Kybernetika 60 no. 2, 125-149, 2024

A new approach to construct uninorms via uninorms on bounded lattices

Zhen-Yu Xiu and Xu ZhengDOI: 10.14736/kyb-2024-2-0125

Abstract:

In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.

Keywords:

uninorms, bounded lattices, $t$-norms, $t$-conorms

Classification:

03B52, 06B20, 03E72

References:

  1. E. Aşıcı and R. Mesiar: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.   DOI:10.1016/j.fss.2020.02.007
  2. G. Birkhoff: Lattice theory. (Third Edition.) Amer. Math. Soc., Rhode Island 1967.   CrossRef
  3. M. Baczyński and B. Jayaram: Fuzzy Implications. Springer, Berlin 2008.   CrossRef
  4. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.   CrossRef
  5. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  6. G. D. Çaylı and F. Karaçal: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417.   DOI:10.14736/kyb-2017-3-0394
  7. G. D. Çaylı et al.: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 5, 911-921.   DOI:10.14736/kyb-2017-5-0911
  8. G. D. Çaylı: On a new class of $t$-norms and $t$-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143.   DOI:10.1016/j.fss.2017.07.015
  9. G.D. Çaylı: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26.   DOI:10.1016/j.fss.2018.07.012
  10. G. D. Çaylı: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139.   DOI:10.1016/j.ins.2019.03.007
  11. G. D. Çaylı: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264.   DOI:10.1016/j.ijar.2019.10.006
  12. G. D. Çaylı: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices. Kybernetika 55 (2019), 2, 273-294.   DOI:10.14736/kyb-2019-2-0273
  13. G. D. Çaylı: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms. Fuzzy Sets Syst. 395 (2020), 107-129.   DOI:10.1016/j.fss.2019.06.005
  14. G. D. Çaylı: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158.   DOI:10.1080/03081079.2020.1863397
  15. G. D. Çaylı: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. Gen. Syst. 47 (2018), 772-793.   DOI:10.1080/03081079.2018.1513929
  16. G. D. Çaylı, Ü. Ertuğrul and F. Karaçal: Some further construction methods for uninorms on bounded lattices. Int. J. Gen. Syst. 52 (2023), 4, 414-442.   DOI:10.1080/03081079.2022.2132492
  17. B. De Baets and J. Fodor: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136.   DOI:10.1016/S0165-0114(98)00265-6
  18. B. De Baets and R. Mesiar: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.   DOI:10.1016/S0165-0114(98)00259-0
  19. Y. X. Dan, B. Q. Hu and J. S. Qiao: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.   DOI:10.1016/j.ijar.2019.04.009
  20. Y. X. Dan and B. Q. Hu: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.   DOI:10.1016/j.fss.2019.02.001
  21. Ü. Ertuğrul, M. N. Kesicioğlu and F. Karaçal: Some new construction methods for $t$-norms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 7, 775-791.   DOI:10.1080/03081079.2019.1658757
  22. Ü. Ertuğrul and M. Yeşilyurt: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216.   DOI:10.1016/j.ins.2019.12.056
  23. Ü. Ertuğrul, F. Karaçal and R. Mesiar: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817.   DOI:10.1002/int.21713
  24. M. Grabisch et al.: Aggregation Functions. Cambridge University Press, 2009.   CrossRef
  25. M. Grabisch et al.: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43.   DOI:10.1016/j.ins.2010.08.040
  26. U. Höhle: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995.   CrossRef
  27. X. J. Hua, H. P. Zhang and Y. Ouyang: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382.   DOI:10.14736/kyb-2021-2-0372
  28. P. He and X. P. Wang: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.   DOI:10.1016/j.ijar.2021.05.006
  29. X. J. Hua and W. Ji: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.   DOI:10.1016/j.fss.2020.11.005
  30. S. Jenei and B. De Baets: On the direct decomposability of $t$-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707.   DOI:10.1016/S0165-0114(03)00125-8
  31. W. Ji: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.   DOI:10.1016/j.fss.2019.12.003
  32. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  33. F. Karaçal, Ü. Ertuğrul and R. Mesiar: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71.   DOI:10.1016/j.fss.2016.05.014
  34. F. Karaçal, Ü. Ertuğrul and M. Kesicioğlu: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices. Kybernetika 55 (2019), 6, 976-993.   DOI:10.14736/kyb-2019-6-0976
  35. F. Karaçal, M. Kesicioğlu and Ü. Ertuğrul: Generalized convex combination of triangular norms on bounded lattices. Int. J. Gen. Syst. 49 (2020), 3, 277-301.   DOI:10.31128/AJGP-04-20-5341
  36. X. Liang and W. Pedrycz: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502.   DOI:10.1016/j.fss.2009.04.014
  37. K. Menger: Statistical metrics. Proc. Natl. Acad. Sci. USA 8 (1942), 535-537.   CrossRef
  38. J. Medina: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88.   DOI:10.1016/j.fss.2012.03.002
  39. Y. Ouyang and H. P. Zhang: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.   DOI:10.1016/j.fss.2019.05.006
  40. W. Pedrycz and K. Hirota: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 1, 41-52.   DOI:10.1007/s00500-006-0051-0
  41. B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334.   DOI:10.2140/pjm.1960.10.313
  42. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.   CrossRef
  43. B. Schweizer and A. Sklar: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186.   CrossRef
  44. S. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.   DOI:10.1016/j.fss.2005.12.021
  45. S. Saminger, E. Klement and R. Mesiar: On extension of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150.   DOI:10.1016/S0019-3577(08)80019-5
  46. Z. Wang: TL-filters of integral residuated $l$-monoids. Inf. Sci. 177 (2007), 887-896.   DOI:10.1016/j.ins.2006.03.019
  47. A. F. Xie and S. J. Li: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104.   DOI:10.1016/j.fss.2019.04.020
  48. Z. Y. Xiu and X. Zheng: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108535.   DOI:10.1016/j.fss.2023.108535
  49. Z. Y. Xiu and Y. X. Jiang: New structures for uninorms on bounded lattices. J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030.   DOI:10.3233/jifs-224537
  50. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  51. B. Zhao and T. Wu: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.   CrossRef
  52. H. P. Zhang et al.: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121.   DOI:10.1016/j.fss.2020.10.016
  53. H. J. Zimmermann: Fuzzy Set Theory and Its Applications. (Fourth Edition.) Kluwer, Aachen 2001.   CrossRef