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QUANTIZED COOPERATIVE OUTPUT REGULATION
OF CONTINUOUS-TIME MULTI-AGENT SYSTEMS
OVER SWITCHING GRAPH

Ji Ma, Bo Yang, Ziqin Chen, Jiayu Qiu and Wenfeng Hu

This paper investigates the problem of quantized cooperative output regulation of linear
multi-agent systems with switching graphs. A novel dynamic encoding-decoding scheme with
a finite communication bandwidth is designed. Leveraging this scheme, a distributed proto-
col is proposed, ensuring asymptotic convergence of the tracking error under both bounded
and unbounded link failure durations. Compared with the existing quantized control work of
MASs, the semi-global assumption of initial conditions is not required, and the communication
graph is only required to be jointly connected. Finally, two simulation examples demonstrate
the effectiveness of the proposed distributed protocol for bounded and unbounded link failure
durations.
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1. INTRODUCTION

Cooperative output regulation [9] has become an active and key cooperative control
research topic in multi-agent systems (MASs) [8, 21, 25, 1] in recent years because of
its widespread application in attitude formation, sensor networks, and other engineering
[24, 26, 7, 30]. The objective of cooperative output regulation is to achieve both reference
tracking and disturbance rejection by a distributed control protocol. Further, the state
or output of the external system is known only to some agents, and each agent can only
interact with its neighbors.

In practical communication networks, due to the limited capacity of the communi-
cation channels, the finite bandwidth constraint cannot be neglected. Hence, recently,
some researchers started to design a suitable quantization coding scheme to study the
cooperative control problem of MASs in order to address the communication restrictions
and effectively reduce the network bandwidth consumption during data transmission.
For example, in [3, 16, 19, 11], the average consensus algorithms were designed based on
logarithmical quantizers, which can converge to the average value of the starting state
of the node. However, the quantization levels of the logarithmical quantizer are infinite,
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which implies that the required communication bandwidth is thus infinite. Hence, in
[6, 10], the authors used the uniform quantizer with finite quantization levels to de-
sign consensus algorithms, where the states of all agents can only converge to a small
region whose size is dependent on the quantization precision. Using dynamic encoding-
decoding schemes based on a decaying scaling function strategy, the quantized consensus
problem was solved in [12, 29, 14] and it was shown that the asymptotic consensus can
be achieved. However, the communication graph of the MASs is required to be balanced
in [12, 29], and the semi-global assumptions on the initial states is required in [12, 14].

In the actual motion of MAS, due to the limitations of communication sensing range
and external interference, its network topology will not remain fixed, and the connec-
tivity between nodes and their neighbors often changes with time. Therefore, the study
of exchange topology has substantial significance and value. There have been some
achievements in relevant research on collaborative output regulation based on switching
topology [20, 2, 22, 17, 15], but the influence of quantitative constraints has not been
considered. [27] studies the discrete-time distributed quantization problem on the switch
graph under the bounded network link failure duration. In fact, this condition is also
required in most of the existing quantitative cooperative control of MASs over switch
graphs [29, 14, 27, 18, 28, 5, 13]. It requires an upper bound for the link failure duration
in order to design the dynamic encoding-decoding strategy with convergent quantization
error.

This study considers the global cooperative output regulation problem of continuous-
time linear MASs over switching graphs under the communication constraint of con-
strained bandwidth. The contributions can be summarized as follows:

• The cooperative output regulation problem over switching graphs with a bounded
link failure duration is considered. Compared to previous works on quantized
control of MASs over switching graphs [12, 14], our result eliminates the semi-global
assumption on initial conditions and the requirement for the switching graph to be
balanced at all instants t. In addition, the needed bandwidth can be any positive
integer, and the number of quantization levels is independent of the link failure
time upper bound. This implies that the upper bound of link failure duration is
not required in the design of the quantizer for all agents.

• Consideration is given to the cooperative output regulation problem over switching
graphs with unbounded link failure duration. In such contexts, the time interval
between two successive sampling instances can be indefinite, significantly com-
plicating the analysis of the estimation error that arises due to the constraints
imposed by limited bandwidth.

• Our proposed protocol does not need any global information of the communication
graph or the initial states.

The remaining sections of this paper are arranged as below.In Section 2, we formulate
the quantized cooperative output regulation over switching graph for MASs, and give
some definitions. While Section 3 proposes a distributed protocol and provides the main
results in Section 4. Then Section 5 provides numerical simulations for illustration.
Finally, Section 6 gives some concluding remarks.
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2. PROBLEM FORMULATION

2.1. Communication network notations

A weighted graph G ≜ (V, E) can describe the information communication topology
among agents, where V ≜ {0, 1, . . . , N} is a non-empty finite set representing the node
set of n agents, E ⊆ V × V is the set of edges. Note that an edge of (j, i) ∈ E if
the information can be exchanged between jth agent and ith agent, while (j, i) /∈ E ,
otherwise. Denote A ≜ [aij ](N+1))×(N+1) as a weighted adjacency matrix of graph G,
where aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The set of neighbors of agent j is
defined as Ni = {j ∈ V|(j, i) ∈ E}. The graph Laplacian matrix L = [lij ]N×N is defined

as lii =
∑N

j ̸=i aij , lij = −aij for i ̸= j. If the graph G is connected, then all eigenvalues
of L can be arranged in an ascending order 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L).

Denote Gσ(t) ≜ G(V, Eσ(t)) as a switching topology, where σ(t) : [0,+∞) → P =
{1, . . . , p} represents a piece-wise constant switching signal. The notation {Gp : p ∈ P}
represents the subgraph on agent {1, . . . , N}, where P is the index set of all graphs. The
adjacency matrix of the switching graph Gσ(t) is denoted as Aσ(t) ≜ [aij(t)](N+1)×(N+1),
where aij(t) represents the weight value between the ith agent and the jth agent at time
instant t.

Consider an infinite sequence of nonempty time intervals [t0, t1), [t1, t2), . . . , [tn, tn+1),
. . ., where t0 = 0 and tn, n = 1, 2, . . . represent the switching instants, satisfying
infn∈N+ tn+1 − tn = τ > 0. The switching communication graph Gσ(t) is deemed jointly
connected if, for any given t ≥ 0, the union graph G[t,t+T0) contains a spanning tree.
This condition implies the existence of a path from the leader agent to each follower
agent in

⋃n
n=0 Gσ(n). Notably, a jointly connected graph can be disconnected at any

specific time instant.

Furthermore, this paper provides a formal definition of “link failure duration”, which
is central to our discussion.

Definition 2.1. (Link Failure Duration) The link failure duration of the communication
process between agent i and agent j,

T 1
i,j = inf{t ≥ 0|

∫ t′+t

t′
aij(τ) dτ > 0 holds ∀ t′ ≥ 0}. (1)

A switching graph Gσ(t) is considered to have a bounded link failure duration if
sup{T 1

i,j ,∀ (j, i) ∈ E1} < ∞, and an unbounded link failure duration if sup{T 1
i,j ,∀ (j, i) ∈

E1} = ∞, where E1 = limt→∞
⋃

[t,∞) Eσ(t).

It is noteworthy that in most existing studies on quantized cooperative control of
MASs over switching graphs, such as [12, 14, 28, 5], the switching graph Gσ(t) is assumed
to have a bounded link failure duration. For further details, refer to [12, Assumptions
4], [14, Assumption A5], [28, Assumption 2], and [5, Assumption 6].
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2.2. The problem formulation

Consider a group of agents whose dynamics can be described as follows:

ẋi(t) = Aixi(t) +Biui(t) + Eiv(t),

ei(t) = Cixi(t) +Diui(t) + Fiv(t),

ymi(t) = Cmixi(t)+Dmiui(t)+Fmiv(t), i=1, . . . , N, (2)

where xi(t) ∈ Rni , ui(t) ∈ Rmi , ei(t) ∈ Rpi and ymi(t) ∈ Rpmi represent the state,
control input, tracking error and measurement output of agent i, respectively. The
matrices Ai, Bi, Ei, Ci, Di, Fi, Cmi, Dmi and Fmi are of compatible dimensions.

The exogenous signal v(t) = col(r(t), d(t)), v(t) ∈ Rv represents the reference input
r(t) to be tracked and/or the disturbance d(t) to be rejected. This signal is generated
by the following exo-system:

v̇(t) = Sv(t), (3)

where the matrix S ∈ Rq×q has a compatible dimension.
The formal definition for communication bandwidth is given as follows.

Definition 2.2. (Communication Bandwidth) The communication bandwidth in com-
munication process between each pair of agents, or exo-system and agents, is defined as
follows:

B = lim
t→∞

sup
1

t

∑
tϖ≤t

r(ϖ) bits/sec, (4)

where tϖ, ϖ ∈ N are the sampling instants, r(ϖ) is the bits of data required to be
transmitted at tϖ.

Then, the formal problem statement of the cooperative output regulation problem
over switching graphs with bounded and unbounded link failure duration is presented
in this paper.

Problem 1. Given a MAS composed of equations (2) and (3), design distributed pro-
tocols for a switching graph with both bounded and unbounded link failure durations,
respectively, such that the following two conditions are ensured for any positive commu-
nication bandwidth B:

1. The origin of the closed-loop system is asymptotically stable when v = 0.

2. For any initial condition of the system,

lim
t→∞

ei(t) = 0, i = 1, . . . , N. (5)

To proceed further, the following assumptions are needed.

Assumption 1. The switching instants tn, n = 1, 2, . . . satisfy infn∈N+ tn+1 − tn =
τ0 > 0.
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Assumption 2. There exists a T0 > 0 such that for any t ≥ 0, the union graph G[t,t+T0)

contains a spanning tree.

Assumption 3. All eigenvalues of S have nonpositive real parts.

Assumption 4. The pairs (Ai, Bi), i = 1, . . . , N, are stabilizable.

Assumption 5. The pairs (Cmi, Ai), i = 1, . . . , N, are detectable.

Assumption 6. The matrix equations

ΨiS = AiΨi +BiΠi + Ei,

0 = CiΨi +DiΠi + Fi, i = 1, . . . , N, (6)

have solution pairs (Ψi,Πi).

Remark 2.3. Noting that Assumptions 1 – 2, 4 – 5 are typical in addressing the linear
cooperative control problem of MASs across switching graphs, as referenced in [22,
17, 15]. Equation (6) is referred to as the regulator equation. The existence of this
equation is a necessary condition for solving the cooperative output regulation problem.
According to [9], the regulator equation (6) is solvable if the following condition is
satisfied:

Rank

[
Ai − λI Bi

Ci Di

]
= ni + p, (7)

for any λ ∈ σ(S), where σ(S) denotes the spectrum of S.

Remark 2.4. It should be noted that Assumption 3 is not required in [8, 21]. Despite
the stricter nature of Assumption 3, it still allows for the generation of a wide range
of signals, including sinusoidal signals and unbounded signals that exhibit polynomial
growth.

3. DESIGN OF DISTRIBUTED PROTOCOL

In this section, the cooperative output regulation problem over switching graphs is ad-
dressed, considering both scenarios of bounded and unbounded link failure durations,
respectively.

The design of the distributed protocol is outlined as follows:

ui(t) = K1izi(t) +K2iϵi(t), i = 1, . . . , N,

ϵ̇i(t) = Sϵi(t) +

N∑
j=0

aij(t)
(
ϵ̂ij(t)− ϵi(t)

)
, (8)

żi(t) = Aizi(t) +Bui(t) + Eiϵi(t)

+Li(Cmizi(t) +Dmiui(t) + Fmiϵi(t)− yi(t)),

where ϵi(t)∈Rv, ϵ0(t) = v(t), ϵ̂ij(t)∈Rv is the estimation of ϵj(t) by agent i, the gain
matrices K1i, i = 1, . . . , N, satisfy that Ai+BiK1i are Hurwitz, K2i = Πi−K1iΨi, i =
1, . . . , N , (Ψi,Πi), i = 1, . . . , N, are the solutions of (6), and Li, i = 1, . . . , N, satisfy
that Ai + LiCmi are Hurwitz.
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3.1. Switching graphs over bounded link failure duration

Due to the limited capacity of actual communication channels, data exchanged between
agents must be quantized before transmission, ensuring that only a finite number of bits
are sent. The complete transmission process includes a sampler, an encoder Φi

j , a decoder

Γi
j , and a scaling function lij(·). Denote the sampling instants of the communication

process from agent j to agent i as tij(ϖ), ϖ ∈ N. The real value ϵj(t) from agent j in the

communication channel (j, i) is sampled at the instants tij(ϖ), obtaining ϵj(t
i
j(ϖ)).his

information is then encoded into a binary sequence sij(ϖ) by the encoder and broadcast

over the channel to the neighboring agent i. Upon receiving the finite bits of data sij(ϖ),

the ith agent retrieves the estimated value ϵ̂ij(t) of agent ϵj(t) through the decoder. The

scaling function lij(·) critical for signal decomposition during encoding and decoding, as
well as throughout the transmission process.

Next, the specific forms of the quantizer and scaling function used in this paper are
presented. These formulations are universally applicable in scenarios with both bounded
and unbounded link failure durations

Let X ∈ R represent the original scalar signal before quantization. The quantizer
q(·), a function designed for scalar input values, is defined as

q(X ) =


2α−1, X > 2α−1,

n− 1, n− 1 < X ≤ n, 2 < n ≤ 2α−1,

0, 0 ≤ X < 1,

−q(−X ), X < 0.

(9)

where α ∈ N+ can be chosen as any integer greater than 2, and n = 1, 2, . . . , N . More-
over, we define multi-quantizer as Q(·) = [q(·), . . . , q(·)]T ∈ Rm.

Remark 3.1. The number of the quantization levels in (9) is 2α + 1. Since zero level
in (9) is not necessary to be transmitted, the quantizer output sij(n) ∈ Rυ can be
represented by α-bits data.

Let sijk(ϖ) be the k−th element of sij(ϖ), where 1 ≤ k ≤ υ, i ∈ V, ϖ ∈ N. The

scaling function lijk(·) is designed as

lijk(0) = c, j ∈ V, 1 ≤ k ≤ υ, (10)

lijk(1) =


2lijk(0), if |sijk(0)| = 2α−1,

lijk(0)/2, if |sijk(0)| = 0,

lijk(0), otherwise

(11)

lijk(ϖ + 1) =



2lijk(ϖ), if |sijk(ϖ)| = |sijk(ϖ − 1)|=2α−1,

ϕ(tij(ϖ + 1)), if |sijk(ϖ)| = 2α−1,

and |sijk(ϖ − 1)| < 2α−1,

lijk(ϖ)/2, if |sijk(ϖ)| = 0,

lijk(ϖ), otherwise, ϖ ≥ 2,

(12)
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where

ϕ(t) = ce−bta , t ≥ 0, (13)

b and c are two positive constants, a is a constant satisfying 0 < a ≤ 1/2. For simplicity,
we choose a = 1

k1
, and k1 is a positive integer greater than 1. Moreover, we define the

vector version of the scaling function L
i

j(ϖ) = diag(lij1(ϖ), . . . , lijυ(ϖ)).

The sampler design of switching graphs over bounded link failure duration tij(ϖ) is
designed as follows:

tij(0) = inf{t ≥ 0|aij(t) > 0},
tij(ϖ + 1) = inf{t ≥ tij(ϖ) + T 0

(i,j)|aij(t) > 0}, (14)

with T 0
(i,j) being a positive constant satisfying T 0

(i,j) ≥
υα
B .

Remark 3.2. Since T 0
(i,j) ≥

vα
B , the required bandwidth in the communication process

is not greater than B-bit/sec.

Next, we give the design of the encoder Φi
j . The encoder Φ

i
j associated with j for the

channel (j, i) ∈ E and quantizer output is designed follows:

sij(ϖ) ≜ Q

(
L
i

j

−1
(ϖ)(e−Stij(ϖ+1)ϵj(t

i
j(ϖ + 1))− e−Stij(ϖ)ϵ̂ij(t

i
j(ϖ))

)
. (15)

The decoder Γi
j associated with i for the (j, i) ∈ E with distributed protocol is de-

signed as follows:
ϵ̂ij(t

i
j(0)) = eStij(0)ϕ(tij(0))Q

(
eStij(0)ϵj(0)/ϕ(t

i
j(0))

)
,

ϵ̂ij(t) =eS(t−tij(ϖ))ϵ̂j(t
i
j(ϖ)), tij(ϖ) ≤ t < tij(ϖ + 1), ϖ ∈ N,

ϵ̂ij(t
i
j(ϖ + 1)) = eS(tij(ϖ+1)−tij(ϖ))ϵ̂ij(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ).

(16)

3.2. Switching graphs over unbounded link failure duration

In this subsection, we define the sampling times and outline the design of the encoder
and decoder for the problem of a switching graph with an unbounded link fault duration.
Under these conditions, the sampling interval of the communication process cannot be
bounded, complicating the design of the estimator.

The time sequence tm, m ∈ N consists of a set of time instants, designed as a
polynomial function of m satisfying the following conditions:

t0 = 0, lim
m→∞

tmm−1/a = ∞. (17)

For simplicity, we choose tm = d(m − 1)a1 , d > 0 is a constant, and a1 is a positive
integer greater than 1/a.

Similarly, the estimated value ϵ̂ij(t) of the distributed protocol (8) necessitates a more
complex encoder and decoder design under unbounded link failure duration conditions.
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The design of the encoder is presented first as follows:
ςij(t

i
j(ϖ)) = l(tij(ϖ))Q

(
e−Stij(ϖ)ϵj(t

i
j(ϖ))/l(tij(ϖ))

)
, ϖ = 0,

or ϖ > 0, tij(ϖ − 1) < tm ≤ tij(ϖ),m ∈ N+,

ς̂ij(t
i
j(ϖ + 1)) = ς̂ij(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ),

(18)

where the sampling instant tij(ϖ), ϖ ∈ N, are designed as in (14). ςij(t) is the interme-

diate variable, and its estimate is expressed in ς̂ij(t). Then, the quantified output with

the sampling instants tij(ϖ) takes the following form:

sij(ϖ) =



Q

(
L
i

j

−1
(ϖ)(min{e−Stij(ϖ

′)ϵj(t
i
j(ϖ

′)),

tm ≤ tij(ϖ
′) ≤ tij(ϖ + 1))} − ς̂ij(t

i
j(ϖ))

)
tm ≤ tij(ϖ) < tij(ϖ + 1) < tm+1,m is odd,

Q

(
L
i

j

−1
(ϖ)(max{e−Stij(ϖ

′)ϵj(t
i
j(ϖ

′)),

tm ≤ tij(ϖ
′) ≤ tij(ϖ + 1))} − ς̂ij(t

i
j(ϖ))

)
tm ≤ tij(ϖ) < tij(ϖ + 1) < tm+1,m is even.

(19)

Secondly, the design of the decoder is given as follows:

ϵ̂ij(t
i
j(ϖ)) = eStij(ϖ)ςij(t

i
j(ϖ)), ϖ = 0

or ϖ > 0, tij(ϖ − 1) < tm ≤ tij(ϖ),m ∈ N+,

ϵ̂ij(t
i
j(ϖ+1)) =eStij(ϖ+1)min{ςj(tij(ϖ)), e−Stij(ϖ+1)ϵj(t

i
j(ϖ+1))},

tm≤ tij(ϖ)<tij(ϖ + 1)<tm+1, m is odd

ϵ̂ij(t
i
j(ϖ+1)) =eStij(ϖ+1)max{ςj(tij(ϖ)), e−Stij(ϖ+1)ϵj(t

i
j(ϖ+1))},

tm≤ tij(ϖ)<tij(ϖ + 1)<tm+1, m is even

ς̂ij(t
i
j(ϖ + 1)) = ς̂ij(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ)

ϵ̂ij(t) = eS(t−tij(ϖ))ϵ̂ij(t
i
j(ϖ)), tij(ϖ) < t < tij(ϖ + 1).

(20)

4. MAIN RESULT

In this section, we provide the proof for theorems related to both bounded and un-
bounded link failure durations under the designed distributed output regulation pro-
tocol (8). These proofs aim to address the quantized cooperative output regulation of
continuous-time multi-agent systems (MASs) based on a switching graph.

Prior to presenting the theorems, a technical lemma will be introduced first:
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Lemma 4.1. For the states Θi(t) ∈ Rυ, i = 1, . . . , N , Θ̂i
j(t) is the estimation of Θi(t)

with agent i through the formula designed as follows:
Θ̂i

j(0) = ϕ(tij(0))Q
(
Θj(t

i
j(0))/ϕ(t

i
j(0))

)
,

Θ̂i
j(t) = Θ̂i

j(t
i
j(ϖ)), tij(ϖ) ≤ t < tij(ϖ + 1), ϖ ∈ N,

Θ̂i(t
i
j(ϖ + 1)) = Θ̂j(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ),

(21)

where the quantizer output

sij(ϖ) ≜ Q

(
L
i

j

−1
(ϖ)

(
Θi

j(t
i
j(ϖ + 1))− Θ̂i

j(t
i
j(ϖ))

))
. (22)

Specifically tij(ϖ), ϖ ∈ N, Q(·), ljk(·) and L
i

j(ϖ) stand for the sampling instants,
the multi-quantizer, the scaling function and the matrix of the scaling function ljk(·)
respectively. And their full forms are given in Section 3.

Under Assumption 1, consider the closed-loop MAS described as follows:

Θ̇i(t) =

N∑
j=0

aij

(
Θ̂i

j(t)−Θi(t)
)
, i ∈ V. (23)

Then, there exist two positive constants µ and σ such that

∥Θi(t)−Θj(t)∥ ≤ µe−σta , i, j ∈ V. (24)

The proof process is detailed in [18], and thus is omitted here.

Lemma 4.2. Given a switching graph Gσ(t) with bounded link failure duration, under
Assumptions 1 – 2, consider the following linear MAS

ϵ̇i(t)=Sϵi(t)+

N∑
j=0

aij

(
ϵ̂ij(t)−ϵi(t)

)
, i ∈ V, (25)

where ϵi(t) ∈ Rυ, ϵ̂ij(t) ∈ Rυ is the estimate of ϵj(t) by agent i and generated as in (16),
all the eigenvalues of S are in the closed left-half plane. Then,

lim
t→∞

∥ϵi(t)− ϵj(t)∥ = 0. (26)

P r o o f . Let Θi(t) = e−Stϵi(t) and Θ̂i(t) = e−Stϵ̂i(t). It follows from (25) that the

dynamic of Θi(t) can be described as in (23). And it follows from (18) that Θ̂i(t)
is generated as in (21). Then, according to Lemma 4.1 that there exist two positive
constants µ and σ such that ∥Θi(t) − Θj(t)∥ ≤ µe−σta , i, j ∈ V. Let λS

1 , . . . , λ
S
d be

the distinct eigenvalues of S and let mi be the corresponding algebraic multiplicity
of λS

i , 1 ≤ i ≤ d. Then, according to reference [4], there exists a ζ > 0 such that
∥eSt∥ ≤ ζtm−1, where m = max1≤i≤d mi. Then,

lim
t→∞

∥ϵi(t)− ϵj(t)∥ ≤ lim
t→∞

∥eSt∥∥Θi(t)−Θj(t)∥

≤ lim
t→∞

µζtm−1e−σta = 0. (27)

This completes the proof. □
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4.1. Convergence analysis with bounded link failure duration

Theorem 4.3. Given a switching graph Gσ(t) with bounded link failure duration, under
Assumptions 1 – 6, the cooperative output regulation problem, as stated in Problem 1,
is solvable with any positive bandwidth B using the distributed protocol (8).

P r o o f . The closed-loop system composed of the MAS (2) and the distributed protocol
(8) can be expressed as follows:

ẋi(t) = Aixi(t) +BiK1izi(t) +BiK2iϵi(t),

ϵ̇i(t) = Sϵi(t) +
∑
j∈Ni

aij

(
ϵ̂ij(t)− ϵi(t)

)
,

żi(t) = (Ai +BiK1i)zi(t) +BiK2iϵi(t) + Eiϵi(t)

+Li(Cmi(zi(t)− xi(t)) + Fmi(ϵi(t)− ϵi(t))),

ei(t) = Cixi(t) +Diui(t) + Fiv(t), i = 1, . . . , N. (28)

Let x̃i(t) = xi(t) − Ψiv(t), z̃i(t) = zi(t) − xi(t) and ϵ̃i(t) = ϵi(t) − v(t). Then, it
follows from (6) that the closed-loop system can be rewritten as

˙̃xi(t) = (Ai +BiK1i)x̃i(t) +BiK1iz̃i(t) +BiK2iϵ̃i(t),

˙̃zi(t) = (Ai + LiCmi)z̃i(t) + (Ei + LiFmi)ϵ̃i(t),

ei(t) = (Ci +DiK1i)xi(t) +DiK1iz̃i(t) +DiK2iϵ̃i(t), i = 1, . . . , N. (29)

According to Lemma 4.2, limt→∞ ϵ̃i(t) = 0. SinceAi+LiCmi is Hurwitz, limt→∞ z̃i(t) =
0. Then, since Ai +BiK1i is Hurwitz, limt→∞ x̃i(t) = 0, that is, limt→∞ xi(t) = Ψiv(t).
Then, one has that limt→∞ ei(t) = 0.

This completes the proof. □

Remark 4.4. The required communication bandwidth B can be chosen as any positive
constant. Under Assumption 3, it does not violate the following inequality given in
Theorem 1 in [23].

B >
∑ 1

ln 2
max{Re(λi(S)), 0}

where Re(λi(S)) denotes the real part of each eigenvalue of S, denote as λi(S).

4.2. Convergence analysis with unbounded link failure duration

Theorem 4.5. Given a switching graph Gσ(t) with unbounded link failure duration, un-
der Assumptions 1 – 5, the cooperative output regulation problem, as defined in Problem
1, is solvable with any positive bandwidth B using the distributed protocol (8).

P r o o f . To prove Theorem 4.5, we first consider the following claim.
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Claim 1. In the case of unbounded link failure duration of switch graph, for the states
Θi(t) ∈ Rυ, i = 1, . . . , N , Θ̂i

j(t) is the estimation of Θi(t) with agent i through the
formula designed as follows:

ςij(t
i
j(ϖ)) = l(tij(ϖ))Q

(
ϵj(t

i
j(ϖ))/l(tij(ϖ))

)
, ϖ = 0,

or ϖ > 0, tij(ϖ − 1) < tm ≤ tij(ϖ),m ∈ N+,

ς̂ij(t
i
j(ϖ + 1)) = ς̂ij(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ),

Θ̂i
j(t

i
j(ϖ)) = ςij(t

i
j(ϖ)), ϖ = 0,

or n > 0, tij(ϖ − 1) < tm ≤ tij(ϖ),m ∈ N+,

Θ̂i
j(t

i
j(ϖ + 1)) =min{ςj(tij(ϖ)),Θj(t

i
j(ϖ + 1))},

tm≤ tij(ϖ)<tij(ϖ + 1)<tm+1, m is odd,

Θ̂i
j(t

i
j(ϖ + 1)) =max{ςj(tij(ϖ)),Θj(t

i
j(ϖ + 1))},

tm≤ tij(ϖ)<tij(ϖ + 1)<tm+1, m is even,

ς̂ij(t
i
j(ϖ + 1)) = ς̂ij(t

i
j(ϖ)) + L

i

j(ϖ)sij(ϖ),

Θ̂i
j(t) = Θ̂i

j(t
i
j(ϖ)), tij(ϖ) < t < tij(ϖ + 1).

(30)

where the quantizer output

sij(ϖ) =



Q

(
L
i

j

−1
(ϖ)(min{Θj(t

i
j(ϖ

′)),

tm ≤ tij(ϖ
′) ≤ tij(ϖ + 1))} − ς̂ij(t

i
j(ϖ))

)
,

tm ≤ tij(ϖ) < tij(ϖ + 1) < tm+1,m is odd,

Q

(
L
i

j

−1
(ϖ)(max{Θj(t

i
j(ϖ

′)),

tm ≤ tij(ϖ
′) ≤ tij(ϖ + 1))} − ς̂ij(t

i
j(ϖ))

)
,

tm ≤ tij(ϖ) < tij(ϖ + 1) < tm+1,m is even,

(31)

where the sampling instants tij(ϖ), ϖ ∈ N, the multi-quantizer Q(·) and the matrix

L
i

j(ϖ) are designed the same as the case of bounded link failure duration over switching
graph.

Under Assumption 1, consider the following closed-loop MASs (23). Then, there exist
two positive constants µ′ and σ′ such that

∥Θi(t)−Θj(t)∥ ≤ µ′e−σ′t1/a1
, i, j ∈ V. (32)

Let G = (V, E), where V = V
⋃
{0} and E ⊆ V × V, that is, G be the set of the

spanning trees with a leader labeled as 0 and N followers. It can be verified that the
number of the set G is a finite positive integer Υ satisfying Υ ≤ N . Define the following
function

I([t1, t2),Gl, τ) =

{
1, if ∀ (i, j) ∈ E l,

∫ t2
t1

aji(t) ≥ τ,

0, else,
(33)
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where Gl ∈ G, 1 ≤ l ≤ Υ. Then, it is easy to get that t ≥ Υ.
Assume that m is a positive odd number satisfying that for any ϖ ∈ N,

c′(m− 1)a/a1+e1+e2ϖ ≤ d(m+ϖ1/a1−(m+ϖ−1)1/a1),

where

e1 = ((d1 + d2)s
′ + (m− 1)a/a1 +

(s′ − 1)s′

2
d3)Υ,

c′ = s′c1Υ and e2 = s′⌈log2 γ′⌉Υ, d1, d2 and d3 will be given in (34) and (35). According
to drawer principle, there exists a spanning tree Gl′ ∈ G and ϖ′

1 integers ϖ1,1, . . . , ϖϖ′
1

satisfying 0 ≤ ϖ1,1 < . . . < ϖϖ′
1
≤ Υϖ′

1 such that I([tm + ϖ1,s′T, tm + (ϖ1,s′ +

1)T ),Gl′ , τ) = 1, 1 ≤ s′ ≤ ϖ′
1.

Let E l′ to be the edge set of Gl′ . Let N l′

1 = {i ∈ V|(0, i) ∈ E l′}, . . ., N l′

s = {i ∈
V|(j, i) ∈ E l′ , j ∈ N l′

s−1}, where s ≥ 1 positive integer.

Let d1 = max{0, ⌈log2 M̃k

10c ⌉} + max{0, ⌈log2 10c

M̃k
⌉} c1 = ln(2)b and d2 = ⌈ln(2)ΥT ⌉,

then similar to [18, Lemma 4.1], one has that i1 ∈ N l′

1 , Θi1
0k(t) ≤ Mk − 9M̃k/10, t ≥

n′
d1+d2n1

. Then we can have the following inequalities, whose proof is similar to the proof
of [18, Claim A.1], and is omitted here.

For agent i∈N
l′

s , when t>ϖd1,sT , 1≤s≤s′,

Θik(t) ≤ Mk − 4

5
(
2

5
)s−1ϵsM̃k(0), (34)

Θ̂j
ik(t) ≤ Mk − (

2

5
)sϵsM̃k(0), j ∈ N

l′

s+1

⋂
N 1

i , (35)

where d1s = (d1 + d2)s+ sc1(m− 1)a/a1 + (s−1)s1
2 d3, d3 = ⌈− log2(

2
5ϵ)⌉ and ϵ is given in

[18, Claim A.1], ϵ = 1/dmax(1− e−dmaxτ ) and dmax = supt≥0di(t).

Since tm + (Υϖ′
1 + 1)T ≤ tm+1, then one has that Θik(t) ≤ Mk − ( 25 )

s′ϵs
′
M̃k(0), t ≥

tm+1.
Let γ′ = 1 − ( 25 )

s′ϵs
′
. And it is noted that t2ϖ+m − tm+2(ϖ−1) ≥ s′⌈log2 γ′⌉. Then,

similar to [18, Claim A.1], one has that for any ϖ ∈ N

Θi0k(t)−Θ0(t) ≤ γϖ(max
i∈V

Θik(0)−Θ0(0)), t ≥ tm+2ϖ.

Similarity, one has that

Θ0(t)−Θi0k(t) ≥ γϖ(Θ0(0)−min
i∈V

Θik(0)), t ≥ tm+2ϖ+1.

Based on the above analysis, one has that there exists two positive constants µ′ and σ′

satisfying (32).
Thus, Claim 1 is verified.
The rest part of the proof is similar to the proof of Theorem 4.3, and thus is omitted

here.
This completes the proof. □
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5. SIMULATION

In this section, we will present examples of distributed protocols designed for conditions
of bounded and unbounded link failure durations as mentioned in Problem 1. These
examples aim to demonstrate the effectiveness of the proposed approaches.

Example 1. We provide an example from [17] to verify the proposed distributed pro-
tocol (8). This example considers a multi-agent system (MAS) (2) composed of four
agents with

A1 =

[
0 1
0 0

]
, A2 =

[
0 1
−1 0

]
, A3 =

[
0 −1
1 0

]
,

A4=

[
0 −1
0 0

]
, Bi=

[
0
1

]
, Ci=

[
1 0
0 1

]
, Di=

[
0
0

]
,

E1 =

[
0 0 0
0 0 0.5

]
, E2 =

[
0 −0.5 0

−0.5 0 1

]
,

E3 =

[
−1 1 0
0 −1 0

]
, E4 =

[
0 2 0
0 0 2

]
,

F1 =

[
−1 0 0
0 −1 0

]
, F2 =

[
−0.5 0 0
0 −1 0

]
,

F3 =

[
−0.5 −1 0
0 0.5 0

]
, F4 =

[
0 −1 0
−1 0 0

]
,

Cmi=
[
1 0

]
, Dmi=0, Fmi=

[
0 0 0

]
, i = 1, 2, 3, 4.

The dynamics of the exo-system is given as

v̇(t) =

 0 1 0
−1 0 0
0 0 0

 v(t). (36)

0 

1 2   

   3 4 

(a) G1

0 

1 2   

   3 4 

(b) G2

0 

1 2   

   3 4 

(c) G3

0 

1 2   

   3 4 

(d) G4

Fig. 1. Switching graphs Gp, p = 1, 2, 3, 4.

The switching topology Gp, p = 1, 2, 3, 4 is depicted in Figure 1. In this configuration,
the exo-system is represented as node 0, while the other agents are depicted as nodes
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1− 4. It is crucial to note that the switching graph Gσ(t) is not connected at any time t,
yet Assumptions 1 – 2 are satisfied. The graphGσ(t) has a bounded link failure duration
with sup{T 1

i,j , (j, i) ∈ E1} = 3/4. It is also assumed that the bandwidth B is does not
exceed 200-bit/sec. The piecewise constant switching signal σ(t) for the communication
topology is defined as follows:

σ(t) =


1, if ϖ ≤ t ≤ (ϖ + 1/4),

2, if (ϖ + 1/4) ≤ t ≤ (ϖ + 1/2),

3, if (ϖ + 1/2) ≤ t ≤ (ϖ + 3/4),

4, if (ϖ + 3/4) ≤ t ≤ (ϖ + 1),

(37)

where ϖ ∈ N. Let

K11=
[
−8 32

]
,K12=

[
7 32 −0.5

]
,

K21=
[
−7 32

]
,K22=

[
3.5 32 −1

]
,

K31=
[
7 −32

]
,K32=

[
−4.5 9 0

]
,

K41=
[
8 −32

]
,K42=

[
33 −8 −0.5

]
,

L1=

[
−2
−2

]
, L2=

[
−2
−1

]
L3=

[
−2
1

]
, L4=

[
−2
2

]
.

Set α = 6, T 0
(i,j) = 0.1s. Given that Θi(t) consists of three elements, sij(ϖ) is encoded

using 18 bits at each sampling time. In this scenario, the communication bandwidth B
is limited to 180 bit/sec. The function ϕ(t) is designed as ϕ(t) = 2−t.

The simulation results, which illustrate the tracking errors, are presented in Figure 2.
These errors asymptotically converge to zero, demonstrating that the output regulation
problem with bounded link failure duration has been effectively addressed.

Example 2. To further validate the framework in a more complex scenario, namely,
the cooperative output regulation over switching graphs with unbounded link failure
duration, we consider the same dynamic system of the multi-agent system (MAS) as
outlined in Example 1. However, for this case, the communication topology’s switching
signal is redefined as follows:

σ(t) =



1, if ϖT ≤ t ≤ (ϖ + 1/4)T ,ϖ ∈ N,
2, if (ϖ + 1/4)T ≤ t ≤ (ϖ + 3/4)T ,

ϖ ∈ {ϖ2
1, ϖ1 ∈ N},

3, if (ϖ + 1/4)T ≤ t ≤ (ϖ3/4)T ,

ϖ ∈ N and ϖ /∈ {ϖ2
1, ϖ1 ∈ N},

4, if (ϖ + 3/4)T ≤ t ≤ (ϖ + 1)T ,ϖ ∈ N.

(38)
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Fig. 2. Trajectories of tracking errors with bounded link failure

duration.

The switching topology Gp, p = 1, 2, 3, 4 and the parameters for Ki1,Ki2, Li, i =
1, 2, 3, 4 and α, T 0

(i,j), s
i
j(ϖ),B, ϕ(t) the values are the same as those used in Example

1 and are thus not repeated here. Notably, the maximum link failure duration for
the edge (1, 2), denoted as T 1

1,2 = ∞, is ∞, indicating that the switching graph Gσ(t)

is characterized by an unbounded link failure duration. The time instants instants
{tm,m ∈ N+} is designed as tm = (m− 1)3, m ∈ N+.

Simulation results, shown in Figure 3, depict the tracking errors. These errors asymp-
totically converge to zero, demonstrating that the output regulation problem with un-
bounded link failure duration has been effectively resolved.

6. CONCLUSION

This paper explores the global cooperative output regulation problem for continuous-
time linear multi-agent systems (MASs) on switching graphs, particularly under re-
stricted communication bandwidth conditions. We design distributed protocols that
involve sampling and quantizing data to tackle this challenge. This approach differs
from current quantitative control work on MASs in that it only requires cooperatively
connected agents and does not rely on semi-global initial conditions.
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Fig. 3. Trajectories of tracking errors with unbounded link failure

duration.
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