck∥2 max

1≤i≤n
{L2

ki
}

× xT (tk − µ1(tk))Sx(tk − µ1(tk)) +
(∫ t−k

t−k −σ1

x(s) ds
)T

(ATSA)
(∫ t−k

t−k −σ1

x(s) ds
)}

eη̃tk

{
λmax(T )

λmin(T )
∥Ek∥2 max

1≤j≤n
{M2

kj
}yT (t−k )Ty(t

−
k ) +

λmax(T )

λmin(T )
∥Qk∥2 max

1≤j≤n
{O2

kj
}

× yT (t−k − µ2(t
−
k ))Ty(t

−
k − µ2(t

−
k )) +

(∫ tk

tk−σ2

y(s) ds
)T

(DTTD)
(∫ tk

tk−σ2

y(s) ds
)}

− eη̃t
−
k

{
λmax(T )

λmin(T )
∥Ek∥2 max

1≤j≤n
{M2

kj
}yT (tk)Ty(tk) +

λmax(T )

λmin(T )
∥Qk∥2 max

1≤j≤n
{O2

kj
}

× yT (tk − µ2(tk))Ty(tk − µ2(tk)) +
(∫ t−k

t−k −σ2

y(s) ds
)T

(DTTD)
(∫ t−k

t−k −σ2

y(s) ds
)}

.

(39)

Put

A1 =
λmax(S)

λmin(S)
∥Bk∥2 max

1≤i≤n
{H2

ki
}, B1 =

λmax(S)

λmin(S)
∥Ck∥2 max

1≤i≤n
{L2

ki
},

A2 =
λmax(T )

λmin(T )
∥Ek∥2 max

1≤j≤n
{M2

kj
}, B2 =

λmax(T )

λmin(T )
∥Qk∥2 max

1≤j≤n
{O2

kj
}.

Then, V1(x(tk), y(tk), tk)− V1(x(t
−
k ), y(t

−
k ), t

−
k )

= eηt
−
k

{
A1x

T (t−k )K
T
1 SK1x(t

−
k )−A1x

T (t−k )Sx(t
−
k ) + B1x

T (t−k − µ1(t
−
k ))K

T
1 S
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×K1x(t
−
k − µ1(t

−
k ))− B1x

T (t−k − µ1(t
−
k ))Sx(t

−
k − µ1(t

−
k )) +

(∫ t−k

t−k −σ1

x(s) ds
)T

× (ATKT
1 SK1A)

(∫ t−k

t−k −σ1

x(s) ds
)
−
(∫ t−k

t−k −σ1

x(s) ds
)T

(ATSA)
(∫ t−k

t−k −σ1

x(s) ds
)}

× eη̃t
−
k

{
A2y

T (t−k )K̂
T
1 TK̂1y(t

−
k )−A2y

T (t−k )Ty(t
−
k ) + B2y

T (t−k − µ2(t
−
k ))K̂

T
1 TK̂1

× y(t−k − µ2(t
−
k ))− B2y

T (t−k − µ2(t
−
k ))Ty(t

−
k − µ2(t

−
k )) +

(∫ t−k

t−k −σ2

y(s) ds
)T

(DT

× K̂T
1 TK̂1D)

(∫ t−k

t−k −σ2

y(s)ds
)
−
(∫ t−k

t−k −σ2

y(d) ds
)T

(DTTD)
(∫ t−k

t−k −σ2

y(s) ds
)}

= eηt
−
k {A1x

T (t−k )[K
T
1 SK1 − S]x(t−k )}+ eηt

−
k {B1x

T (t−k − µ1(t
−
k ))[K

T
1 SK1 − S]

× x(t−k − µ1(t
−
k ))}+ eηt

−
k

{(∫ t−k

t−k

x(s) ds
)T
AT [KT

1 SK1 − S]A
(∫ t−k

t−k −σ1

x(s) ds
)}

+ eη̃t
−
k {A2y

T (t−k )[K̂
T
1 TK̂1 − T ]y(t−k )}+ eη̃t

−
k {B2y

T (t−k − µ2(t
−
k ))[K̂

T
1 TK̂1 − T ]

× y(t−k − µ2(t
−
k ))}+ eη̃t

−
k

{(∫ t−k

t−k

y(s) ds
)T
DT [K̂T

1 TK̂1 − T ]D

(∫ t−k

t−k −σ2

y(s) ds
)}

≤ 0.

V1(x(tk), y(tk), tk) ≤ V1(x(t
−
k ), y(t

−
k ), t

−
k ), t = tk, k ∈ Z+. (40)

Therefore, we can deduce that

V (x(tk), y(tk), tk) ≤ V (x(t−k ), y(t
−
k ), t

−
k ), t = tk, k ∈ Z+. (41)

By the equations (40) and (41), we know that V is monotonically non increasing for
t ∈ [T,∞), which implies that

V (t) ≤ V (T ), t ≥ T. (42)

From the definition of V(t) in (22) and (42), we get that

eηtλmin(S)∥x(t)∥2 + eη̃tλmin(T )∥y(t)∥2 ≤ V (t) ≤ V0 <∞, t ≥ 0, (43)

where V0 = max0≤s≤T V (s). Put eη
∗tλmin(Λ) = min{eηtλmin(S), e

η̃tλmin(T )}. Then
(43) implies that

eη
∗tλmin(Λ){∥x(t)∥2 + ∥y(t)∥2} ≤ V (t) ≤ V0 <∞, (44)

where V0 = max0≤s≤T V (s).

∥x(t)∥2 + ∥y(t)∥2 ≤ V0
λmin(Λ)

e−η∗t, t ≥ 0,
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∥x(t)∥2 + ∥y(t)∥2 ≤ χe−η∗t, t ≥ 0, (45)

where χ = V0

λmin(Λ) . It means that the unique equilibrium point (x∗, y∗) of neural net-

works (20) is exponentially stable. Hence, the neural networks (1) – (2) is exponentially
stable. This completes the proof. □

Remark 2.4 As a result, the existence and uniqueness of the trivial solution for
CVBAMNNs (1-2) have been proposed in Theorem 2.1 through contraction mapping
theorem. For consequence, in Theorem 2.2, the time-delay dependent exponential sta-
bility criteria for neural networks (1) be entrenched by utilizing the novel Lyapunov –
Krasovskii functionals.

Remark 2.5 Suppose, the stochastic disturbances are not appeared in neural networks
(20) then the time-delayed neural networks (20) reduces to the following system

dx(t) =
[
−Ax(t− σ1) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t))) +W2

∫ t

t−ρ1

h̄1(y(s)) ds
]

×dt; t ̸= tk, t > 0,

x(t) = Bkβk(x(t
−)) + Ckγk(x(t

− − µ1(t
−))) = U∗

k (x(t
−
k ), xt−k

); t = tk, k in Z+.

dy(t) =
[
−Dy(t− σ2) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t))) + V2

∫ t

t−ρ2

h̄2(x(s)) ds
]

×dt; t ̸= tk, t > 0,

y(t) = Ekβ̂k(y(t
−)) +Qkγ̂k(y(t

− − µ2(t
−))) = Y ∗

k (y(t
−
k ), yt−k

); t = tk, k in Z+.

(46)

Then by Theorem 2.3, it is easy to obtain the following Corollary 2.6.

Corollary 2.6 Assume that Assumptions 1 – 5 hold. The equilibrium point of the
system (46) is exponentially stable if, for given η, η̃ > 0, there exist positive definite

Hermitian matrices S, T, P1, P2, Q1, Q2, positive diagonal matrices R, E, F, F̃ and
positive scalars η∗, λ, µ, µ1 and µ2 such that the following LMIs are satisfied

KT
1 SK1 − S ≤ 0, (47)

K̂T
1 TK̂1 − T ≤ 0, (48)

Ω =



Ω∗
11 SW0 0 0 Ω15 0 0 0 0
∗ −L1 0 0 Ω25 0 0 0 0
∗ ∗ Ω∗

33 0 0 0 0 0 0
∗ ∗ ∗ Ω44 Ω45 0 0 0 0
∗ ∗ ∗ ∗ Ω55 Ω56 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω∗

88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99


9×9

< 0, (49)
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Ξ =



Ξ∗
11 TV0 0 0 Ξ15 0 0 0 0
∗ −L2 0 0 Ξ25 0 0 0 0
∗ ∗ Ξ∗

33 0 0 0 0 0 0
∗ ∗ ∗ Ξ44 Ξ45 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ∗

88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99


9×9

< 0, (50)

where

Ω11 = −SA−ATS + SW1R
−1WT

1 S + SW2R̂
−1WT

2 S, Ω∗
33 = G1RG1, Ξ99 = ρ22Q2,

Ω15 = ATSA− ηSA, Ω25 = −ATSW0, Ω56 = −ATSW1, Ω45 = −ATSW2,

Ω55 = ηATSA, Ω∗
88 = e−ηt(LT

1 FL1), Ω44 = R̂− e−ηρ1Q1, Ξ45 = −DTTV2,

Ω77 = P1 − e−ηtF, Ω66 = (1− µ1)e
−ηµ1P1, Ξ55 = η̃DTTD, Ξ56 = −DTTV1,

Ξ∗
11 = −TD −DTT + TV1E

−1V T
1 T + TV2Ê

−1V T
2 T, Ξ∗

33 = G2EG2, Ξ25 = −DTTV0,

Ξ15 = DTTD − η̃TD, Ξ77 = P2 − e−η̃tF̃ , Ξ44 = Ê − e−η̃ρ2Q2, Ω99 = ρ21Q1,

Ξ∗
88 = e−η̃t(LT

2 F̃L2), Ξ66 = (1− µ2)e
−η̃µ2P2.

P r o o f .

Similar to the proof of Theorem 2.3, we can easily derive this Corollary. Its proof is
straightforward and hence omitted. □

Remark 2.7 In case, the impulsive effects do not present in (20) then the proposed
neural network system (20) can be reduced to the following form

dx(t) =
[
−Ax(t− σ1) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t))) +W2

∫ t

t−ρ1

h̄1(y(s)) ds
]

×dt+ δ̄1(x(t− σ1), y(t), y(t− µ1(t))), t)dω1(t);

dy(t) =
[
−Dy(t− σ2) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t))) + V2

∫ t

t−ρ2

h̄2(x(s)) ds
]

×dt+ δ̄2(y(t− σ2), x(t), x(t− µ2(t))), t)dω2(t); t > 0. (51)

Then the following Corollary 2.6 can be obtained from Theorem 2.3.

Corollary 2.8 Under the Assumptions 1 – 5, the equilibrium point of the NNs (51)
is exponentially stable if for given η, η̃ > 0, there exist positive definite Hermitian
matrices S, T, P1, P2, Q1, Q2, Positive diagonal matrices R, E, F, F̃ and positive
scalars η∗, λ, µ, µ1 and µ2 such that the following LMIs are satisfied

S < λ I, (52)
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T < µ I, (53)

Ω and Ξ < 0, (54)

where the values of Ω and Ξ are derived in Theorem 2.3.

Remark 2.9 If the delays in leakage term are not considered then the neural network
system (20) turns into to the following CVBAMNNs

dx(t) =
[
−Ax(t) +W0f̄1(y(t)) +W1ḡ1(y(t− µ1(t))) +W2

∫ t

t−ρ1

h̄1(y(s)) ds
]

×dt+ δ̄1(x(t), y(t), y(t− µ1(t))), t)dω1(t); t > 0, t ̸= tk,

x(t) = Bkβk(x(t
−)) + Ckγk(x(t

− − µ1(t
−))) = U∗

k (x(t
−
k ), xt−k

); t = tk, k ∈ Z+.

dy(t) =
[
−Dy(t) + V0f̄2(x(t)) + V1ḡ2(x(t− µ2(t))) + V2

∫ t

t−ρ2

h̄2(x(s)) ds
]

×dt+ δ̄2(y(t), x(t), x(t− µ2(t))), t)dω2(t); t > 0, t ̸= tk,

y(t) = Ekβ̂k(y(t
−)) +Qkγ̂k(y(t

− − µ2(t
−))) = Y ∗

k (y(t
−
k ), yt−k

); t = tk, k ∈ Z+.

(55)

For system (55), by Theorem 2.2, we have the following Corollary 2.11.

Remark 2.10 According to Remark 2.7, the real and imaginary parts of the trajectory
responses for neural networks (55) are depicted in Figure 9 and Figure 10, respectively.
Therefore, by the state trajectories in Example 3.2, we can easily verified that the neural
networks without leakage term (55) is stable in the sense of exponential.

Corollary 2.11 Suppose that Assumptions 1 – 5 hold. The equilibrium point of the
system (55) is exponentially stable if for given η, η̃ > 0, there exist positive definite

Hermitian matrices S, T, P1, P2, Q1, Q2, positive diagonal matrices R, E, F, F̃ and
positive scalars η∗, λ, µ, µ1 and µ2 such that the following LMIs are satisfied

S < λ I, (56)

T < µ I, (57)

KT
1 SK1 − S ≤ 0, (58)

K̂T
1 TK̂1 − T ≤ 0, (59)

Ω =



Ω11 SW0 0 0 0 0 0 0
∗ −L1 0 0 0 0 0 0
∗ ∗ Ω33 0 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88


8×8

< 0, (60)
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Ξ =



Ξ11 TV0 0 0 0 0 0 0
∗ −L2 0 0 0 0 0 0
∗ ∗ Ξ33 0 0 0 0 0
∗ ∗ ∗ Ξ44 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88


8×8

< 0, (61)

where

Ω11 = −SA−ATS + SW1R
−1WT

1 S + SW2R̂
−1WT

2 S + µR̂2, Ω33 = G1RG1 + λR3,

Ω88 = ρ21Q1, Ω77 = e−ηt(LT
1 FL1) + λR2, Ω44 = R̂− e−ηρ1Q1, Ξ88 = ρ22Q2,

Ω66 = P1 − e−ηtF, Ω55 = (1− µ1)e
−ηµ1)P1, Ξ77 = e−η̃t(LT

2 F̃L2) + µR̂2,

Ξ11 = −TD −DTT + TV1E
−1V T

1 T + TV2Ê
−1V T

2 T + λR2, Ξ33 = G2EG2 + µR̂3,

Ξ66 = P2 − e−η̃tF̃ , Ξ44 = Ê − e−η̃ρ2Q2, Ξ55 = (1− µ2)e
−η̃µ2P2.

Remark 2.12 The maximum admissible upper bounds of discrete time delays are
provided in Table 1 together with some current findings in order to validate the benefits of
this addressed neural networks (1). The maximum permitted time delays are determined
based on observation. Thus, what actually occurs indicates that the little delays in our
brains that cause the storage & passage of memories are not impacted because the neural
networks that are built for this manner have enormous delays and are in stable state. In
this manner, we use this kind of neural network technique to online network connections,
ultimately obtaining the information without causing any harm over an extended period
of time.

3. NUMERICAL EXAMPLES

In this section, providing two numerical examples with their simulations to illustrate the
effectiveness and benefits of the proposed criteria.

Example 3.1. Consider a two-dimensional complex-valued BAM neural networks with
leakage, mixed time delays and stochastic, impulsive effects (20) with the following
associated parameters

A =

(
1 0
0 2.5

)
, W0 =

(
0.3 + 0.03i 0.2 + 0.003i
−0.3 + 0.03i 0.4 + 0.02i

)
, W1 =

(
−0.2 + 0.02i 0.5 + 0.06i
0.3 + 0.03i 0.2 + 0.04i

)
,

Ck =

(
0.4 + 0.02i 0.2 + 0.06i
0.1 + 0.02i 0.2 + 0.03i

)
, D =

(
1 0
0 1

)
, V0 =

(
0.4 + 0.02i 0.2 + 0.004i
−0.1 + 0.02i 0.3 + 0.05i

)
,

W2 =

(
0.3 + 0.02i 0.2 + 0.03i
−0.1 + 0.02i 0.4 + 0.01i

)
, Bk =

(
0.1 + 0.03i 0.3 + 0.05i
0.2 + 0.04i 0.4 + 0.06i

)
,
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Fig. 1. The real part in the state responses x1(t), x2(t), y1(t) and

y2(t) of (20).

V1 =

(
−0.3 + 0.01i 0.3 + 0.07i
0.2 + 0.04i 0.1 + 0.03i

)
, V2 =

(
0.2 + 0.03i 0.4 + 0.02i
−0.2 + 0.03i 0.5 + 0.02i

)
,

Ek =

(
0.2 + 0.05i 0.5 + 0.01i
0.3 + 0.02i 0.3 + 0.05i

)
, Qk =

(
0.1 + 0.02i 0.3 + 0.05i
0.3 + 0.03i 0.4 + 0.02i

)
,

Ī = [0.05 0.03], J̄ = [0.02 0.04],

σ1 = 0.1, σ2 = 0.3, µ1(t) = 0.3 ∗ sin(t) + 2.173, µ2(t) = 0.5 ∗ cos(t) + 1.973, µ1 = µ2 =
2.473, ρ1 = 0.6, ρ2 = 1.3. Let

δ1(z(t− σ1), z̃(t), z̃(t− µ1(t)), t) =

(
0.3 ∗ z(t− σ1) 0.2 ∗ (z̃(t) + z̃(t− µ1(t)))

0.2 ∗ z̃(t) 0.2 ∗ z(t− σ1)

)
,

δ2(z̃(t− σ2), z(t), z(t− µ2(t)), t) =

(
0.1 ∗ z̃(t− σ2) 0.3 ∗ (z(t)− z(t− µ2(t)))

0.5 ∗ z(t) 0.3 ∗ z̃(t− σ2)

)
,

hk(·) = 0.4 ∗ tan(·), mk(·) = 0.02 ∗ sinh(·), lk(·) = 0.3 ∗ tan(·), ok(·) = 0.04 ∗ sin(·).
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Fig. 2. Real part of the state trajectories for concerned

complex-valued BAM neural networks (20).

Methods µ1 = µ2 > 0 Status

In [15] 0.8696 feasible

In [16] 0.8784 feasible

In [49] 1.96 feasible

In [51] 0.8643 feasible

In [55] 0.2642 feasible

Theorem 2.3 2.473 feasible

Tab. 1. Maximum allowable upper bounds µ1 & µ2.

The following activation functions are playing a key role in neural networks (1):

f1(·) = g1(·) = h1(·) = 0.01 ∗ tanh(·)
and f2(·) = g2(·) = h2(·) = 0.01 ∗ sin(·).

From Theorem 2.3, we can conclude that the complex-valued BAM neural networks
(1) – (2) is exponentially stable. Moreover, the simulation results for complex system
(20) narrates in Figure 1 – Figure 4. Also, the impulsive effects of neural networks (20)
is depicted in Figure 5 and Figure 6. By the above figures one can easily see that the
effectiveness of our proposed theoretical experiments.
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Fig. 3. The imaginary part in the state responses x1(t), x2(t), y1(t),

y2(t) of (20).
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Fig. 4. Imaginary part of the state trajectories for concerned

complex-valued BAM neural networks (20).
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Fig. 5. The impulsive effects behavior of real part of the state

trajectories in (20).
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Fig. 6. The impulsive effects behavior of imaginary part of the state

trajectories in (20).
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Example 3.2. Consider a two-neuron time-delayed impulsive effects on complex-valued
BAMNNs without stochastic noises (46) with the associated parameters as follows:

A =

(
2 0
0 2.5

)
, W0 =

(
0.4 + 0.02i 0.1 + 0.05i
−0.2 + 0.04i 0.1 + 0.06i

)
, W1 =

(
−0.3 + 0.04i 0.2 + 0.05i
0.1 + 0.07i 0.3 + 0.06i

)
,

Ck =

(
0.1 + 0.09i 0.4 + 0.03i
0.2 + 0.01i 0.3 + 0.03i

)
, D =

(
1.6 0
0 2.3

)
, V0 =

(
0.2 + 0.05i 0.1 + 0.06i
−0.3 + 0.07i 0.2 + 0.08i

)
,
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Fig. 7. Time responses and state trajectories of real part of the

CVBAMNNs (46) without stochastic noises.
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Fig. 8. Time responses and state trajectories of imaginary part of

the CVBAMNNs (46) without stochastic noises.
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W2 =

(
0.2 + 0.03i 0.1 + 0.06i
−0.2 + 0.08i 0.2 + 0.04i

)
, Bk =

(
0.3 + 0.07i 0.1 + 0.04i
0.3 + 0.05i 0.2 + 0.08i

)
,

V1 =

(
−0.5 + 0.03i 0.4 + 0.06i
0.3 + 0.05i 0.2 + 0.05i

)
, V2 =

(
0.3 + 0.06i 0.2 + 0.04i
−0.1 + 0.04i 0.3 + 0.08i

)
,

Ek =

(
0.4 + 0.07i 0.1 + 0.06i
0.2 + 0.08i 0.4 + 0.09i

)
, Qk =

(
0.2 + 0.06i 0.4 + 0.06i
0.1 + 0.02i 0.2 + 0.05i

)
,

Ī = [0.04 0.07], J̄ = [0.03 0.05],
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Fig. 9. Real part of the state trajectories for neural networks (46)

without leakage.

σ1 = 0.2, σ2 = 0.4, µ1(t) = 0.4 ∗ sin(t) + 0.4, µ2(t) = 0.7 ∗ cos(t) + 1.4, Let

δ1(z(t− σ1), z̃(t), z̃(t− µ1(t)), t) =

(
0.3 ∗ z(t− σ1) 0.2 ∗ (z̃(t) + z̃(t− µ1(t)))

0.2 ∗ z̃(t) 0.2 ∗ z(t− σ1)

)
,

δ2(z̃(t− σ2), z(t), z(t− µ2(t)), t) =

(
0.1 ∗ z̃(t− σ2) 0.3 ∗ (z(t)− z(t− µ2(t)))

0.5 ∗ z(t) 0.3 ∗ z̃(t− σ2)

)
,

Taking the functions hk(·), mk(·), lk(·), ok(·). and also the activation functions f1(·),
g1(·), h1(·), f2(·), g2(·) and h2(·) are same as in Example 3.1.

Hence by Corollary 2.6, the complex-valued BAM neural networks without stochastic
disturbances (46) is exponentially stable, which is further clarified by the simulation
outcomes shown in Figure 7 and Figure 8. The real and imaginary trajectories for (46)
in above figures demonstrate the reality of our developed methods.
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Fig. 10. Imaginary part of the state responses for concerned NNs

(46) without leakage.

4. CONCLUSIONS

In this study, we have addressed the leakage, temporal delays, and stochastic, impulsive
effects exponential stability problem for complex-valued BAM neural networks. We guar-
antee the existence and uniqueness of the equilibrium point by utilizing the contraction
mapping theorem, the M-matrix technique, and fixed point theory. Furthermore, sev-
eral new-brand sufficient conditions with less conservatism have been obtained in terms
of LMIs to ensure the exponential stability for CVBAMNNs with proposed external
disturbances by utilizing the stability theory, inequality techniques, Schur complement
lemma, and construction of an appropriate Lyapunov –Krasovskii functional. The re-
mainder of this work consists of two numerical examples with simulations that support
the effectiveness of the implemented approach and allow us to verify the validity of our
stated theoretical findings.

To the best of our knowledge, there are no results on the passivity of time-delayed
complex-valued Cohen-Grossberg neural networks via Wirtinger based inequality, which
might be our future research work.
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