Kybernetika 60 no. 2, 228-243, 2024

Data transformation technique in the data informativity approach via algebraic sequences

Yuki Tanaka and Osamu KanekoDOI: 10.14736/kyb-2024-2-0228

Abstract:

The data-informativity approach in data-driven control focuses on data and their matching model sets for system design and analysis. The approach offers a new mathematical formulation different from model-based control and is expected to progress. In model-based control, the introduction of equivalent transformations has made system analysis and design easier and facilitated theoretical development. In this study, we focus on data transformations and their transformation of matching model sets. We first introduce an algebraic sequence representing the relationship between the data and model set, and using this algebraic approach, we utilize propositions from homology theory, such as kernel universality, to analyze data and model transformations. This technique is significant not only mathematically but also in engineering. Further, we demonstrate how this technique can be applied to derive controllability judgments for data informativity-based analysis. Finally, we prove that design problems can be reduced to analysis problems involving controller inclusion.

Keywords:

data-driven control, data informativity-based analysis, analysis and design problems, algebraic sequence, homology theory

Classification:

93A99, 15A06

References:

  1. M. Atiyah: Introduction to Commutative Algebra. CRC Press, 2023.   CrossRef
  2. J. Eising, H. L. Trentelman and M. K. Camlibel: Data informativity for observability: an invariance-based approach. In: 2020 European Control Conference (ECC), IEEE 2020, pp. 1057-1059.   DOI:10.23919/ecc51009.2020.9143925
  3. H. Hjalmarsson, S. Gunnarsson and M. Gevers: A convergent iterative restricted complexity control design scheme. In: Proc. 1994 33rd IEEE Conference on Decision and Control, Vol. 2, IEEE 1994, pp. 1735-1740.   DOI:10.1109/cdc.1994.411775
  4. Z. S. Hou and Z. Wang: From model-based control to data-driven control: Survey, classification and perspective. Inform. Sci. 235 (2013), 3-35.   DOI:10.1016/j.ins.2012.07.014
  5. T. Leinster: Basic Category Theory. Cambridge University Press 143 (2014).   DOI:10.1017/cbo9781107360068
  6. L. Ljung: System identification. Signal Analysis Prediction, Springer 1998, pp. 163-173.   CrossRef
  7. C. De Persis and P. Tesi: Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans. Automat. Control 65 (2019), 3, 909-924.   DOI:10.1109/TAC.2019.2959924
  8. T. Saito: The World of Linear Algebra. University of Tokyo Press, 2007.   CrossRef
  9. S. Soma, O. Kaneko and T. Fujii: A new method of controller parameter tuning based on input-output data-Fictitious Reference Iterative Tuning (FRIT)-. IFAC Proc. Vol. 37 (2004), 12, 789-794.   DOI:10.1016/S1474-6670(17)31566-5
  10. I. Swanson: Homological Algebra. Fall, Graz 2018.   CrossRef
  11. Y. Tanaka, O. Kaneko and T- Sueyoshi: Data-driven control synthesis for dissipative systems by using input-output data via algebraic approach. In: Proc. SICE Annual Conference 2023, pp. 1462-1466.   CrossRef
  12. Y. Tanaka and O. Kaneko: Equivalent transformations in the data-informativity framework and its applications: homological algebraic approach. In: 23rd International Conference on Control, Automation and Systems (ICCAS), IEEE 2023, pp. 60-65.   DOI:10.23919/iccas59377.2023.10316898
  13. H. J. Van Waarde, J. Eising, H. L. Trentelman and M. K. Camlibel: Data informativity: a new perspective on data-driven analysis and control. IEEE Trans. Automat. Control 65 (2020), 11, 4753-4768.   DOI:10.1109/TAC.2020.2966717
  14. H. J. Van Waarde and M. K. Camlibel: From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma. IEEE Trans. Automat. Control 67 (2020), 1, 162-175.   DOI:10.1109/tac.2020.3047577
  15. H. J. Van Waarde and M. K. Camlibel: A matrix Finsler's lemma with applications to data-driven control. In: 60th IEEE Conference on Decision and Control (CDC), IEEE 2021, pp. 5777-5782.   DOI:10.1109/cdc45484.2021.9683285
  16. H. J. Van Waarde, M. K. Camlibel, P. Rapisarda and H. L. Trentelman: Data-driven dissipativity analysis: application of the matrix S-lemma. IEEE Control Systems Mag. 42 (2022), 3, 140-149.   DOI:10.1109/MCS.2022.3157118
  17. H. J. Van Waarde, J. Eising, M. K. Camlibel and H. L. Trentelman: A behavioral approach to data-driven control with noisy input-output data. IEEE Trans. Automat. Control (2023).   DOI:10.1109/tac.2023.3275014
  18. H. J. Van Waarde, J. Eising, M. K. Camlibel and H. L. Trentelman: The informativity approach: to data-driven analysis and control. IEEE Control Systems Magazine 43 (2023), 6, 32-66.   DOI:10.1109/MCS.2023.3310305
  19. J. C. Willems, P. Rapisarda, I. Markovsky and B. L. De Moor: A note on persistency of excitation. Systems Control Lett. 54 (2005), 4, 325-329.   DOI:10.1016/j.sysconle.2004.09.003