Kybernetika 60 no. 2, 244-270, 2024

Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise

Yanjun Shen, Chen Ma, Chenhao Zhao and Zebin WuDOI: 10.14736/kyb-2024-2-0244

Abstract:

In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.

Keywords:

fault-tolerant control, fault diagnosis, output measurement noise, non-fragile, output filter

Classification:

93C10, 94C12

References:

  1. D. Astolfi, L. Zaccarian and M. Jungers: On the use of low-pass filters in high-gain observers. Systems Control Lett. 148, (2021).   DOI:10.1016/j.sysconle.2020.104856
  2. M. Chadli, A. Abdo and S. X. Ding: H-/$ {H}_\infty $ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49 (2013), 1996-2005.   DOI:10.1109/jas.2021.1004314
  3. X. Chang and G. Yang: Nonfragile $ {H}_\infty $ filtering of continuous-time fuzzy systems. IEEE Trans. Signal Process. 59 (2010), 1528-1538.   DOI:10.1109/TSP.2010.2103068
  4. Chen, Jianliang, Zhang, Weidong, Cao, Yongyan, Chu and Hongjun: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (2016), 1336-1347.   DOI:10.1109/TSMC.2016.2587300
  5. D. Cui, B. Niu, H. Wang and D. Yang: Adaptive fuzzy output-feedback fault-tolerant tracking control of a class of uncertain nonlinear switched systems. Taylor and Francis 50 (2019), 2673-2686.   DOI:10.1080/00207721.2019.1672119
  6. D. Cui, Ch. K. Ahn and Z. Xiang: Fault-tolerant fuzzy observer-based fixed-time tracking control for nonlinear switched systems. IEEE Trans. Fuzzy Systems (2023).   DOI:10.1109/TFUZZ.2023.3284917
  7. D. Cui, M. Chadli and Z. Xiang: Fuzzy fault-tolerant predefined-time control for switched systems: a singularity-free method. IEEE Trans. Fuzzy Systems (2023).   DOI:10.1109/TFUZZ.2023.3321688
  8. J. Gong, B. Jiang and Q. S. Shen: Distributed adaptive output-feedback fault tolerant control for nonlinear systems with sensor faults. IEEE Trans. Industr. Inform. 38 (2020), 4173-4190.   DOI:10.3233/JIFS-190531
  9. H. Guo, J. Xu and Y. Chen: Robust control of fault-tolerant permanent-magnet synchronous motor for aerospace application with guaranteed fault switch process. IEEE Transa. Industr. Electronics 62 (2015), 7309-7321.   DOI:10.1109/TIE.2015.2453935
  10. X. He, Z. Wang, L. Qin and D. Zhou: Active fault-tolerant control for an internet-based networked three-tank system. IEEE Trans. Control Systems Technol. 24 (2016), 2150-2157.   DOI:10.1109/TCST.2016.2524595
  11. F. Jia and X. He: Adaptive fault-tolerant tracking control for discrete-time nonstrict-feedback nonlinear systems with stochastic noises. IEEE Trans. Automat. Sci. Engrg. (2023), 1-13.   DOI:10.1109/TASE.2023.3278978
  12. Ch. Keliris, M. M. Polycarpou and T. Parisini: An integrated learning and filtering approach for fault diagnosis of a class of nonlinear dynamical systems. IEEE Trans. Neural Networks Learning Systems 28 (2016), 988-1004.   DOI:10.1109/TNNLS.2015.2504418
  13. S. V. Kumar, R. Raja, S. M. Anthoni, J. Cao and Z. Tu: Robust finite-time non-fragile sampled-data control for TS fuzzy flexible spacecraft model with stochastic actuator faults. Applied Math. Comput. 321 (2018), 483-497.   DOI:10.1016/j.amc.2017.11.001
  14. M.-S, Koo and H.-L. Choi: State feedback regulation of high-order feedforward nonlinear systems with delays in the state and input under measurement sensitivity. Int. J. Systems Sci. 52 (2021), 2034-2047.   DOI:10.1080/00207721.2021.1876275
  15. Y. Li, J. Zhang and S. Tong: Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems. IEEE Trans. Industr. Inform. 18 (2021), 6026-6037.   DOI:10.1109/TII.2021.3133927
  16. X. X. Li, F. Zhu, A. Chakrabarty and {\.Z}ak: Nonfragile fault-tolerant fuzzy observer-based controller design for nonlinear systems. IEEE Trans. Fuzzy Systems 24 (2016), 1679-1689.   DOI:10.1109/TFUZZ.2016.2540070
  17. Z. Liu, C. Chen, Y. Zhang and C. L. P. Chen: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybernet. 45 (2014), 507-518.   DOI:10.1109/TCYB.2014.2329931
  18. G. Liu, J. H. Park, S. Xu and G. Zhuang: Robust non-fragile $ {H}_\infty $ fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties. Nonlinear Analysis: Hybrid Systems 32 (2019), 65-78.   DOI:10.1016/j.nahs.2018.11.001
  19. L. Liu, Z. Wang and H. Zhang: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans. Automat. Sci. Engrg. 514 (2016), 299-313.   DOI:10.1109/TASE.2016.2517155
  20. L. Liu, Z. Wang and H. Zhang: Adaptive {NN} fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 152 (2015), 209-221.   DOI:10.1016/j.neucom.2014.10.076
  21. L. Long and J. Zhao: Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time. IEEE Trans. Neural Networks Learning Systems 26 (2014), 1350-1362.   DOI:10.1109/TNNLS.2014.2341242
  22. J. Lu, F. Luo, Y. Wang, M. Hou and H. Guo: Observer-based fault tolerant control for a class of nonlinear systems via filter and neural network. IEEE Access 9 (2021), 91148-91159.   DOI:10.1109/ACCESS.2021.3092071
  23. H. J. Ma and G. Yang: Detection and adaptive accommodation for actuator faults of a class of non-linear systems. J. Intell. Fuzzy Systems 6 (2020), 2292-2307.   DOI:10.1049/iet-cta.2011.0265
  24. A. Paoli, M. Sartini and S. Lafortune: Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47 (2011), 639-649.   DOI:10.1016/j.automatica.2011.01.007
  25. R. Sakthivel, R. Kanagaraj, C. Wang and Selvara: Adaptive non-fragile observer design for the uncertain Lur'e differential inclusion system. Applied Mathematical Modelling 37 (2013), 72-81.   DOI:10.1016/j.apm.2012.01.001
  26. R. Sakthivel, R. Kanagaraj, C. Wang and Selvara: Non-fragile sampled-data guaranteed cost control for bio-economic fuzzy singular Markovian jump systems. IET Control Theory Appl. 13 (2019), 279-287.   DOI:10.1049/iet-cta.2018.5285
  27. R. Sakthivel, P. R. Mohana, Ch. Wang and P. Dhanalakshmi: Observer-based finite-time nonfragile control for nonlinear systems with actuator saturation. J. Comput. Nonlinear Dynamics 14 (2019).   DOI:10.1115/1.4041911
  28. M. Schuh, M. Zgorzelski and J. Lunze: Experimental evaluation of an active fault-tolerant control method. Control Engrg. Practice 43 (2015), 1-11.   DOI:10.1016/j.conengprac.2015.06.001
  29. Q. Shen, B. Jiang, P. Shi and Ch. Lim: Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans. Cybernet. 44 (2014), 2190-2201.   DOI:10.1109/TCYB.2014.2303131
  30. Y. Shen, D. Wang and Z. Fang: Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities. Kybernetika 58 (2022), 522-546.   DOI:10.14736/kyb-2022-4-0522
  31. L. Tang, D. Ma and J. Zhao: Neural networks-based active fault-tolerant control for a class of switched nonlinear systems with its application to RCL circuit. IEEE Trans. Systems, Man, Cybernet.: Systems 50 (2018), 4270-4282.   DOI:10.1109/TSMC.2018.2847283
  32. X. Wang, B. Niu, P. Zhao and X. Song: Neural networks-based adaptive finite-time prescribed performance fault-tolerant control of switched nonlinear systems. Int. J. Adaptive Control Signal Process. 35 (2021), 532-548.   DOI:10.1002/acs.3210
  33. Y. Wang, Y. Song and F. L. Lewis: Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Trans. Industr. Electronics 62 (2015), 3978-3988.   DOI:10.1109/TIE.2015.2399400
  34. Z. Xiang, R. Wang and B. Jiang: Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Systems Signal Process. 30 (2011), 73-87.   DOI:10.1109/TIE.2015.2399400
  35. W. Zebin, S. Yanjun, Z. Fan and Z. Chenhao: Robust fuzzy adaptive stabilization for uncertain nonlinear systems with quantized input and output constraints. J. Franklin Inst. (2024), 0016-0032.   DOI:10.1016/j.jfranklin.2024.106679
  36. W. Zeng, Q. Wang, F. Liu and Y. Wang: Learning from adaptive neural network output feedback control of a unicycle-type mobile robot. ISA Trans. 61 (2016), 337-347.   DOI:10.1016/j.isatra.2016.01.005
  37. Ch. Zhao, L. Li and Y. Shen: Global event-triggered output-feedback stabilization for switched nonlinear systems with time-delay and measurement sensitivity. J. Franklin Inst. 360 (2023), 13080-13107.   DOI:10.1016/j.jfranklin.2023.09.033
  38. D. Zhao and M. M. Polycarpou: Fault accommodation for a class of nonlinear uncertain systems with event-triggered input. IEEE/CAA J. Automatica Sinica 9 (2021), 235-245.   DOI:10.1109/jas.2021.1004314
  39. X. Zhao, H. Yang, H. R, Karimi and Y. Zhu: Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans. Cybernet. 46 (2015), 1337-1349.   DOI:10.1080/00207721.2021.1909775
  40. Qunxian Zheng, Shengyuan Xu and Zhengqiang Zhang: Nonfragile $ {H}_\infty $ observer design for uncertain nonlinear switched systems with quantization. Applied Mathematics and Computation 386 (2019).   DOI:10.1016/j.amc.2020.125435