Kybernetika 60 no. 2, 172-196, 2024

Degrees of compatible L-subsets and compatible mappings

Fu-Gui Shi and Yan SunDOI: 10.14736/kyb-2024-2-0172

Abstract:

Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice.

Keywords:

$L$-approximation spaces, compatible $L$-subsets, compatible mappings, complete $L$-sublattices

Classification:

06B75, 06D10, 06D72

References:

  1. N. Ajmal and K. V. Thomas: Fuzzy lattices. Inf. Sci. 79 (1994), 271-291.   DOI:10.1016/0020-0255(94)90124-4
  2. W. Bandler and L. J. Kohout: Semantics of implication operators and fuzzy relational products. Int. J. Man-Machine Studies 12 (1980), 89-116.   DOI:10.1016/S0020-7373(80)80055-1
  3. R. Bělohlávek: Fuzzy Relational Systems. Foundations and Principles. Kluwer Academic Publishers, New York 2002.   CrossRef
  4. R. Bělohlávek, J. Dvořák and J. Outrata: Fast factorization by similarity in formal concept analysis of data with fuzzy attributes. J. Comput. Syst. Sci. 73 (2007), 6, 1012-1022.   DOI:10.1016/j.jcss.2007.03.016
  5. V. Berry and F. Nicolas: Improved parameterized complexity of the maximum agreement subtree and maximum compatible tree problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006), 3, 289-302.   DOI:10.1109/TCBB.2006.39
  6. G. Birkhoff: Lattice Theory. AMS, 1948.   CrossRef
  7. M. Demirci: Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations, Part I: Fuzzy functions and their applications. Int. J. Gen. Syst. 32 (2003), 123-155.   DOI:10.1080/0308107031000090765
  8. Y. Y. Dong and F.-G. Shi: $L$-fuzzy sub-effect algebras. Mathematics 9 (2021), 14, 1596.   DOI:10.3390/math9141596
  9. J. M. Fang: Residuated Lattices and Fuzzy Sets. Science Press (in Chinese), 2012.   CrossRef
  10. G. Ganapathy and T. J. Warnow: Approximating the complement of the maximum compatible subset of leaves of trees. Lecture Notes Comput. Sci. 2462 (2002), 122-134.   DOI:10.1007/3-540-45753-4\_12
  11. B. Ganter and R. Wille: Formal Concept Analysis-Mathematical Foundations. Springer, 1999.   DOI:10.1016/S0273-1177(99)00158-1
  12. Y. Gao and B. Pang: Subcategories of the category of $\top$-convergence spaces. Hacet. J. Math. Stat. 53 (2024), 1, 88-106.   DOI:10.15672/hujms.1205089
  13. D. Gégény and S. Radeleczki: Rough L-fuzzy sets: Their representation and related structures. Int. J. Approx. Reason. 142 (2022), 1-12.   DOI:10.1016/j.ijar.2021.11.002
  14. J. A. Goguen: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.   DOI:10.1016/0022-247X(67)90189-8
  15. J. A. Goguen: Logic of inexact concepts. Synthese 19 (1968), 325-373.   DOI:10.1007/BF00485654
  16. S. Gottwald: Treatise on Many-Valued Logics. Research Studies Press, Baldock 2001.   CrossRef
  17. H. L. Huang and F.-G. Shi: $L$-fuzzy numbers and their properties. Inf. Sci. 178 (2008), 1141-1151.   DOI:10.1016/j.ins.2007.10.001
  18. F. Klawonn: Fuzzy points, fuzzy relations and fuzzy functions. In: Discovering World with Fuzzy Logic (Novak, Perfilieva, eds.), Physica-Verlag, 2000, pp. 431-453.   CrossRef
  19. F. Klawonn and J. L. Castro: Similarity in fuzzy reasoning. Mathware Soft Comput. 2 (1995), 197-228.   CrossRef
  20. J. Konecny and M. Krupka: Complete relations on fuzzy complete lattices. Fuzzy Sets Syst. 320 (2017), 1, 64-80.   DOI:10.1016/j.fss.2016.08.007
  21. H. Y. Li and F.-G. Shi: Degrees of fuzzy compactness in $L$-fuzzy topological spaces. Fuzzy Sets Syst., 161 (2010) 988-1001.   DOI:10.1016/j.fss.2009.10.012
  22. J. Li and F.-G. Shi: $L$-fuzzy convexity induced by $L$-convex fuzzy sublattice degree. Iran. J. Fuzzy Syst. 14 (2017), 5, 83-102.   CrossRef
  23. C. Y. Liang and F.-G. Shi: Degree of continuity for mappings of ($L$,$M$)-fuzzy topological spaces. J. Intell. Fuzzy Syst. 27 (2014), 2665-2677.   DOI:10.3233/IFS-141238
  24. B. Pang: Bases and subbases in ($L$,$M$)-fuzzy convex spaces. J. Comput. Appl. Math. 39 (2020), 41.   DOI:10.1007/s40314-020-1065-4
  25. B. Pang: Convergence structures in $M$-fuzzifying convex spaces. Quaest. Math. 43 (2020), 11, 1541-1561.   DOI:10.2989/16073606.2019.1637379
  26. B. Pang: Quantale-valued convex structures as lax algebras. Fuzzy Sets Syst.473 (2023), 108737.   DOI:10.1016/j.fss.2023.108737
  27. B. Pang: Fuzzy convexities via overlap functions. IEEE T. fuzzy Syst. 31 (2023), 4, 1071-1082.   DOI:10.1109/TFUZZ.2022.3194354
  28. Z. Pawlak: Rough sets and fuzzy sets. Fuzzy Sets Syst. 17 (1985), 99-102.   DOI:10.1016/S0165-0114(85)80029-4
  29. Y. T. Shen, Y. J. Xiong, W. Xia and S. Soatto: Towards backward-compatible representation learning. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6368-6377.   CrossRef
  30. F.-G. Shi: Theory of $L_\alpha$-nest sets and $L_\beta$-nest sets and their applications. Fuzzy Syst. Math. 4 (1995), 65-72.   DOI:10.1016/0165-0114(94)00271-8
  31. F.-G. Shi: $L$-fuzzy relation and $L$-fuzzy subgroup. J. Fuzzy Math. 8 (2000), 491-499.   CrossRef
  32. F.-G. Shi and X. Xin: $L$-fuzzy subgroup degrees and $L$-fuzzy normal subgroup degrees. J. Adv. Res. Pure Math. 3 (2011), 92-108.   DOI:10.5373/jarpm.762.020211
  33. Y. Shi, B. Pang and B. De Baets: Fuzzy structures induced by fuzzy betweenness relations. Fuzzy Sets Syst. 466 (2023), 108443.   DOI:10.1016/j.fss.2022.11.014
  34. Y. Sun, J. S. Mi, J. K. Chen and W. Liu: A new fuzzy multi-attribute group decision-making method with generalized maximal consistent block and its application in emergency management. Knowl. Based Syst. 215 (2021), 106594.   DOI:10.1016/j.knosys.2020.106594
  35. Y. Sun and F.-G. Shi: Representations of L-fuzzy rough approximation operators. Inf. Sci. 645 (2023), 119324.   DOI:10.1016/j.ins.2023.119324
  36. A. Tepav\u{c}ević and D. Trajkovski: $L$-fuzzy lattices: an introduction. Fuzzy Sets Syst. 123 (2001), 209-216.   DOI:10.1016/S0165-0114(00)00065-8
  37. G. J. Wang: Theory of topological molecular lattices. Fuzzy Sets Syst. 47 (1992), 351-376.   DOI:10.1016/0165-0114(92)90301-J
  38. Z. Y. Xiu, Q.-H. Li and B. Pang: Fuzzy convergence structures in the framework of L-convex spaces. Iran. J. Fuzzy Syst. 17 (2020), 4, 139-150.   CrossRef
  39. Y. Y. Yao: Three-way granular computing, rough sets, and formal concept analysis. Int. J. Approx. Reason. 116 (2020), 106-125.   DOI:10.1016/j.ijar.2019.11.002
  40. M. Ying: A new approach for fuzzy topology (I). Fuzzy Sets Syst. 39 (3) (1991), 303-321.   DOI:10.1016/0165-0114(91)90100-5
  41. B. Yuan and W. Wu: Fuzzy ideals on a distributive lattice. Fuzzy Sets Syst. 35 (1990), 231-240.   DOI:10.1016/0165-0114(90)90196-D
  42. L. A. Zadeh: Fuzzy sets. Inform. Control. 8 (1965), 338-353.   DOI:10.1016/S0019-9958(65)90241-X
  43. L. A. Zadeh: Similarity relations and fuzzy orderings. Inf. Sci. 3 (1971) 177-200.   DOI:10.1016/S0020-0255(71)80005-1
  44. L. A. Zadeh: The concept of a linguistic variable and its application to approximation reasoning I. Inf. Sci. 8 (1975), 3, 199-251.   DOI:10.2307/2576087
  45. L. Zhang and B. Pang: Monoidal closedness of the category of $L$-semiuniform convergence spaces. Hacet. J. Math. Stat. 51 (2022), 5, 1348-1370.   DOI:10.15672/hujms.1065246
  46. L. Zhang andB. Pang: Convergence structures in $(L,M)$-fuzzy convex spaces. Filomat 37 (2023), 9, 2859-2877.   DOI:10.2298/FIL2309859Z
  47. L. Zhang, B. Pang and W. Li: Subcategories of the category of stratified $(L,M)$-semiuniform convergence tower spaces. Iran. J. Fuzzy Syst. 20 (2023), 4, 179-192.   CrossRef
  48. L. Zhang and B. Pang: A new approach to lattice-valued convergence groups via $\top$-filters. Fuzzy Sets Syst. 455 (2023), 198-221.   DOI:10.1016/j.fss.2022.06.026
  49. F. F. Zhao and B. Pang: Equivalence among $L$-closure (interior) operators, $L$-closure (interior) systems and $L$-enclosed (internal) relations. Filomat 36 (2022), 3, 979-1003.   DOI:10.2298/FIL2203979Z