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AN EFFECTIVE GLOBAL PATH PLANNING ALGORITHM
WITH TEACHING-LEARNING-BASED OPTIMIZATION
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Due to the widespread use of mobile robots in various applications, the path planning
problem has emerged as one of the important research topics. Path planning is defined as
finding the shortest path starting from the initial point to the destination in such a way as
to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm
based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a
static environment with obstacles. The proposed algorithm changes the initially randomly
selected control points step by step to obtain shorter Bezier curves that do not hit obstacles.
We also improve the genetic algorithm-based path planning algorithm. Experimental results
show that they provide better paths than other existing algorithms.
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1. INTRODUCTION

Planning is one of the important problems that can arise in the various areas, such as
resource allocation [1], supply chain [42, 43], navigation [55, 16, 19], robotic coding [17]
and many other areas. Recommender [6, 7, 47] or education systems [41] can also be
seen as a type of planning tool. In recent years, the path planning problem for mobile
robots has become one of the most important planning problems. Autonomous mobile
robots are becoming more and more pervasive in our lives. They are used in many
various areas such as mining, transportation, security, etc. and especially they are
preferred in doing jobs that can cause irreparable harm to humans (e. g., radioactive
chemical factories) [23]. As technology develops, humans try to equip these robots with
artificial intelligence which introduced many research problems. Planning a collision-
free path is one of them, besides, it contains sub-problems depending on various factors.
Examples of these factors are the number of moving robots, the ability of robots to
communicate with each other, and the environment in which the robot moves (global vs.
local). For instance, there may be a variable number of obstacles, and these obstacles
can be static or dynamic. The goal of the robot is to find the most suitable path
from the starting point to the target point without hitting any obstacles around it.

DOI: 10.14736/kyb-2024-3-0293

http://doi.org/10.14736/kyb-2024-3-0293


294 E. HAZRATI NEJAD, S. YIGIT-SERT, AND Ş. EMRAH AMRAHOV

Within a static environment, obstacles remain stationary, whereas in a dynamic setting,
obstacles move in arbitrary directions at varying speeds. While global path planning
involves a completely known map of the environment, local path planning operates in
an environment where information is not known in advance [20], robots gather real-time
environment information by their sensors.

The global path planning problem has recently drawn lots of attention from the re-
searchers Li et al. [26] who proposed an enhanced version of the A∗ algorithm to address
its limitations in path planning, such as long calculation times, large turning angles, and
unsmoothed paths in large task spaces. They utilized a bidirectional alternating search
(BAS) strategy for the efficiency of path searching, Euclidean distance weighted by ex-
ponential attenuation method for filtering paths, and Bézier curves for smoother paths.
[9] proposed a path planning algorithm that utilizes the A* algorithm and potential field
method to circumvent obstacles. [27] proposed a new path planning approach that com-
bines the growth simulation concept and the level set-based heat conduction topology
optimization. [14] introduced a new approach for path planning of robots moving in
global environments. First, they employed the Lee algorithm and the RRT algorithm
and then used Bezier curves for pruning and smoothing the raw shortest path.

The meta-heuristic algorithms especially Genetic Algorithm (GA) [2, 57, 28], have
been widely employed in the global path planning of mobile robots. [13] improved the
Whale Optimization Algorithm (NWOA) to address the challenges of slow convergence
and local optimization in the path planning problem in dynamic environments, incor-
porating adaptive technology, virtual obstacles, and improved potential field factors.
[38] enhanced ant colony optimization algorithm by introducing angle guidance factor,
obstacle exclusion factor, adaptive adjustment factor, and pheromone volatilization fac-
tor. Then, the study takes into consideration multiple objectives, namely path length,
safety degree, and energy consumption for path planning optimization. [58] introduced
a hybrid algorithm, Genetic Firefly Algorithm (GFA) which combines GA and Fire-
fly Algorithm (FA) to address FA’s vulnerability to local optima, thereby enhancing
both accuracy and performance in the pursuit of finding collision-free paths for mobile
robots. [56] enhanced the bat algorithm (BA) by introducing a logarithmic decreasing
strategy and Cauchy disturbance to improve its search capability. They employed this
enhanced algorithm for global path planning as part of a hybrid solution with the dy-
namic window method to address local dynamic obstacle avoidance. [31] enhanced the
grey wolf optimization (GWO) algorithm by incorporating the lion optimizer algorithm
and dynamic weights. The performance of the proposed algorithm is evaluated in path
planning applications. [60] developed a bio-inspired path planning method for mobile
robots, addressing challenges in traditional algorithms by incorporating a linear path
strategy, neighborhood search strategy, and an enhanced position update function for
the sparrow search algorithm. [33] employed GA enhanced by integrating dynamic mu-
tation rate and switchable global-local search method, along with cubic Bezier curves, to
discover smoothed minimum-length paths. [30] showed a solution to the path planning
problem deploying the ant colony optimization (ACO) algorithm improved using the
geometric algorithm. [54] proposed smooth path planning of mobile robots based on
a new quadruple Bezier transition curve and an improved particle swarm optimization
(PSO) algorithm. [15] also utilized GA and Bezier curves for smooth path planning
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for the dynamic environment. It employs genetic operations to determine Bezier curve
control points, optimizing path length for efficiency and introducing safety measures for
fitness function. [36] employed a modified GA to achieve the shortest and the smoothest
path utilizing Bezier curves within a dynamic environment.

In recent years, numerous RRT (Rapidly-exploring Random Trees)-based algorithms
proposed and utilized for addressing motion planning and obstacle avoidance challenges
in mobile robot applications. RRT are a widely-used sampling-based algorithms that
efficiently search for a feasible path in high-dimensional spaces, addressing complex con-
straints within the problem domain (see [18, 34] for details.) PQ-RRT∗ algorithm [29]
was developed to integrate the advantages of both P-RRT∗ (Potential functions based
RRT∗) and Quick-RRT∗, ensuring fast convergence to an optimal solution. However, it
has some limitations, particularly concerning robot kinematic constraints and adaptabil-
ity to complex environments. The study [50] improved the RRT algorithm by employing
the simplified Bridge Test, point cloud clustering, and multi-tree growth strategies to
tackle slow convergence and path quality issues. In [51], a convolutional neural network
(CNN) trained with optimal paths generated by the A* algorithm is employed to learn a
predicted probability distribution of the optimal path. Then, the predicted nonuniform
sampling distribution is used to guide the sampling process of the RRT∗ planner. In
a recent study [52], the combination of RRT∗ and ACO was employed to leverage the
strengths of both methods, aiming to enhance search efficiency, convergence speed, and
global search ability in automated guided vehicle path planning.

Reinforcement learning has been applied to find a collision-free path with the shortest
path length for mobile robots. [37] presented an efficient Q-Learning algorithm for the
global path planning optimization problem by introducing a new reward function for
Q-table initialization and selection strategy to speed up convergence implying a reduc-
tion in computation time. [32] also studied a variant of reinforcement learning through
the addition of a distance metric, modifications to the Q function, and the introduction
of a virtual target. [26] presented an end-to-end path planning method starting from
receiving data of camera and radar for intelligent driving vehicles in a static obstacle
environment. Their algorithm, IDQNPER, is based on depth reinforcement learning
and combines some DQN (Deep Q-Network) algorithms [40]. [35] introduced a deep
graph model that incorporates the Floyd algorithm as a central component to optimize
different paths for individual robots within a multi-robot system. Their algorithm ini-
tiates the process by extracting spatial-temporal interest points from each video clip.
Subsequently, after quantization, the authors employed an enhanced version of Linear
Discriminative Analysis (LDA) to effectively analyze and distinguish features for the
optimization of robot paths.

In this study, we address the global path planning problem for a mobile robot in a
static environment which has recently drawn significant attention from researchers. To
tackle this issue, we propose using the Teaching-Learning-Based Optimization (TLBO)
Algorithm [45], adapting it to determine the shortest and smoothest collision-free path
by incorporating Bezier curves. The key contributions of our study are as follows:

• We propose a new TLBO-based algorithm that utilizes Bezier curves.

• Unlike all previous studies using Bezier curves, we do not select the control points
defining the curve only from the obstacle-free region. After randomly selecting the
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initial control points, we allow the control points created during our algorithm to
be positioned above the obstacles.

• We compare our proposed algorithm with other algorithms using Bezier curves in
the literature. The best among them is the Bezier Smoothing Algorithm with In-
creased Confidence Distance (BCA-Q) [36] based on a genetic algorithm. Our pro-
posed algorithm outperforms BCA-Q, providing shorter and obstacle-free paths.
In BCA-Q, the control points of the Bezier curve are selected from obstacle-free
regions. We improve the BCA-Q algorithm by allowing the selection of control
points from the entire region. We call this version of the BCA-Q algorithm the
Improved Genetic algorithm (IGA).

Since the flexibility of selecting control points increases the number of feasible
Bezier curves, IGA theoretically always yields better results than BCA-Q. To
highlight the effectiveness of our proposed algorithm, we compare it with the more
competitive IGA, rather than BCA-Q, in environments not covered in [36].

• Our experiments demonstrate that the proposed algorithm outperforms the exist-
ing ones.

There are a few studies that have applied TLBO optimization for robot path planning.
Aouf et al. [5] employed the TLBO algorithm to train an ANFIS controller for the
robot navigation problem. Wu et al. [53] enhanced the TLBO algorithm by introducing
inertia-weighted factors into its learning and memory mechanisms, and they applied
this modified approach to solving the mobile robot path planning problem. Ansari and
Katiya [4] conducted a performance comparison between ACO and TLBO algorithms
for finding the shortest path from start to end points while avoiding collisions with
obstacles. Although the smoothness of a path is a crucial factor in path planning, leading
to a reduction in energy consumption and time wastage, they did not consider path
smoothness in their study. Sabiha et al. [46] addressed the global path planning problem
as a multi-objective optimization using the TLBO algorithm, considering objectives such
as finding the shortest, smoothest, and collision-free path. Their method was tested in
a single environment with fewer obstacles than our scenario.

The rest of the paper is organized as follows. The Bezier curve, TLBO algorithm,
and GA is introduced in Section 2. Section 3 explains the proposed TLBO algorithm
to get a smooth path based on the Bezier curve. Section 4 discusses the experimental
results compared to GA approach. Section 5 concludes the paper and gives directions
for future work.

2. BACKGROUND

2.1. Bezier curve

Pierre Bézier [8] introduced Bezier curves in 1968, and it holds significant importance in
computer graphics. Recently, they have started to be used in path planning challenges.
A Bezier curve of degree n is defined in a plane using n+ 1 specified points, referred to
as control points. These points are denoted as Pi, where i ranges from 0 to n, are given
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by Pi = (xi, yi). A n-degree Bezier curve is formulated as follows:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi. (1)

Equation 1 is the parametric equation of the Bezier curve over 0 ≤ t ≤ 1. Here,(
n
i

)
= n !

(n−i) !i ! denotes the number of ith combinations of n. Bernstein basis polynomials

are denoted by:

bi,n(t) =

(
n

i

)
(t)i(1− t)n−i. (2)

where i = 0, 1, . . . , n. Based on this, the formula for the n-degree Bezier curve can be
expressed as follows:

B(t) =

n∑
i=0

bi,nPi, 0 ≤ t ≤ 1. (3)

Equation 3 defines a Bezier curve on a grid, which is a rectangular domain with P0 at
the bottom-left corner and Pn at the top-right corner. Note that, a Bezier curve passes
through the starting point P0 and the ending point Pn, but it is not required to pass
through all other points.

The derivative of an n-degree Bezier curve is calculated using the following formula.

B′(t) =

n−1∑
i=0

bi,n−1(t)(Pi+1 − Pi), 0 ≤ t ≤ 1. (4)

2.2. The formula for the length of a curve given parametrically

Let a curve be defined parametrically by the formula X = X(t) = (x(t), y(t)), a ≤ t ≤ b.
The length of this curve can be calculated using the formula:∫ b

a

||X ′(t)||dt. (5)

Here, ||X ′(t)|| represents the Euclidean norm of the parametric function X ′(t). That is,

||X ′(t)|| =
√
(x′(t))2 + (y′(t))2. (6)

According to this formula, the length of the Bezier curve is equal to∫ 1

0

||B′(t)||dt. (7)

In this study, Simpson’s formula has been used to approximate the value of the
integral in Equation 7. When a continuous function y = f(x) defined on the interval

[a, b] is given, the integral
∫ b

a
f(x)||dx can be calculated using the Simpson’s formula as

follows:

I =
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 4yn−1 + yn) (8)

where ∆x = b−a
n , xi = a+ i∆x, and yi = f(xi), i = 0, 1, . . . , n
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2.3. Teaching-learning-based optimization algorithm

Teaching Learning Based Optimization (TLBO) [45] is a metaheuristic optimization
algorithm inspired by the principles of teaching and learning in a classroom environment.
It simulates the process of knowledge transfer among students and teachers to improve
iteratively the quality of solutions by operating on a population of candidate solutions
to optimization problems.

TLBO algorithm comes to the forefront for its simplicity and effectiveness in solving
optimization problems. Unlike many traditional optimization algorithms, TLBO does
not rely on complex mathematical models or sophisticated operators. Instead, it lever-
ages the inherent parallelism of the teaching and learning process to efficiently explore
the solution space and converge towards optimal or near-optimal solutions. This sim-
plicity makes TLBO particularly suitable for solving real-world optimization problems
where computational resources are limited or the problem structure is not well-defined.
Furthermore, TLBO does not require any problem-specific parameter tuning, making
it easy to implement and apply in practice. This versatility and ease of use have con-
tributed to the widespread adoption of TLBO across various fields, including engineering
[10, 59], finance [24], image processing [44, 3], and scheduling [49].

Since the teaching and learning phases are fundamental to TLBO, they mirror the
educational process. During the teaching phase, the best-performing individual (referred
to as the teacher) within the population imparts her/his knowledge to poorer-performing
individuals (referred to as students). This knowledge transfer mimics the learning pro-
cess, wherein poorer-performing solutions adjust themselves towards the optimal solution
and refine their approaches based on the guidance provided by the teacher. Additionally,
aside from learning from the teacher, students also enhance their knowledge through in-
teraction with one another. Consequently, the TLBO algorithm comprises two phases:
the teacher phase and the learner phase.

In the teacher phase, an individual from the population with the highest level of
knowledge assumes the role of the teacher. Let S be a population matrix, where n
represents the number of students and m represents the number of courses. Each row
of this student-course matrix represents the grades of a student across different courses.

S =


s1,1 s1,2 . . . s1,m
s2,1 s2,2 . . . s2,m
...

...
...

...
sn,1 . . . . . . sn,m

 . (9)

Let’s illustrate this with an example. In our class (or population), we have 5 students,
each enrolled in 4 courses, with grades assigned to each student for these courses. Assume
S is as follows:

S =


3 4 5 2
5 3 4 4
5 2 1 3
4 3 2 2
3 4 3 2

 . (10)
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The mean value for each course is stored as a row vector denoted as Sm. Thus, the jth

component of Sm is the average of the jth column of matrix S. The calculated value of
Sm for matrix S is as follows:

Sm = [4 3.2 3 2.6]. (11)

Let’s clarify the process to provide a clearer understanding of the forthcoming for-
mulas. The algorithm aims to iteratively improve a randomly generated initial matrix S
to produce an optimal matrix. Each iteration involves multiple steps to generate a new
matrix S from an existing matrix S through teacher and student phases. Each iteration
starts with the matrix S which is denoted as Sold. The matrix after each step is called
the current matrix S. At the end of each iteration, the current matrix S is Snew.

The first step of the teacher phase is to select the student with the highest fitness
value from S as the teacher, representing the student with the greatest knowledge. The
fitness function is the total grades of the students. Subsequently, the teacher tries to
increase the mean value of the class by employing Equation 12. steacher is the second
row vector of S in the example above, as it has the highest total grade of 18.

snewi = soldi + ri ∗ (steacher − t ∗ Sm). (12)

where ri is a random value such that ri ∈ [0, 1], and t shows the teaching factor, which
can only take the values 1 or 2. snewi represents the ith row of the current matrix S,
while soldi represents the ith row of matrix S from the previous iteration. For instance,
the first row would be [3.8 3.9 5.5 2.7] when r is 0.5 and t is 1. This process is
repeated for all other students.

In the learner phase following the teacher phase, each student engages with a ran-
domly selected student from the class. Suppose we have two randomly selected students,
si and sj . They are the row vectors of the current matrix S, obtained at the end of the
teacher phase. The student with less knowledge improves through knowledge exchange
with the other student, as indicated by Equation 13.

snewi = soldi + h(i, j) ∗ ri ∗ (soldi − sj), (13)

where

h(i, j) =

{
1, f(si) < f(sj)

−1, otherwise,
(14)

where f(si) represents fitness value of solution si. If a new solution results in a better
fitness value, the TLBO algorithm continues with this solution.

This iterative process continues until the maximum iteration number is reached. The
flowchart depicting the TLBO algorithm is provided in Figure 1.
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Fig. 1: Flowchart of optimization algorithm based on teaching and learning.
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2.4. Genetic algorithm

Genetic Algorithm is mainly used for path planning in static and/or dynamic environ-
ments (see Section 1 for details). We also employ a genetic algorithm in the evaluation
of our method as a baseline. For this reason, this section gives an overview of the genetic
algorithm and its operators.

The genetic algorithm is one of the most popular evolutionary algorithms that ex-
amine search space to find optimum or approximate solutions for complex and com-
plicated problems. It is a population-based algorithm that is inspired by biological
evolution [21, 39].

The genetic algorithm begins with a random population. Each individual in the
population is called a chromosome which indicates a candidate solution to the problem.
A chromosome consists of some structures called genes that represent a set of variables
in the problem of interest. Nature selection favors the fittest individuals for food and
reproduction, causing their genes to be more highly inherited by the next generation of
their species. This is the essential component of a genetic algorithm. The algorithm
selects some individuals from the current population to produce the new generation. To
do so, the genetic algorithm computes a fitness value for each chromosome employing
a fitness function to measure their quality. The higher-valued ones are considered the
best individuals and are been applied genetic operators, namely crossover and mutation,
to create the new population. Crossover operation combines some parts determined by
crossover point(s) of parental chromosomes that are randomly chosen among individuals
in the previous step. Each new child has a new set of parents and this procedure
lasts until the population size is reached. Then mutation (random bit flips) operator
comes into play to incorporate diversity in the population. Through it, new solutions
are avoided from becoming similar and the likelihood of trapping in local solutions is
reduced.

We employ a genetic algorithm for path planning in static environments. The first
task in the genetic algorithm is to create an initial population, thereby we need to define
chromosomes to signify our problem. Each chromosome comprises a specific number of
control points, with each gene within a chromosome representing x and y coordinates,
both of which are integer values within the range of 0 to 100. The values of the first
and last genes in the chromosome are (0,0) and (100,100) since the first and last genes
represent the starting and destination points, respectively. The chromosomes are utilized
to define a Bezier curve. We do not restrict control points to be obstacle-free, leading
to an improved version of the genetic algorithm approach proposed by Ma et al. [36],
which we henceforth refer to as IGA.

A single crossover operation is implemented, exchanging control points from random
positions between the parents. Afterward, the newly generated individuals undergo
obstacle checks; if they pass, they are integrated into the population. Next, a mutation
operation is carried out, and the resulting individuals are likewise included. Roulette
wheel selection is then utilized to ensure the population size remains constant. The
fitness value of each chromosome is the length of the Bezier curve. The shorter the
length of the curve, the higher the fitness value of the chromosome, so the better the
quality solution.
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3. PROPOSED APPROACH

This section explains the proposed approach based on the TLBO algorithm for finding
a global path.

3.1. Initial population generation

The first step of meta-heuristic algorithms is to generate an initial population. For
this reason, we create the initial population, with each individual composed of X and
Y coordinates, representing the control points of a Bezier curve. The initial and final
control points represent the starting and target points of the robot’s path, respectively,
while the intermediate points between them are randomly generated.

3.2. Teacher phase

The teacher phase in the TLBO algorithm plays a crucial role in guiding the search
process toward better solutions. During this phase, the algorithm mimics the concept
of a teacher imparting knowledge to students. The teacher represents the best solution
concerning fitness function found so far in the optimization process. When the teacher
is decided, s/he shares its knowledge with the students according to Equation 12 that
helps the teacher to guide the students towards better solutions. Consequently, the
entire population converges towards better solutions with each iteration.

For instance, assume a matrix S as described in Section 2.3 with 5 rows. How-
ever, this time each row of the matrix S consists of control points. Let’s refer to
each row as a solution, si, and consider that each solution si has 4 control points
[(x1, y1) (x2, y2) (x3, y3) (x4, y4)]. Each cell of the matrix S represents (x, y) co-
ordinates of a control point. Assume the starting point is (0, 0) and ending point is
(5, 5) and the S is as follows:

S =


(0, 0) (1.1, 1.3) (3.8, 2.4) (5, 5)
(0, 0) (1.0, 2.95) (2.7, 4.05) (5, 5)
(0, 0) (0.5, 2.3) (3.3, 3.3) (5, 5)
(0, 0) (3.8, 1.7) (3.6, 4.5) (5, 5)
(0, 0) (1.95, 2.45) (3.8, 4.0) (5, 5)

 . (15)

Firstly, we compute Bezier curves using the control points in each row: If a curve collides
with any obstacle, it is replaced with a random solution. If not, we compute the length
of Bezier curve using the Equation 7.

Since the fitness value is the path length, the row with the shortest path length
is chosen as the teacher, steacher. Assume s3 has the smallest value, so steacher is
s3. After selecting the teacher, students will adjust their solutions according to the
teacher using Equation 12. In Equation 12, Sm denotes the mean value for each y
dimension, representing a course for the students. However, in our scenario, computing
the mean of control points is not meaningful, so we have modified Equation 12. Instead
of calculating Sm, we directly use the disparity between student and teacher control
points as an indicator of potential directions for improvement.
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We use pointwise subtraction to measure the distance between the current solution
and the best solution and then update the current solution by adding this difference.
The update rule of our algorithm is given Equation 16.

snewi = soldi + ri ∗ (steacher − soldi ) (16)

The S will be as follows when r is 0.5.

S =


(0, 0) (0.8, 1.8) (3.55, 2.85) (5, 5)
(0, 0) (0.75, 2.625) (3.0, 3.675) (5, 5)
(0, 0) (0.5, 2.3) (3.3, 3.3) (5, 5)
(0, 0) (2.15, 2.0) (3.5, 3.9) (5, 5)
(0, 0) (1.225, 2.375) (3.55, 3.65) (5, 5)

 . (17)

Bezier curves of the current S are now generated using Equation 2. These curves
are then evaluated for collisions with obstacles. Paths that collide with obstacles are
replaced with random control points.

After one iteration of the teacher phase is completed, an iteration of the learner
phase described below begins and these two phases follow each other until the maximum
number of iterations is reached.

3.3. Learner phase

In the learning phase of the TLBO algorithm, individuals, namely students, iteratively
enhance their solutions through knowledge sharing. Two students are chosen from the
population randomly, and their fitness (knowledge) is evaluated. After selecting the
two student solutions, Bezier curves are generated, and their lengths are computed for
comparison. It is important to note that we do not need to check for obstacle collisions
because we ensure in previous iterations that each solution is collision-free. In the
original algorithm, each student adjusts its solution according to the difference in fitness
value with a randomly selected student. We slightly modify this approach so that the
student with the lower fitness value adjusts its solution based on the better-performing
student’s solution. With this change, not every student modifies its solution; only those
with poorer fitness values do. Suppose we have two randomly selected solutions indexed
as i and j. If solution si has a longer path, we update this solution using the following
equation:

snewi = soldi + ri ∗ (sj − soldi ). (18)

If the opposite case occurs, where si has a shorter path, the equation changes to the
following:

snewj = soldj + ri ∗ (si − soldj ). (19)

Subsequently, Bezier curves are generated using the new solutions and then validated
for collisions, similar to the process in the teacher phase. The pseudocode of our proposed
path planning method based on TLBO is presented in Algorithm 1.
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Algorithm 1: Path Planning Algorithm based on TLBO.

Input : N : population
M : number of control points
G : maximum iteration number
k : number of obstacles

Output: p : the shortest collision-free path

1 Generate a random population in which each individual consists of M control
points

2 Set k obstacles at random points
3 for each individual i ∈ N do
4 Find the corresponding Bezier curve, p, for i
5 if p conflicts one of the obstacles then
6 remove p from N ;
7 else
8 compute the length of p
9 end

10 end
11 for iter ← 1 to G do
12 Assign the individual with the smallest length as the teacher, t
13 for each student s ∈ N do
14 Produce snew by changing control points in s w.r.t to t
15 Find the corresponding Bezier curve, pnew, for snew

16 if pnew does not conflict one of the obstacles then
17 Compute the length of pnew

18 if length(pnew) < length(p) then
19 Replace snew with s
20 end

21 end

22 end
23 for j ← 1 to N do
24 Select a random student, si (i ̸= j)
25 if length(pi) < length(pj) then
26 Produce snewj w.r.t to si
27 else
28 Produce snewi w.r.t to sj
29 end
30 Find the corresponding Bezier curve for the new solution (snew)
31 Compute the length of the new solution

32 if length(pnew) < length(pold) then
33 Replace snew with sold

34 end

35 end

36 end
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4. EXPERIMENTAL SET-UP AND RESULTS

We conduct our experiments in different environments to check the effectiveness of our
proposed methods. Unlike other optimization techniques, TLBO does not require any
parameters to be tuned, while GA requires parameters such as crossover and mutation
rates. In the experiments, we varied the mutation rate between 0.01 and 0.3 and the
crossover rate between 0.5 and 0.9 across all three environments. The best results were
achieved with a mutation rate of 0.01 and a crossover rate of 0.7. Therefore, the results
are presented with these values: a mutation rate of 0.01 and a crossover rate of 0.7.
The population size is set to 100 for both TLBO and IGA, and we chose a maximum
iteration number of 30, which serves as the stopping criteria for both algorithms. The
fitness function for both TLBO and IGA aims to find the shortest and collision-free path
from the start point to the target point. This fitness function evaluates paths based on
the length of the Bezier curve. The safety margin around obstacles is set to 0.2 units.

To validate the path planning for the mobile robot, we conducted tests in three
distinct grid environments with varying obstacles. The grid’s bottom-left corner, serving
as the robot’s starting point, is located at (0, 0), while the top-right corner, representing
the robot’s destination, is at (100, 100). With these start and end points, we used
four additional control points for the Bezier curves. As the degree of the Bezier curve
increases, more complex Bernstein polynomials are obtained, resulting in more precise
paths. This becomes particularly important when the number of obstacles increases.
Higher-order Bezier curves provide more suitable paths for the robot to navigate in
complex environments. We present the results of the TLBO algorithm for cases with
control points set at 6 and 20 in Figure 2 to provide a clearer basis for comparison. The
Bezier curve with 6 control points yields a path length of 143.72, while the curve with
20 control points yields 143.20.

((a)) TLBO Algorithm using 6 con-
trol points.

((b)) TLBO Algorithm using 20 con-
trol points.

Fig. 2: Path planning simulation results of TLBO using 6 and 20 control points.

Figure 3 illustrates the optimal paths obtained by the TLBO and IGA algorithms in
three distinct environments. The left side of the figure corresponds to TLBO, while the
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((a)) TLBO on Environment 1. ((b)) IGA on Environment 1.

((c)) TLBO on Environment 2. ((d)) IGA on Environment 2.

((e)) TLBO on Environment 3. ((f)) IGA on Environment 3.

Fig. 3: Simulation results of path planning across three different environments using TLBO
and IGA.
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right side depicts IGA results. It is evident that both algorithms successfully identify
the shortest collision-free path in each environment. Although visual comparison may
not demonstrate TLBO’s better performance over IGA, we provide the path lengths in
Table 1 for a comprehensive analysis. The table presents the best, worst, and average
(from ten independent runs) values of paths obtained by the TLBO algorithm and IGA.
The findings show that the TLBO algorithm outperforms its counterpart suggesting a
relative decline of up to 1.34% (143.72 vs. 145.67). For instance, for Environment 3,
TLBO yields 145.16, 145.52, and 145.36, whereas the path lengths obtained by IGA are
146.63, 146.72, and 146.0. It is important to note that the TLBO algorithm demonstrates
better performance across all cases (i. e., best, worst, and average) for each environment.

- TLBO IGA
Best Worst Average Best Worst Average

Env. 1 143.72 161.70 149.55 145.67 163.13 153.59
Env. 2 150.57 150.69 150.64 150.90 152.25 151.65
Env. 3 145.16 145.52 145.36 146.63 146.72 146.0

Tab. 1: The length of paths generated by TLBO algorithm and IGA using 6 control points.

In our next experiment, we aim to investigate the extent to which the number of
control points affects the drawing of Bezier curves based on the TLBO algorithm and
IGA, potentially resulting in shorter paths. We select the “Environment 1” for com-
parison and increase the number of control points to 20. While the simulation results
are presented in Figure 4, the path length results are shown in Table 2. They indicate
that both methods achieve shorter paths compared to those in Table 1, with TLBO out-
performing IGA once again. When comparing the performance of the TLBO algorithm
and IGA in Table 1, we observe a significant decrease in path lengths. For instance, in
the worst-case scenario, the path length decreases from 161.7 to 143.46 with TLBO and
from 163.13 to 144.04 with IGA.

- TLBO IGA
Best Worst Average Best Worst Average

Env. 1 143.20 143.46 143.37 143.27 144.04 143.56

Tab. 2: The length of paths generated by TLBO algorithm and IGA using 20 control points.

Lastly, we conduct an additional experiment to demonstrate the superiority of our
approach by comparing it with a prior study [36], which uses GA with Bezier curves.
They refer to their Bezier curve smoothing algorithm based on GA as “BCA” and its
enhanced version, which includes increasing the safety distance and introducing an adap-
tive penalty factor in the fitness function, as “BCA-Q”. To prevent confusion with the
earlier environments, we have designated Environment 1 in [36] as “Environment 4” and
Environment 2 in [36] as “Environment 5” in our study.
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((a)) TLBO with 20 control points. ((b)) IGA with 20 control points.

Fig. 4: Path planning simulation results of TLBO algorithm and IGA in Environment 1 using
20 control points.

For a comprehensive comparison, we visually present the optimal paths obtained by
our algorithms and BCA-Q in Figure 5 and Figure 6, using the environments provided
by [36]. Figure 5 displays the optimal paths generated by TLBO and IGA, while Figure 6
shows the simulation results of BCA-Q, extracted directly from the paper. The first
column of figures, (a), corresponds to Environment 4, while the second column of figures,
(b), corresponds to Environment 5. It can be observed that both methods, namely TLBO
and IGA, yield collision-free, smooth paths; however, the TLBO algorithm provides a
shorter path compared to IGA and BCA-Q.

Best Worst Avg
ACO[12] 34.62 50.38 42.54
GA[22] 32.87 38.69 35.71

ACO-GA[11] 31.80 35.41 33.42
ASFA-GA[36] 31.21 33.55 32.36

BCA[36] 29.94 32.45 30.94
BCA-Q[36] 31.18 34.85 33.00

IGA 29.70 29.82 29.75
TLBO 29.66 29.72 29.69

Tab. 3: For Environment 4, the length of paths generated by some algorithms presented in [36]
with our proposed methods.

Table 3 and Table 4 present the path length results of several heuristic methods,
namely ACO[12], GA[22], ACO-GA[11], BCA, and BCA-Q, as reported in [36], alongside
our proposed methods for two different environments in [36], respectively. When we
examine tables, BCA and BCA-Q show inferior performance compared to our proposed
methods, implying longer paths. TLBO shows the best performance yielding the shortest
paths with the scores of 29.66, 29.72, 29.69 for Environment 4 and 29.61, 28.87, and 29.76
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Best Worst Avg
ACO[12] 35.45 56.11 46.00
GA[22] 33.80 40.45 37.54

ACO-GA[11] 32.97 37.37 35.15
ASFA-GA[36] 32.38 34.77 33.66

BCA[36] 30.35 33.77 32.14
BCA-Q[36] 31.85 35.45 33.76

IGA 30.08 30.41 30.23
TLBO 29.61 29.87 29.76

Tab. 4: For Environment 5, the length of paths generated by some algorithms presented in [36]
with our proposed methods.

for Environment 5.

When comparing the performance of TLBO to BCA-Q [36], we observe a relative
decline of 4.87%, 14.72%, and 11.84% for TLBO and 4.75%, 14.43% and 9.85% for the
IGA in Environment 4. For Environment 5, the relative decline reaches up to 15.74%
and 14.22% for TLBO and IGA, respectively.

The reader may wonder why there is a performance difference between BCA/BCA-Q
and IGA, despite both employing GA with Bezier curves for the same environments
and under similar settings. The reason for this might arise from the selection of control
points for Bezier curves. In the former, control points are chosen outside of obstacles.
However, in our approach, we do not impose restrictions on control points being obstacle-
free; some of the control points may be in the obstacle. Instead, we discard paths with
collisions and compel the algorithm to find a collision-free path.

The idea of assuming that robots move along a specific spline has been around for
nearly 30 years [48]. In the earliest studies, there were no obstacles in the environment,
but this idea ensures that the robot moves along a smooth curve. As it is known, there
are many types of splines, some of them pass through control points, and some do not.
After determining the spline on which the robot moves in an obstacle-free environment,
it is necessary to check whether this spline intersects with obstacles at each step of the
proposed algorithm. If the algorithm determines the best path in m steps and collision
checks are performed at n points in each step, this check alone requires O(mn) processing
time. Since splines passing through control points were used in the first studies, it was
naturally necessary to take control points from outside the obstacles (or even from a
certain area around the obstacles). However, although there is no guarantee of not
colliding, researchers did not perform collision checks in their algorithms they proposed
to avoid the extra O(mn) processing time explained above. Later, when splines that did
not pass through control points began to be used, researchers continued this tradition.
Instead of performing collision checks, they were content to select control points from
areas around the obstacles. The Bezier splines in this study only pass through the first
and last control points. Selecting control points outside obstacles reduces the number
of feasible Bezier curves that robots can move. This means that even if some control
points are over obstacles, the Bezier curve determined by them might not collide with the
obstacles. Additionally, the best curve could be one of the reduced curves. Therefore,
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((a)) TLBO in Environment 4. ((b)) TLBO in Environment 5.

((c)) IGA in Environment 4. ((d)) IGA in Environment 5.

Fig. 5: Path planning simulation results of our methods across two different environments
from [36].

((a)) BCA-Q in Environment 4. ((b)) BCA-Q in Environment 5.

Fig. 6: Path planning simulation results of [36] in the same environments as in Figure 5.
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in the first step, we randomly select control points from the entire environment, and
in the next steps, we do not check whether the control points newly created by the
algorithm are on obstacles. Instead, we check whether the curve we obtained collides
with obstacles at each step.

Let’s demonstrate what we explained above with a simple example.

Example. Let control points P0 = (0, 0), P1 = (1, 2), P2 = (3, 3) be given. Let also the
obstacle are given as a rectangle determined with 0 ≤ x ≤ 1.2 and 1.8 ≤ y ≤ 3. Control
point P1 is inside this rectangle. The parametric formula of the Bezier spline determined
by the given control points is as follows:

x(t) = t2 + 2t = (t+ 1)2 − 1

y(t) = 4t− t2 = −(t− 2)2 + 4.

From here, we have

dy

dx
=

t+ 1

2− t
> 0

. In other words, the function y = −(
√
x+ 1)2+4 determined by these parametric equa-

tions is an increasing function in the range [0, 3]. Since y = −(
√
2.2−3)2+4 ≈ 1.7 < 1.8

for x = 1.2, it can be seen that the Bezier curve does not intersect with the given ob-
stacle. This example is illustrated in Figure 7.

Fig. 7: An obstacle-free Bezier curve with a control point inside the obstacle area.
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5. CONCLUSION

This paper presents a novel mobile robot path planning approach that combines the
TLBO algorithm with Bezier curves. The TLBO algorithm efficiently determines the
control points for the Bezier curve, which inherently generates smooth and continu-
ous paths. This smoothness minimizes energy consumption during robot movement.
We tested the proposed algorithm in diverse environments, including complex scenarios
with numerous obstacles. The results demonstrate the effectiveness of the method in
finding optimal paths that are collision-free, smooth, and short. Nevertheless, several
meaningful topics remain to be addressed, determining the optimal number of control
points for the Bezier curve to balance smoothness and computational complexity, and
adapting the algorithm for dynamic environments.
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