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DISTRIBUTED OPTIMIZATION VIA ACTIVE
DISTURBANCE REJECTION CONTROL:
A NABLA FRACTIONAL DESIGN

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, and Dongdong Yue

This paper studies distributed optimization problems of a class of agents with fractional order
dynamics and unknown external disturbances. Motivated by the celebrated active disturbance
rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first
constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed
optimization problem. It is rigorously shown that the decision variables of the agents reach a
domain of the optimal solution when the external disturbance is bounded. In particular, for
constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem
can be solved exactly. Finally, numerical simulations are presented to validate the effective
properties of the proposed algorithm.
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1. INTRODUCTION

In recent years, distributed optimization algorithms have undergone comprehensive and
profound scrutiny. Diverse algorithms have been meticulously crafted to cater to dis-
tinct convergence profiles, corresponding to various communication topologies. Among
these contributions, [7, 17, 29] elucidated distributed optimization algorithms tailored
for achieving asymptotic convergence with undirected graphs and directed graphs. [13]
devised a distributed optimization algorithm to attain exponential convergence when
conmunication is directed graphs. With the same convergence rate, [3] constructed a
distributed optimization algorithm over unbalanced graphs for muti-agent system. [2]
proposed a distributed quantized algorithm named Q-DGAT which used gradient de-
scent and variables tracking methods to estimate the global aggregative variable making
Q-DGAT algorithm achieve linear convergence. [14] designed a distributed ADMM al-
gorithm called QP-ADMM, which can achieve a linear convergence rate. [9] designed a
kind of zero-gradient-sum algorithm for distributed optimization which makes the sum
of local gradients comes to zero within a fixed time. [5, 19, 20] provided many studies
in prescribe-time distributed optimization, which are very popular in recent years. [26]
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contributed a distributed resource allocation algorithm for a multiagent network with
a time-varying digraph. However, there are few studies on distributed optimization
conbined with active disturbance rejection control (ADRC). [6] designed a continuous-
time distributed optimization algorithm for first order multi-agent disturbance systems
conbined ADRC.

ADRC, an innovation attributed to Han [10], is a control method based on PID control
algorithm. It is independent of the model of controlled plant and does not distinguish
internal and external disturbances. In general, ADRC includes tracking differentiators
(TD), extended state observers (ESO), and nonlinear state error feedback (NLSEF). In
this paper, a Frac-ESO is designed to observe and estimate unknown disturbances and
it is used as compensation in feedback control.

In addition, fractional calculus, an increasingly prominent mathematical tool, has
gained considerable traction within contemporary control theory. Over the past few
decades, fractional calculus has been found widespread applications in modeling the
behavior of dynamic system, spanning domains such as circuit systems, mechanical
systems and biological systems. Distinguishing itself from integer calculus, fractional
calculus can better describe the non-local and non-Markov phenomena of complex sys-
tems. Its applicability extends across an array of disciplines, including finance, physics,
and biology. In [15], a fractional-order gradient algorithm for quadratic objective func-
tions was proposed, but it cannot guarantee convergence to the global optimal solution.
For such convergence problem, [25] analyzed the specific reasons and proposed a vari-
ety of solutions. Among these advancements, [1] ingeniously extended the conventional
gradient optimization algorithm by replacing the gradient term with a fractional gra-
dient, thereby introducing the novel concept of a fractional gradient optimization algo-
rithm. [24] poposed a class of gradient algorithms with nabla fractional-order system,
including three kinds of convergence rates. It’s worth noting that [4] was the pioneer
in introducing fractional gradients into distributed optimization algorithms. However,
this algorithm can only deal with the objective function of quadratic form. In addition,
[27] studied the distributed optimization problem of fractional-order nonlinear uncertain
multi-agent systems with unmeasured states, employing a neural network-based adap-
tive optimization control strategy. [28] addressed the distributed optimization problem
of fractional-order non-strict-feedback multi-agent systems using neural networks and
event-triggered schemes for optimization control. [18] investigated the fixed-time dis-
tributed time-varying optimization problem of nonlinear fractional-order multi-agent
systems on unbalanced directed graphs, employing innovative distributed control meth-
ods. [16] examined the multiple Mittag-Leffler stability and almost periodic solutions
of fractional-order delayed neural networks, using a distributed optimization model and
neural dynamic solving methods. However, these studies primarily center on continuous-
time algorithms, potentially bringing about increased computational complexity and
communication costs. Then, [11, 12] extended the objective function to general convex
functions or strongly convex functions and designed nabla fractional distributed opti-
mization algorithms for different kinds of graphs. Through these studies, it is found
that fractional calculus can improve the performance of optimization algorithm, and its
non-Markov property can make reasonable use of the past information and avoid the
real-time calculation of gradient.



92 YIKUN ZENG, YIHENG WEI, SHUAIYU ZHOU, AND DONGDONG YUE

This paper designs a creative optimization algorithm, which solves the problem caused
by disturbance by introducing ADRC and improves the performance of the algorithm by
introducing fractional calculus. Section 2 gives some basic knowledge and the problem
statement. Section 3 develops an algorithm and analyzes its main properties. Section 4
provides two numerical examples to test the proposed algorithm. Finally, a concluding
discussion is given in Section 5.

2. PRELIMINARY

In this section, the main problem and some basic knowledge will be illustrated.

2.1. Nabla fractional calculus

For function f : Na+1−n → R, its nth integer order backward difference is defined by [8]

∇nf (k) :=
∑n

i=0(−1)i
(
n
i

)
f (k − i) , (1)

where n ∈ Z+, k ∈ Na+1 := {a+1, a+2, a+3, · · · }, a ∈ R, ( pq ) := Γ(p+1)
Γ(q+1)Γ(p−q+1) is the

generalized binomial coefficient and Γ(·) represents the Gamma function.
For function f : Na+1 → R, its αth Grünwald–Letnikov fractional sum is defined by

[8]
G
a ∇−α

k f (k) :=
∑k−a−1

i=0 (−1)
i(−α

i

)
f (k − i), (2)

where α ∈ R+, k ∈ Na+1 and a ∈ R.
For function f : Na+1−n → R, its αth Caputo fractional difference is defined by [8]

C
a∇α

kf (k) := G
a ∇α−n

k ∇nf (k) , (3)

where α ∈ (n− 1, n), n ∈ Z+, k ∈ Na+1, a ∈ R.
At this point, some lemmas need to be introduced.

Lemma 2.1. (Goodrich and Peterson [8]) For any f : Na+1−n → R, α ∈ (n − 1, n),
n ∈ Z+, k ∈ Na+1, C is any constant in R, there exists C

a∇αG
ka ∇−α

k f(k) = f(k) and
C
a∇α

kC = 0.

Lemma 2.2. (Wei et al. [23]) For any α ∈ (0, 1), y(k) ∈ Rp, p ∈ Z+, k ∈ Na+1, a ∈ R
and the positive definite matrix P ∈ Rp×p, one has the following inequality

C
a∇α

ky
⊤(k)Py(k) ≤ 2y⊤(k)PC

a∇α
ky(k). (4)

Lemma 2.3. (Wei [22]) If α ∈ (0, 1), λ < 0, a ∈ R, β ∈ [α, α + 1), k ∈ Na+1, for
Mittag–Leffler function Fα,β(λ, k, a), the following equation holds

lim
k→+∞

Fα,β(λ, k, a) = 0. (5)

Lemma 2.4. (Wei [21]) For system C
a∇α

kx(k) = f(k, x(k)), if there exist parameters
β ∈ (0, 1), b, c, α1, α2, α3, α4 > 0 and the Lyapunov function V (k, x(k)) such that

α1∥x(k)∥b ≤ V (k, x(k)) ≤ α2∥x(k)∥bc, (6)
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C
a∇

β
kV (k, x(k)) ≤ −α3∥x(k)∥bc + α4, (7)

where k ∈ Na+1, a ∈ R, V (k, x(k)) is Lipschitz continuous with regard to x(k), then
system is uniformly ultimate bounded at xe = 0.

Lemma 2.5. (Wei [22]) If α ∈ (0, 1), λ < 0, pq̄ is rising function writen as Γ(p+q)
Γ(p) ,

there exists limp→+∞
pq̄

pq = 1 and limk→+∞
Fα,1(λ,k,a)Γ(1−α)

(k−a)−α
= 1.

Lemma 2.6. (Wei [21]) For system C
a∇α

kx(k) = f(k, x(k)), if there exist parameters
β ∈ (0, 1), γ ∈ (0, 1), b, c, α1, α2, α3, σ > 0 and the Lyapunov function V (k, x(k)) such
that

α1∥x(k)∥b ≤ V (k, x(k)) ≤ α2∥x(k)∥bc, (8)

C
a∇

β
kV (k, x(k)) ≤ −α3∥x(k)∥bc + h(k), (9)∑+∞

j=a+1

∣∣G
a ∇

γ
j h(j)

∣∣ = σ < +∞, (10)

lim
k→+∞

h(k) = 0, (11)

where k ∈ Na+1, a ∈ R, V (k, x(k)) is Lipschitz continuous with regard to x(k), then
system is uniformly attractive at xe = 0.

2.2. Convexity and smoothness

If a continuously differentiable function f : Rn → R is m-strongly convex, then there
is [∇f(y) − ∇f(x)]⊤(y − x) ≥ m∥y − x∥2, ∀x, y ∈ Rn. If a function f : Rn → R
is l-Lipschitz continuous, then there is ∥f(x) − f(y)∥ ≤ l∥x − y∥, where l > 0 is the
Lipschitz coefficient. Especially, if a function f : Rn → R is l-smooth, then there is
∥∇f(x)−∇f(y)∥ ≤ l∥x− y∥.

2.3. Graph theory

The information-sharing relationship between agents can be characterized through the
language of graphs. The graph G = (V, E , A) represents the information-sharing rela-
tionship between agents, where V is the set of points, i. e., the set of N agents. E is the
set of edges, which is a subset of V ×V. If (i, j) ∈ E , it means that the ith agent is con-
nected to the jth agent. The matrix A ∈ RN×N is the adjacency matrix of this graph.
If agent i is adjacent to agent j, then Aij = 1, otherwise Aij = 0. In particular, Aii = 0
is equal to 0 for all i ∈ V. The Laplacian matrix of graph G is denoted by L ∈ RN×N ,
and each of its element satisfies Lij = −Aij for i ̸= j and Lii =

∑N
j=1,j ̸=i Aij .

2.4. Problem description

Considering a system consisted by N agents, their information is shared and the re-
lationship is represented by an undirected graph G. Each agent satisfies the following
dynamics system

C
a∇α

kxi(k) = ui(k) + qi(k), i = 1, . . . , N, (12)
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where xi ∈ Rn is the state of agent i, ui ∈ Rn is the input of agent i and qi(k) ∈ Rn is
the unknown external disturbance of agent i.
The main problem can be described as

min
x∈Rn

f̃(x) =
∑N

i=1
f̃i(x), (13)

where x ∈ Rn is a global variable, f̃(·) is the global objective function, f̃i(·) is the
local objective function assigned to the ith agent and N is the number of agents. Let
xi = [xi1, xi2, . . . , xin]

⊤ ∈ Rn denote the local optimization variable of the ith agent.
Then the original problem can be transformed into an optimization problem with a
consensus constraint

min
x∈Rn

f(x) =
∑N

i=1
fi(xi),

s.t. x1 = x2 = · · · = xN .
(14)

Aiming at the problem in (14) and considering agents in (12), an algorithm based on
ADRC is designed. Before moving on this, the following assumptions are given.

Assumption 1. The undirected graph G is connected.

Lemma 2.7. Under Assumption 1, 1 and 0 are eigenvalues of matrix L and there is
1⊤
NL = 0⊤

N . Furthermore, there exists a matrix Q ∈ RN×(N−1), which satisfies 1⊤
NQ =

0N−1, Q
⊤Q = IN−1, QQ⊤ = IN − 1

N 1N1⊤
N . Moreover, Q⊤LQ is a positive definite

matrix.

Assumption 2. The local objective function fi is differentiable andmi-strongly convex,
and ∇fi is li-Lipschitz continuous on Rn. In other words, fi is differentiable, mi-strongly
convex and l-smooth.

Assumption 3. For external disturbance qi(k), there exists M>0 satisfying

sup
k∈Na+1

∥∥C
a∇α

k qi(k)∥+ ∥qi(k)
∥∥ ≤ M. (15)

3. MAIN RESULTS

In this section, the design of fractional distributed optimization algorithm and a series
of theorems will be given.

3.1. The design of Frac-ESO

For the system in (12), Frac-ESO is designed as follows{
C
a∇α

k x̂i(k) = q̂i(k) + 2ω [xi(k)− x̂i(k)] + ui(k),
C
a∇α

k q̂i(k) = ω2 [xi(k)− x̂i(k)] ,
(16)

where ω > 0, x̂i(k) ∈ Rn is the estimation of xi(k) and q̂i(k) ∈ Rn is the estimation of
qi(k). Therefore, it can be observed that both external disturbance and agents’ state
could be estimated by designed Frac-ESO.
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Theorem 3.1. With Assumption 3, there exists r1 > 0 such that the error between
qi(k) and q̂i(k) satisfies

∥qi(k)− q̂i(k)∥ ≤ r1Fα,1(−ω, k, a) +M, i = 1, . . . , N, k ∈ Na+1. (17)

P r o o f . For the convenience of calculation, the error variables are defined as{
x̃i(k) = xi(k)− x̂i(k),

q̃i(k) = qi(k)− q̂i(k).
(18)

By combining (12), (16) and (18), it follows{
C
a∇α

k x̃i(k) = q̃i(k)− 2ωx̃i(k),
C
a∇α

k q̃i(k) = −ω2x̃i(k) +
C
a∇α

k qi(k).
(19)

In the case of Assumption 3, after defining zi(k) = [x̃i(k), q̃i(k)]
⊤, there is C

a∇α
k zi(k) ≤

Azi(k) +

[
0

M

]
, where A =

[
−2ωIn In
−ω2In 0

]
, zi(k) ∈ R2n. The eigenvalues of A are cal-

culated to be λ1,2 = −ω < 0. As the largest eigenvalue of matrix A, −ω satisties
C
a∇α

k q̃i(k) ≤ −ωq̃i(k) + M . By applying Lemma 2.4, there exists a parameter r1 > 0
such that ∥q̃i(k)∥ ≤ ∥q̃i(a)Fα,1(−ω, k, a) + M∥ ≤ r1Fα,1(−ω, k, a) + M . All of these
complete the proof. □

Corollary 3.2. When qi(k) = dn, there exists r2 > 0 such that the following inequali-
tity holds

∥qi(k)− q̂i(k)∥ ≤ r2Fα,1(−ω, k, a), i = 1, . . . , N, k ∈ Na+1. (20)

Remark 3.3. Using the Frac-ESO designed above, the state of agents and external
disturbance can be estimated in real-time. Moreover, when the external disturbance
is bounded as the shape of Assumption 3, the error estimated by Frac-ESO is also
bounded. In particular, when the external disturbance is constant, the error is Mittag–
Leffler convergence.

3.2. Algorithm construction

Based on the designed Frac-ESO in (16), the following fractional PI control can be
designed as

C
a∇α

kui(k) = −ρ
∑N

j=1
Lijxj(k)− ρvi(k)− ρ∇fi (xi(k))− q̂i(k),

C
a∇α

kvi(k) = ρ
∑N

j=1
Lijxj(k).

(21)

Here, parameter ρ > 0, −ρ
∑N

j=1 Lijxj(k) is the consensus term that causes all agents
to converge to the same point. −ρ∇fi (xi(k)) is a negative gradient term to ensure that
the state of each agent is updated iteratively in the direction of minimizing the objective
function fi. −q̂i(k) is the compensation term for external disturbance. −ρvi(k) is the
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integral feedback term which is used to eliminate the steady-state error of the algorithm.
Combining (12), (16) and (21), integrating the designed Frac-ESO and controller into
the model of controlled plant, a fractional distributed optimization algorithm with the
idea of ADRC is developed as

C
a∇α

kvi(k) = ρ
∑N

j=1
Lijxj(k),

C
a∇α

kxi(k) = −ρ
∑N

j=1
Lijxj(k)− ρvi(k)− ρ∇fi (xi(k)) + qi(k)− q̂i(k),

C
a∇α

k x̂i(k) = q̂i(k) + 2ω[xi(k)− x̂i(k)] + ui(k),
C
a∇α

k q̂i(k) = ω2[xi(k)− x̂i(k)],

(22)

where xi ∈ Rn is the state of agent i, L ∈ RN×N is the Laplacian matrix of the graph G
and Lij is the (i, j) elements of L. Since (22) can be regarded as a closed-loop control
system, the convergence of the algorithm can be regarded as the stability of this system.

Theorem 3.4. For algorithm (22), if the external disturbance is bounded as the form
of (17), then there exsit parameters r3 > 0, M1 > 0 such that

∥xi(k)− x∗∥ ≤ M1 + r3F
1
2
α,1(−

ρ2

2λH
, k, a), (23)

where λH is related to ρ and Lipschize coefficient l which will be defined later.

P r o o f . Defining the operation col(z1, · · · , zm) :=
[
z⊤1 , . . . , z⊤m

]⊤
, according to (18),

one has 
x(k) = col(x1(k), . . . , xN (k)),

v(k) = col(v1(k), . . . , vN (k)),

q̃(k) = col(q̃1(k), . . . , q̃N (k)),

∇f(x(k)) = col(∇f1 (x1(k)) , . . . ,∇fN (xN (k))).

(24)

Then the variables v(k) and x(k) can be governed by{
C
a∇α

kv(k) = ρ(L⊗ In)x(k),
C
a∇α

kx(k) = −ρ∇f(x)− ρv(k)− ρ(L⊗ In)x(k) + q̃(k),
(25)

where ⊗ represents the Kronecker product. When the external disturbance qi(k) ≡ 0n,
then q̃i(k) ≡ 0n. Therefore, the system (25) is converted to{

C
a∇α

kv(k) = ρ(L⊗ In)x(k),
C
a∇α

kx(k) = −ρ∇f(x(k))− ρv(k)− ρ(L⊗ In)x(k).
(26)

Since there is no external disturbance, algorithm (26) converges without Frac-ESO.
According to Assumption 1 and Assumption 2, it has a unique equilibrium point (x∗, v∗),
where v∗ = −∇f(x∗). When considering Lemma 2.1, the following equations hold∑N

i=1
vi(k) = 0n,

∑N

i=1
∇fi (x

∗) = 0n. (27)
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According to the equivalence between equilibrium point (x∗, v∗) in (26) and the optimal
value x∗ in (14), the optimization problem can be transformed into a stability problem
to solve. In order to facilitate analysis, the following variables are defined as

Xi(k) = xi(k)− x∗,

Vi(k) = vi(k)− v∗,

Fi (Xi(k)) = ∇fi (xi(k))−∇fi (x
∗) ,

X(k) = col (X1(k), . . . , XN (k)) ,

V (k) = col (V1(k), . . . , VN (k)) ,

F (X(k)) = col (F1 (X1(k)) , . . . , FN (k) (XN (k))) ,

(28)

where X(k) ∈ RnN , V (k) ∈ RnN , F (X(k)) ∈ RnN . By transformation (28), the system
(26) is converted into the error system as follows{

C
a∇α

kV (k) = ρ (L⊗ In)X(k),
C
a∇α

kX(k) = −ρF (X(k))− ρV (k)− ρ (L⊗ In)X(k) + q̃(k).
(29)

In order to study system (29) more clearly, the following variables are defined as
χ =

(
T⊤ ⊗ In

)
X(k),

ϑ =
(
T⊤ ⊗ In

)
,

T =

[
1N√
N

,Q

]
.

(30)

For the sake of analysis, χ = col (χ1, χ2) and ϑ = col (ϑ1, ϑ2) are defined, where χ1 ∈ Rn,
ϑ1 ∈ Rn, χ2 ∈ Rn(N−1), ϑ2 ∈ Rn(N−1). It’s important to note that Q is a matrix defined
in Lemma 2.7. On this basis, one has[

χ1

χ2

]
=

[ (
1⊤
N√
N

⊗In

)
X(k)(

Q⊤ ⊗ In
)
X(k)

]
, (31)[

ϑ1

ϑ2

]
=

[ (
1⊤
N√
N

⊗In

)
V (k)(

Q⊤ ⊗ In
)
V (k)

]
. (32)

Calculating the fractional difference on hands of (31) and (32) yields the following equa-
tions [

C
a∇α

kχ1
C
a∇α

kχ2

]
=

[ (
1⊤
N√
N

⊗In

)
C
a∇α

kX(k)(
Q⊤ ⊗ In

)
C
a∇α

kX(k)

]
, (33)[

C
a∇α

kϑ1
C
a∇α

kϑ2

]
=

[ (
1⊤
N√
N

⊗In

)
C
a∇α

kV (k)(
Q⊤ ⊗ In

)
C
a∇α

kV (k)

]
. (34)

Substituting algorithm (29) into equation (33), it follows[
C
a∇α

kχ1
C
a∇α

kχ2

]
=

[ (
1⊤
N√
N

⊗In

)
[−ρF (X(k))− ρV (k)− ρ (L⊗ In)X(k) + q̃(k)](

Q⊤ ⊗ In
)
[−ρF (X(k))− ρV (k)− ρ (L⊗ In)X(k) + q̃(k)]

]
. (35)
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Because of (27) and the property of 1⊤
NL = 0N , one has(

1⊤
N√
N

⊗ In

)
V (k) = 0n,

(
1⊤
N√
N

⊗ In

)
(L⊗ In) = 0n. (36)

Then, χ1 can be described as

C
a∇α

kχ1 = − ρ√
N

(1N ⊗ In)
⊤
F (X(k)) +

1√
N

(1N ⊗ In)
⊤
q̃(k). (37)

Multiplying
[

1N√
N

⊗ In, Q⊗ In

]
both sides of (31), it follows

X(k) =
1N√
N

⊗ Inχ1 +Q⊗ Inχ2. (38)

After multipling
(
Q⊤ ⊗ In

)
(L⊗ In) on both sides of equation (38), the following equa-

tion holds (
Q⊤ ⊗ In

)
(L⊗ In)X(k) =

(
Q⊤LQ⊗ In

)
χ2. (39)

By combining (32), (35) and (39), χ2 can be rewritten as

C
a∇α

kχ2 = − (Q⊗ In)
⊤
[ρF (X(k))− q̃(k)]− ρL̄χ2 − ρϑ2, (40)

where L̄ = Q⊤LQ⊗ In.
Substituting equation (29) into equation (34) yields the following equation[

C
a∇α

kϑ1
C
a∇α

kϑ2

]
=

[
ρ
(

1⊤
N√
N

⊗In

)
(L⊗ In)X(k)

ρ
(
Q⊤ ⊗ In

)
(L⊗ In)X(k)

]
. (41)

Because of (36) and (27), there must be C
a∇α

kϑ1 = 0n,
C
a∇α

kϑ2 = ρL̄χ2 and ϑ1(k) ≡ 0n.
Then the system in (29) will be transformed to

C
a∇α

kχ1 = − ρ√
N

(1N ⊗ In)
⊤
F (X(k)) +

1√
N

(1N ⊗ In)
⊤
q̃(k),

C
a∇α

kχ2 = − (Q⊗ In)
⊤
[ρF (X(k))− q̃(k)]− ρL̄χ2 − ρϑ2,

C
a∇α

kϑ2 = ρL̄χ2.

(42)

The Lyapunov function is selected as

W (k) =
1

2
ρ(ϕ+ 1)χ⊤

1 χ1 +
1

2
ρ(χ2 + ϑ2)

⊤(χ2 + ϑ2)

+
1

2
ρϕχ⊤

2 χ2 +
1

2
ρ(ϕ+ 1)ϑ⊤

2 L̄
−1ϑ2,

(43)

where ϕ ≥ l2 + 1 > 0,m = min {m1, . . . ,mN}, l = max {l1, . . . , lN}. Since L̄ is a positive
definite matrix, W (k) is positive definite and radially unbounded. Besides, λ̄H∥p∥2 ≤

W (k) ≤ λH∥p∥2, where p = col (χ, ϑ2),H = 1
2

 ιIn 0n×n(N−1) 0n×n(N−1)

0n(N−1)×n ιIn(N−1) ρIn(N−1)

0n(N−1)×n ρIn(N−1) ρIn(N−1) + ιL̄−1

,
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ι = ρ(ϕ+1), λH > 0 is the maximum eigenvalue of H, and λ̄H > 0 is the minimum eigen-
value of H. According to Lemma 2.2, the fraction difference of W (k) can be expressed
as

C
a∇α

kW (k)
≤ ρ(ϕ+ 1)χ⊤

1
C
a∇α

kχ1 + ρϕχ⊤
2
C
a∇α

kχ2

+ρ (χ2 + ϑ2)
⊤ C

a∇α
k (χ2 + ϑ2)

+ρ(ϕ+ 1)ϑ⊤
2 L̄

−1C
a∇α

kϑ2

= −ρ2(ϕ+ 1)X(k)⊤
(

1N√
N

⊗ In

)(
1⊤N√
N

⊗ In

)
F (X(k))

+ρ(ϕ+ 1)X(k)⊤
(

1N√
N

⊗ In

)(
1⊤N√
N

⊗ In

)
q̃(k)

−ρ2ϕχ⊤
2 (Q⊗ In)

⊤
F (X(k)) + ρϕχ⊤

2 (Q⊗ In)
⊤
q̃(k)

−ρ2ϕχ⊤
2 L̄χ2 − ρ2ϕχ⊤

2 ϑ2 + ρ2(ϕ+ 1)ϑ⊤
2 χ2

+ρ (χ2 + ϑ2)
⊤
(Q⊗ In)

⊤
q̃(k)− ρ2 (χ2 + ϑ2)

⊤
ϑ2

−ρ2 (χ2 + ϑ2)
⊤
(Q⊗ In)

⊤
F (X(k))

= −ρ2(ϕ+ 1)X(k)⊤F (X(k)) + ρ(ϕ+ 1)X(k)⊤q̃(k)

−ρ2ϑ⊤
2 (Q⊗ In)

⊤
F (X(k)) + ρϑ⊤

2 (Q⊗ In)
⊤
q̃(k)

−ρ2ϕχ⊤
2 L̄χ2 − ρ2ϑ⊤

2 ϑ2.

(44)

Since fi is a mi-strongly convex function and ∥X(k)∥ = ∥χ∥, the following equation
holds

−ρ2(ϕ+ 1)X(k)⊤F (X(k)) ≤ −ρ2(ϕ+ 1)m∥χ∥2. (45)

Since∇fi is li-Lipschitz on Rn, the following inequality holds by applying ∥X(k)∥ = ∥χ∥,
∥(Q⊗ In)∥ = 1 and Young’s inequality

−ϑ⊤
2 (Q⊗ In)

⊤
F (X(k)) ≤ 1

4
ϑ⊤
2 ϑ2 + l2∥χ∥2. (46)

According to Young’s inequality, following inequalities can be given

ρ(ϕ+ 1)X(k)⊤q̃(k) ≤ 1

2
ρ2∥X(k)∥2 + 1

2
(ϕ+ 1)2∥q̃(k)∥2, (47)

ρϑ⊤
2 (Q⊗ In)

⊤
q̃(k) ≤ 1

4
ρ2 ∥ϑ2∥2 + ∥q̃(k)∥2. (48)

Therefore, the fractional difference of W (k) can be simplified as

C
a∇α

kW (k) ≤− ρ2

2
(2m+ 1)∥χ∥2

− ρ2
l2 + 1

m
X(k)⊤ (L⊗ In)X(k)

− ρ2

2
∥ϑ2∥2 +

[
1

2
(ϕ+ 1)2 + 1

]
∥q̃(k)∥2

≤− ρ2

2
∥p∥2 +

[
1

2
(ϕ+ 1)2 + 1

]
∥q̃(k)∥2.

(49)
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According to Theorem 3.1, there exists M2 > 0 which satisfies
[
1
2 (ϕ+ 1)2 + 1

]
∥q̃(k)∥2 ≤

M2. Consequently, one has 
λ̄H∥p∥2 ≤ W (k) ≤ λH∥p∥2,

C
a∇α

kW (k) ≤ −ρ2

2
∥p∥2 +M2.

(50)

Applying Lemma 2.4, there exists r3 > 0, r4 > 0, M1 > 0, satisfying ∥xi(k)− x∗∥ ≤
∥M2 + r4Fα,1(− ρ2

2λH
, k, a)∥ 1

2 ≤ M1 + r3F
1
2
α,1(−

ρ2

2λH
, k, a). Proof is thus completed. □

Theorem 3.5. For algorithm (22), if the disturbance qi(k) = dn×1, the corresponding
system is uniformily attractive at xe = 0, i. e., limk→+∞ xi(k) = 0.

P r o o f . Referring to the previous proof, (49) also holds. With Corollary 3.2, there
exsits M3 > 0 satisfying

C
a∇α

kW (k) ≤ −ρ2

2
∥p∥2 +

[
1

2
(ϕ+ 1)2 + 1

]
∥q̃(k)∥2

≤ −ρ2

2
∥p∥2 +M3F2

α,1(−ω, k, a).

(51)

Defining h(k) = M3F2
α,1(−ω, k, a), limk→+∞ h(k) = 0 can be obtained by Lemma 2.3.

According to Lemma 2.5, there exsits M4 > 0 satisfying

∑+∞

j=a+1

∣∣G
a ∇

γ
j h(j)

∣∣ ≈ M4

∑+∞

j=a+1

∣∣∣∣∣Ga ∇γ
j

(j − a)−2α

Γ(1− 2α)

∣∣∣∣∣
= M4

∑+∞

j=a+1

∣∣∣∣∣ (j − a)−2α−γ

Γ(1− 2α− γ)

∣∣∣∣∣
= M4

(k − a)1−2α−γ

Γ(2− 2α− γ)
.

(52)

Since there exists γ ∈ (0, 1) satisfying 1− 2α− γ < 0,
∑+∞

j=a+1

∣∣G
a ∇

γ
j h(j)

∣∣ < +∞ holds.
By applying Lemma 2.6, limk→+∞ xi(k) = 0 holds. □

Remark 3.6. This paper designs a nabla fractional distributed optimization algorithm.
By using the ADRC method, the Frac-ESO is designed to estimate the disturbance of the
system and eliminate the static error of the system. For different types of disturbance,
the convergence performance of the proposed algorithm is also different. When the
disturbance is time-varying, the estimation error of the disturbance is bounded, and
the optimization error is uniformly bounded. When the disturbance is constant, the
estimation error of the disturbance is Mittag–Leffler convergent, and the optimization
error is uniformly attractive.

Remark 3.7. In addition, compared with the previous continuous-time algorithm [6],
the proposed algorithm is a discrete-time algorithm, which avoids communicating infor-
maton and calculating the gradient of the objective function in real time. Besides, nabla
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fractional calculus improves the dynamic performance of the algorithm since its non-
Markov and non-local properties make reasonable use of historical information. These
changes make it possible to obtain better properties.

4. SIMULATION STUDY

In this section, two numerical examples will be given to verify the feasibility and effec-
tiveness of the algorithm. The external disturbance is three-dimensional and bounded
which satisfies

qik(t) = qik0 + Eqik1 sin (ωik1t+ ϕik1) + Eqik2 sin (ωik2t+ ϕik2) , k = 1, 2, 3, (53)

where [ωi11, ωi21, ωi31] = [ π
2(i+3) ,

π
i+4 ,

π
2(i+4) ], [ωi12, ωi22, ωi32] = [ π

3(i+3) ,
2π

3(i+3) ,
π

2(i+4) ],

[qi10, qi20, qi30] =
[
i+ 2, i+ 2, 1

3

]
, [qi11, qi21, qi31] =

[
i+ 1, 1

2 ,
1
5

]
, [qi12, qi22, qi32] =

[
i, 1

2 ,
1
3

]
,

[ϕi11, ϕi21, ϕi31] = [0, 0, 0], [ϕi12, ϕi22, ϕi32] = [0, 0, 0], i = 1, 2, . . . , N , E = 0, 1, 100, 104.
E is the expansion of disturbance. Especially, when E = 0, the external disturbance
degenerates to a constant.

Example 4.1. This example considers a multi-agent system with an undirected con-
nected topology of five individuals and the dynamics of each agent is described by the
system as shown in Figure 1. The object function of the system is f(x) =

∑5
i=1 fi(x),

where the local object function of the system is fi(x) = ∥x− xi(a)∥2. The initial value of
each agent is xi(a) = [0.5× i, 0.5× (i−2), 0.5× (i−4)]⊤. The initial values of estimation
are q̂i(a) = [0, 0, 0]⊤ and x̂i(a) = [0, 0, 0]⊤. The fractional order used in this example is
chosen as α = 0.9. When the external disturbance takes different value of E, different
results are obtained. By taking different values of E, it is found that when the value of E
decreases, the estimation effect of Frac-ESO on the time-varying disturbance of system
becomes better. Figure 2(a) to Figure 2(d) are the results of E = 104. It can be seen that
each error is large. Figure 3(a) to Figure 3(d) are the results of E = 100 and Figure 4(a)

to Figure 4(d) are the results of E = 1. As E decreases, the effect of each estimation
error and optimization error gradually becomes better. The optimization error and the
estimation error are uniformly bounded. When E = 0, the time-varying disturbance
degenerates to a constant. The result are shown from Figure 5(a) to Figure 5(d). At this
point, uniformly boundedness becomes Mittag–Leffler convergent for the estimation of
disturbance and uniformly boundedness becomes uniformly attractive behavior for the
agents’ states.

1

4

53

2

Fig. 1. The communication topology.
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(a) The evolution of ∥xi(k)−x∗∥.
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(b) The evolution of |f(x(k)) −
f(x∗)|.
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(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 2. Results of Example 4.1 with E = 104.
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0 10 20 30 40 50 60

0

2

4

6

8

(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 3. Results of Example 4.1 with E = 100.
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(c) The evolution of ∥q(k)− q̂(k)∥.

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 4. Results of Example 4.1 with E = 1.
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(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 5. Results of Example 4.1 with E = 0.
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Example 4.2. This example considers a multi-agent system with an undirected con-
nected topology of six individuals and the dynamics of each agent is described by the
system shown in Figure 6. The local object functions are as follows

f1(x) = 2x2
1 + 4x2 + 1,

f2(x) = (2x2 − 3)2 + 5x3,

f3(x) = (x3 + 3)2 − 3x1,

f4(x) = ∥x− p∥22,
f5(x) = x2

2 + ex3 ,

f6(x) = ex3 + 2e−x1 ,

where p = [1,−1, 1]⊤. The initial value of each agent is xi(a) = [0, 0, 0]⊤. The initial
values of estimation are q̂i(a) = [0, 0, 0]⊤ and x̂i(a) = [0, 0, 0]⊤. The fractional order
used in this example is chosen as α = 0.8. Compared with Example 4.1, communication
topology, local objective functions, number of agents and fractional order are changed.
However, it is worth noting that both the optimization error and the estimation error
have same conclusions. As the value of E decreases, the amplitude of disturbance also
gradually decreases, which makes the estimation effect of Frac-ESO improve. When E ̸=
0, the disturbance is bounded, and the error between each agent’s state and the optimal
value is uniformly bounded under the action of the algorithm. Figure 7(a) to Figure 7(d)

are the results of E = 104, which have large deviations. When E decreases, the effect
of each estimation error and optimization error are gradually improved. Figure 8(a) to
Figure 8(d) are the results of E = 100 and Figure 9(a) to Figure 9(d) are the results
of E = 1. The optimization error and the estimation error are uniformly bounded.
When E = 0, the time-varying disturbance degenerates to a constant. The result are
shown from Figure 10(a) to Figure 10(d). In this case, uniformly boundedness becomes
Mittag–Leffler convergent for the estimation of disturbance and uniformly boundedness
becomes uniformly attractive behavior for the agents’ states.

1 2

5

6 3

4

Fig. 6. The communication topology.
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(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 7. Results of Example 4.2 with E = 104.
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Fig. 8. Results of Example 4.2 with E = 100.
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(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 9. Results of Example 4.2 with E = 1.
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(d) The evolution of ∥x(k)−x̂(k)∥.

Fig. 10. Results of Example 4.2 with E = 0.
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5. CONCLUSIONS

In this paper, a fractional distributed optimization algorithm based on different kinds
of disturbances and the method of ADRC have been proposed. Firstly, an Frac-ESO
has been constructed which is used to estimate disturbance and eliminate static errors
of system. For different disturbances, the estimation performances reach different ef-
fects. The estimation error remains bounded with bounded external disturbances while
constant external disturbances lead to Mittag-Leffler convergence. Using Frac-ESO for
disturbance estimation, agents achieve optimal value with varying effects depending on
the type of disturbance. Specifically, optimization algorithm drives convergence towards
the optimal domain for bounded disturbances, while with constant disturbances, con-
vergence leads directly to optimal values. In future, the following valuable research
directions will be considered.

(i) For different communication topologies, the communication topologies of directed
equilibrium graphs will be considered.

(ii) Random noise can be tried instead of fixed sinusoidal noise.

(iii) For feedback methods, nonlinear feedback may be a good choice.
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