Kybernetika 60 no. 3, 271-292, 2024

An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem

Maroua Hakim and Rachid ZitouniDOI: 10.14736/kyb-2024-3-0271

Abstract:

In this paper, we propose a novel approach for solving a fuzzy bi-objective multi-index fixed-charge transportation problem where the aim is to minimize two objectives: the total transportation cost and transportation time. The parameters of the problem, such as fixed cost, variable cost, and transportation time are represented as fuzzy numbers. To extract crisp values from these parameters, a linear ranking function is used. The proposed approach initially separates the main problem into sub-problems. Then, it solves each sub-problem using different algorithms. After that, it determines the Pareto optimal solutions and trade-off pairs. To evaluate the performance of the proposed approach, various numerical problems of different sizes were solved. The results obtained are encouraging and show the efficiency of our approach.

Keywords:

fixed charge transportation problem, multi-index transportation problem, fuzzy mathematics, multi-objective problems

Classification:

90C05, 90B06, 03B52.

References:

  1. V. Adlakha and K. Kowalski: A simple heuristic for solving small fixed-charge transportation problems. OMEGA: Int. J. Management Sci. 31 (2003), 205-211.   DOI:10.1016/S0305-0483(03)00025-2
  2. V. Adlakha, K. Kowalski and B. Lev: A branching method for the fixed charge transportation problem. OMEGA: Int. J. Management Sci. 38 (2010), 393-397.   DOI:10.1016/j.omega.2009.10.005
  3. A. Ahuja and S. R. Arora: Multi index fixed charge bi-criterion transportation problem. Indian J. Pure Appl. Math. 32 (2001), 739-746.   CrossRef
  4. M. L. Balinski: Fixed cost transportation problems. Naval Res. Logist. Quarterly 8(1961), 41-54.   DOI:10.1002/nav.3800080104
  5. M. M. El-Sherbiny and R. M. Alhamali: A hybrid particle swarm algorithm with artificialimmune learning for solving the fixed charge transportation problem. Comput. Industr. Engrg, 64 (2013), 610-620.   DOI:10.1016/j.cie.2012.12.001
  6. N. Gasilov, Ş. E. Amrahov, A. G. Fatullayev, H. I. Karakaş and Ö. AkIn: Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 75 (2011), 189-203.   CrossRef
  7. A. G. Gasilov, S. E. Fatullayev and Ş. E. Amrahov: Solution of non-square fuzzy linear systems. Journal of Multiple-Valued Logic and Soft computing, 20 (2013), 221-237.   CrossRef
  8. S. Ghosh, S. K. Roy and J. L. Verdegay: Multi-objective fully intuitionistic fuzzy fixed charge transportation problem. Complex Intell. Syst. 7 (2021), 1009-1023.   DOI:10.1007/s40747-020-00251-3
  9. S. Ghosh, S. K. Roy and J. L. Verdegay: Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment. Soft Comput. 26 (2022), 11611-11625.   DOI:10.1007/s00500-022-07442-9
  10. S. Ghosh, K. Küfer, S. K. Roy and G. Weber: Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology. Central Europ. J. Oper. Res. 31 (2023), 337-362   DOI:10.1007/s10100-022-00811-7
  11. K. B. Haley: The Solid transportation problem. Oper. Res. 10 (1962), 448-463.   DOI:10.1287/opre.10.4.448
  12. S. Haque, K. Bhurjee and P. Kumar: Multi-objective transportation problem with fixed charge budget constraints under uncertain environment. System Sci. Control Engrg. 10 (2022), 899-909.   DOI:10.1080/21642583.2022.2137707
  13. M. Hedid and R. Zitouni: Solving the four-index fully fuzzy transportation problem. Croatian Oper. Res. Rev. 11 (2020), 199-215.   DOI:10.17535/crorr.2020.0016
  14. W. M. Hirsch and G. B. Dantzig: The fixed charge problem. Naval Research Logistics Quarterly, 15 (1968), 413-424.   DOI:10.1002/nav.3800150306
  15. N. Kartli, E. Bostanci and M. S. Guzel: A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 45-63.   DOI:10.14736/kyb-2023-1-0045
  16. A. Khurana and V. Adlakha: On multi-index fixed charge bi-criterion transportation problem. OPSEARCH 52 (2015), 733-745.   DOI:10.1007/s12597-015-0212-y
  17. A. Kumar, A. Gupta and M. K. Sharma: Solving fuzzy bi-criterion fixed charge transportation problem using a new fuzzy algorithm. Int. J. Appl. Sci. Engrg. 8 (2010), 77-98.   CrossRef
  18. T. S. Liou and M. J. Wang: Ranking fuzzy numbers with integral value. Fuzzy Sets Systems 50 (1992), 247-255.   DOI:10.1016/0165-0114(92)90223-Q
  19. M. Lotfi and R. Tavakkoli-Moghaddam: A genetic algorithm using priority based encoding with new operators for fixed charge transportation problems. Appl. Soft Comput. 13 (2013), 2711-2726.   DOI:10.1016/j.asoc.2012.11.016
  20. G. Maity, V. F. Yu and S. K. Roy: Optimum intervention in transportation networks using multimodel system under stochastic environment. J. Adv. Transport. (2022).   CrossRef
  21. D. Mardanya and S. K. Roy: The multi-objective multi-item just-in-time transportation problem. Optimization 71 (2022), 4665-4696.   DOI:10.1080/02331934.2021.1963246
  22. D. Mardanya and S. K. Roy: Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Chin. Univ. 37 (2022), 111-130.   DOI:10.1007/s11766-022-4476-8
  23. D. Mardanya, S. K. Roy and V. F. Yu: Solving the multi-model transportation problem via the rough interval approach. RAIRO Operations Research, 56 (2022), 3155-3185.   DOI:10.1051/ro/2022131
  24. D. Mardanya and S. K. Roy: New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO Oper. Res. 57 (2023), 99-120.   DOI:10.1051/ro/2022211
  25. P. G. McKeown: A vertex ranking procedure for solving the linear fixed charge problem. Oper. Res. (1975), 1183-1191.   CrossRef
  26. S. Molla-Alizadeh, S. Sadi Nezhad, R. Tavakkoli-Moghaddam and M. Yazdani: Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Math. Comput. Modell. 57 (2013), 1543-1558.   DOI:10.1016/j.mcm.2012.12.031
  27. A. Mondal, S. K. Roy and S. Midya: Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem. J Ambient Intell Human Comput, 14 (2023), 6975-6999.   DOI:10.1007/s12652-021-03554-6
  28. U. S. Palekar and S. Zionts: A branch-and bound method for the fixed charge transportation problem. Management Sci. 36 (1990), 1092-1105.   DOI:10.1287/mnsc.36.9.1092
  29. J. M. Rousseau: A Cutting Plane Method for the Fixed Cost Problem. Doctoral Dissertation. Massachusetts Institute of Technology, Cambridge 1973.   CrossRef
  30. S. K. Roy and S. Midya: Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl Intell. 49 (2019), 3524-3538.   DOI:10.1007/s10489-019-01466-9
  31. S. Sadeghi-Moghaddam, M. Hajiaghaei-Keshteli and M. Mahmoodjamloo: New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment. Neural Comput. Appl. 31 (2017), 477-497.   DOI:10.1007/s00521-017-3027-3
  32. M. Sun, J. E. Aronson, P. G. Mckeown and D. Drinka: A tabu search heuristic procedure for the fixed charge transportation problem. Europ. J. Oper. Res. 106 (1998), 441-456.   DOI:10.1016/S0377-2217(97)00284-1
  33. S. Singh, R. Tuli and D. Sarode: Pareto optimal solution of the fuzzy multi-index bi-criteria fixed charge transportation problem. Int. J. Fuzzy Math. Arch. 13 (2017), 199-212.   DOI:10.22457/ijfma.v13n2a10
  34. K. Yousefi, J. Afshari and M. Hajiaghaei-Keshteli: Solving the fixed charge transportation problem by new heuristic approach. J. Optim. Industr. Engrg. 2 (2019), 41-52.   CrossRef
  35. L. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353.   DOI:10.1016/S0019-9958(65)90241-X
  36. R. Zitouni and M. Achache: A numerical comparison between two exact methods for solving a capacitated 4-index transportation problem. J. Numer. Anal. Approx. Theory 46 (2017), 181-192.   DOI:10.33993/jnaat462-1116
  37. R. Zitouni and A. Keraghel: Resolution of a capacitated transportation problem with four subscripts. Kybernetes 32 (2003), 1450-1463.   DOI:10.1108/03684920310493341
  38. R. Zitouni and A. Keraghel: A note on the algorithm of resolution of a capacitated transportation problem with four subscripts. Fast East J. Math. Sci. (FJMS) 26 (2007), 769-778.   CrossRef