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HIGHLY ROBUST TRAINING OF REGULARIZED
RADIAL BASIS FUNCTION NETWORKS

Jan Kalina, Petra Vidnerová and Patrik Janáček

Radial basis function (RBF) networks represent established tools for nonlinear regression
modeling with numerous applications in various fields. Because their standard training is
vulnerable with respect to the presence of outliers in the data, several robust methods for RBF
network training have been proposed recently. This paper is interested in robust regularized
RBF networks. A robust inter-quantile version of RBF networks based on trimmed least squares
is proposed here. Then, a systematic comparison of robust regularized RBF networks follows,
which is evaluated over a set of 405 networks trained using various combinations of robustness
and regularization types. The experiments proceed with a particular focus on the effect of
variable selection, which is performed by means of a backward procedure, on the optimal
number of RBF units. The regularized inter-quantile RBF networks based on trimmed least
squares turn out to outperform the competing approaches in the experiments if a highly robust
prediction error measure is considered.
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1. INTRODUCTION

Standard tools for training common types of shallow neural networks are vulnerable with
respect to the presence of outliers (atypical/anomalous instances) in the data. This is
true for multilayer perceptrons (MLPs) and at the same time for radial basis function
(RBF) networks, where both represent established classes of feedforward networks for
nonlinear regression modeling with numerous applications [1].

There have been remarkably more robust tools available for training MLPs compared
to RBF networks [10]. For MLPs, approaches based on robust loss functions inspired
by robust or nonparametric statistical procedures [15] have been revealed in [24] to
outperform competing robust approaches, e. g. those based on a prior outlier detection
and removal. Particularly, robust approaches based on least trimmed squares or least
trimmed absolute values estimators turn out to yield superior results for data contami-
nated by outliers [35]. These highly robust approaches have a high breakdown point in
both linear and nonlinear regression [17]; the breakdown point as a fundamental measure
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of robustness is formally defined as the minimal fraction of data that can drive an esti-
mator beyond all bounds when set to arbitrary values (Section 2.6 of [15]). Regularized
versions of highly robust MLPs were systematically compared in [18], where however
the potential of MLPs to estimate nonlinear regression quantiles was not exploited.

The RBF networks can be described as distribution mixtures and important exam-
ples of generalized regularization networks; these were investigated already in [31] and
other their examples include tensor product splines or adaptive splines. Regression RBF
networks also require robust training and an important class of such available robust ap-
proaches is based on replacing the most common loss function (sum of squared residuals)
by a more robust version. Reinforced learning for an RBF network with a robustified
loss function using softmax-based iterative quadratic programming was used in [47].
A generalized Kullback-Leibler divergence was used as the loss function in training RBF
networks in [38]; this turned out to be more suitable than a habitual approach if the
random noise is not Gaussian.

Practitioners seem to realize the harmful influence of outliers on the standard training
of RBF networks. Let us recall two recent applications, where a standard training of
an RBF network was accompanied by outlier detection. A prior detection of outliers
and their removal (before the training) were performed in [43] in the task of modeling
wireless sensor network data. A posterior outlier detection was performed in [11] as
a diagnostic tool to validate results of RBF networks predicting the quality of crude oil
samples from various geographic locations.

Let us also recall some other approaches for improving the robustness of regression
RBF networks, neither based on a robust loss function nor on outlier detection. Subtrac-
tive clustering was used in [40] for the search of center vectors for RBF networks and this
was claimed to partially improve the robustness against outliers, because it is focused on
approximating the underlying mapping rather than on interpolating the training data.
Attempts to robustify RBF networks based on exploiting the Mahalanobis distances of
individual data points from the centers were described in [2]; however, the Mahalanobis
distances remain non-robust with respect to the breakdown point [3]. In the credit rat-
ing application of [26], an optimized segmentation of customers was performed aimed at
reducing the vulnerability of an RBF network to outliers. Some other works combined
several approaches to improving the robustness of RBF networks to outliers. For exam-
ple, a composite loss function in the form of a sequence of sigmoidal functions was used
in [25] to improve the robustness together with using the redescending M-estimator of
Hampel (Section 3.2 of [15]) for the parameter estimation. It deserves to be recalled
that a number of applied papers (e. g. [19]) endeavored for robust performance of RBF
networks, i. e. stable performance under modified conditions, however without using any
statistical robustness focused on the effect of outliers.

The predictive ability of robust RBF networks has been compared only on a very small
number of datasets with outliers [47] so that robust RBF networks started to penetrate
to real applications only slowly. Moreover, the literature is void of regularized versions
of robust RBF networks, although various regularization types have been often exploited
for the plain (non-robust) RBF networks [27]. This paper is interested in highly robust
regularized versions of RBF networks. Section 2 is methodological and contains several
novel proposals including a robust inter-quantile version of RBF networks based on the
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trimmed least squares. An analysis performed over 405 trained networks is presented
in Section 3. A more detailed analysis of the effect of variable selection is presented
on two real datasets in Section 4. Based on the computations, the novel inter-quantile
RBF network based on the trimmed least squares may be recommended for real data,
especially if combined with the L2-regularization. Section 5 brings conclusions.

2. METHODS

The standard nonlinear regression model is considered here in the form

Yi = f(Xi) + ei, i = 1, . . . , n, (1)

with the total number of n observations (data samples), where Y1, . . . , Yn are values of
the response and X1, . . . , Xn ∈ Rp are the regressors (predictors). The random errors
e1, . . . , en are assumed to independent and identically distributed (i.i.d.) but we do not
want to assume any particular probabilistic distribution of the errors. The regression
task is to explain (model, predict) the unknown nonlinear function f based on the data.

2.1. Radial basis function networks

The plain RBF network for the task (1) requires to choose a radially symmetric func-
tion ρ. The model, which was described in detail e. g. in [1], has the form

f(x) =

N∑
j=1

ajρ(∥x− cj∥) (2)

for a given value of the features x ∈ R
p, where ∥.∥ denotes the Euclidean norm,

c1, . . . , cN ∈ R
p are centers (center vectors), and a1, . . . , aN ∈ R are parameters de-

noted as weights. The network (2) represents a weighted sum of distances of x ∈ R
p

from a (possibly small) set of important points in the p-dimensional space. The role of
the centers in RBF networks was discussed in [8], where different approaches to their
optimization were carefully compared. It is recommended to start the optimization with
centers corresponding to particular (randomly selected) observations. A denser set of
centers is typically required in the regions in the space of the data with a highly nonlinear
and strongly curved course of the regression function.

We consider here the most common approach with the quadratic loss

argmin
1

n

n∑
i=1

Yi − N∑
j=1

âjρ(∥Xi − ĉj∥)

2

, (3)

which is minimized jointly over ĉ1, . . . , ĉN ∈ Rp, â1, . . . , âN ∈ R, and over other possible
parameters corresponding to ρ. The parameters c1, . . . , cN and a1, . . . , aN are estimated
here by estimates ĉ1, . . . , ĉN and â1, . . . , âN , respectively. The number N of RBF units
(typically assuming p < N < n) is fixed in (3) and can be tuned in cross-validation.
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It will be convenient to introduce a schematic notation for (3). Let us denote the
vector of all parameters of a given RBF network by θ ∈ R

d with a certain d. If esti-
mating θ by θ̂ ∈ Rd, the residuals will be denoted as ui(θ̂) for i = 1, . . . , n. Then, we
express (3) as

argmin
θ̂∈Rd

1

n

n∑
i=1

u2i (θ̂). (4)

To avoid confusion, the plain RBF network will be denoted as LS-RBF throughout the
paper, where LS abbreviates the least squares, i. e. reflects the loss to consider the sum of
squared residuals. Among various available approaches to estimating the optimal values
of the parameters, we have chosen back-propagation exploiting a stochastic gradient
descent optimization algorithm. This can be used for all of the robust versions of RBF
networks mentioned below. Because the computation requires to specify starting points
for the parameters, we use the (typical) approach with weights initialized to random
numbers close to 0.

Further, we consider the habitual approach to take ρ to be the Gaussian kernel
(Gaussian density). With such choice, (2) can be expressed as

f(x) =

N∑
j=1

aj exp

{
−∥x− cj∥2

2σ2
j

}
, x ∈ Rp, (5)

and the training requires to estimate also the unknown quantities σ̂2
1 , . . . , σ̂

2
N , i. e. vari-

ability parameters or bandwidth of individual Gaussian kernels.

2.2. RBF networks with a robust loss

A simple robustified version of RBF networks based on computing

argmin
θ̂∈Rd

1

n

n∑
i=1

|ui(θ̂)| (6)

will be denoted as LAD-RBF, where LAD abbreviates the least absolute deviations (also
known as the least absolute values estimator) [46]. Other available RBF networks with
a robust loss, which were recently proposed in the literature, have been inspired by
robust statistical estimators from the linear regression model. Such tools include the
least weighted squares (LWS) estimator [44] or its important special case, which is the
least trimmed squares (LTS) [50]. In linear regression, rank-based estimators performed
successfully in applications [16, 17, 18] or in simulated measurement error models [37],
while the results were not heavily depending on the choice of the particular weight
function.

Let us use the notation
u2(1)(θ̂) ≤ · · · ≤ u2(n)(θ̂) (7)

for squared residuals arranged in asceding order. A robust RBF network based on the
LWS [17] denoted as LWS-RBF is defined by

argmin
θ̂∈Rd

n∑
i=1

ψ

(
i− 1/2

n

)
u2(i)(θ̂), (8)
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where the weight function is considered as in [18] in the form

ψ1(t) = exp

{
− t2

2τ2

}
1[t < α], t ∈ [0, 1], τ = 0.8, α = 0.75. (9)

The function (9) can be interpreted as a trimmed density of the standard Gaussian
distribution (up to a multiplicative constant). As a special case, LTS-RBF is defined
as (8) using

ψ2(t) = 1[t < α], t ∈ [0, 1], α = 0.75, (10)

where 1 denotes the indicator function.
As a novelty, let us propose LWA-RBF networks defined by

argmin
θ̂∈Rd

n∑
i=1

ψ

(
i− 1/2

n

)
|u(θ̂)|(i) (11)

again with the weight function (9), where

|u(θ̂)|(1) ≤ · · · |u(θ̂)|(n). (12)

The least trimmed absolute value (LTA) estimator [35] is an important special case of
LWA; we propose a corresponding robust RBF network denoted as LTA-RBF as (11)
with the particular weight function (10).

2.3. Regularized versions of robust RBF networks

Regularization techniques have been recommended for non-robust RBF networks to
avoid overfitting [13] for data with a smaller value of n, particularly if p is not too small.
The most common regularization approach exploits the weight regularization (weight
decay) in the form L2- or L1-regularization considered only for the values a1, . . . , aN
in (5). However, the combination of robustness with regularization for RBF networks
has not been considered in the literature. Let us denote the selected loss function of
an RBF network by ℓ(θ̂); we understand that θ̂ contains (apart from other estimates)
also the estimates â1, . . . , âN and ĉ1, . . . , ĉN . Let us consider the L2-regularization in
the form

argmin
θ̂∈Rd

ℓ(θ̂) + λ

N∑
j=1

â2j

 , (13)

where a suitable value of the regularization parameter λ > 0 may be found by cross-
validation. L1-regularization, which induces sparsity of the parameters, uses the penal-
ization term λ

∑N
j=1 |âj |.

Regularization in the form of penalization allows RBF networks to be computed also
for high-dimensional data with n < p and may also be used for other robust versions
of RBF networks. Because the regularization improves local robustness of the standard
LS-RBF [45] but not robustness to outliers, we expect robust regularized versions of
RBF networks such as (13) to be the appropriate tools for contaminated data.



Highly robust training of regularized RBF networks 43

2.4. RBF networks based on quantiles (TLS-RBF network)

In linear regression, regression quantiles represent a popular methodology for obtaining
more complex information compared to fitting a single regression hyperplane [23, 12].
The trimmed least squares (TLS) estimator in linear regression was proposed already
in [32] as one of robust regression L-estimators. An adaptive (data-dependent) but sym-
metric version, which is based on trimming the same percentage of outliers from above
and from below, was studied intensively in Chapters 4 and 6 of [7]. Later, the asymp-
totic representation for the TLS estimator, which does not require the both percentages
to be equal, was proven in [15] together with its appealing robustness properties. We
are interested in extending the adaptive version of the TLS estimator to the context
of neural networks; a robust trimmed least squares RBF network (TLS-RBF) based on
finding the optimal values of its two parameters is proposed in this section.

The quantile regression RBF networks denoted here shortly as QR-RBF, which were
suggested e. g. in the papers [22, 49], represent a method for estimating quantiles of
nonlinear trend inspired by [30]. Here, QR-RBF(τ) denotes the quantile with τ ∈ (0, 1)
defined by

argmin
θ̂∈Rd

n∑
i=1

ζτ

Yi − N∑
j=1

âjψ(∥Xi − ĉj∥)

 , (14)

i. e. an RBF network with the loss function ζτ with a given τ . Compared to the mini-
mization in (3), the so-called check function ζτ is used with the definition

ζτ (x) =

 (τ − 1)x, if x < 0,

τx, if x ≥ 0.
(15)

Fig. 1. Artificial data with trend estimated by LS-RBF (left) and

TLS-RBF with τ = 0.3 and τ = 0.7 (right).

The idea of the novel method TLS-RBF defined in Algorithm 1 is to train an LS-RBF
network over only the training observations that lie between two QR-RBF networks with
parameters τ1 and τ2. The method performs outlier detection and the parameters τ1 < τ2
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are tuned according to the estimated contamination level. Detecting and trimming
away the outlying training observations ensures the robustness. TLS-RBF represents
the first available nonlinear extension of TLS and may be useful in applications, where
the primary aim is not related to estimating individual nonlinear quantiles, especially if
the errors in (1) are heteroscedastic [34].

Algorithm 1 TLS-RBF network

Input: Training data (XT
1 , Y1)

T , . . . , (XT
n , Yn)

T , where Xi ∈ R
p and Yi ∈ R for i =

1, . . . , n
Input: Integer k (with default value k = 10)
Output: TLS-RBF with values of parameters τ1 and τ2 that are optimal in k-fold

cross-validation
1: for j ∈ 1, . . . , k do
2: Divide the data randomly to k groups of approximately equal size
3: Sj := set of observations of the jth group
4: for τ1 ∈ {0.05, 0.10, . . . , 0.25} do
5: for τ2 ∈ {0.95, 0.90, . . . , 0.75} do
6: Train the QR-RBF(τ1) and QR-RBF(τ2) networks over all data /∈ Sj

7: Ŷ
QR-RBF(τ1)
i := fitted value of Yi given by QR-RBF(τ1) for data /∈ Sj

8: Ŷ
QR-RBF(τ2)
i := fitted value of Yi given by QR-RBF(τ2) for data /∈ Sj

9: TLS-RBF(τ1, τ2):= LS-RBF computed over the observations that

Ŷ
QR-RBF(τ1)
i ≤ Yi ≤ Ŷ

QR-RBF(τ2)
i , (16)

where Yi /∈ Sj , i = 1, . . . , n
10: MSE(j, τ1, τ2) := MSE of TLS-RBF(τ1, τ2) for data ∈ Sj

11: end for
12: end for
13: end for
14: MSE(τ1, τ2) :=

∑10
j=1 MSE(j, τ1, τ2)

15:

(τ̂1, τ̂2)
T := argmin

τ1,τ2

MSE(τ1, τ2) (17)

16: Train the QR-RBF(τ̂1) and QR-RBF(τ̂2) networks over all data

17: Ŷ
QR-RBF(τ̂1)
i := fitted value of Yi given by QR-RBF(τ̂1) for all data

18: Ŷ
QR-RBF(τ̂2)
i := fitted value of Yi given by QR-RBF(τ̂2) for all data

19: TLS-RBF(τ̂1, τ̂2):= LS-RBF network computed over the observations that

Ŷ
QR-RBF(τ̂1)
i ≤ Yi ≤ Ŷ

QR-RBF(τ̂2)
i , i = 1, . . . , n (18)
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2.5. Backward variable selection

Backward elimination (backward variable selection) represents a popular step-wise vari-
able selection approach in the context of linear regression [4], which has been successfully
exploited also for RBF networks (recently e. g. in [14]). A standard version is used here
to find relevant variables based on the value of cross-validation prediction error mea-
sure. The variable selection is used only in Section 4 in a detailed study over two selected
datasets; it is used as a prior step before the training of RBF networks. The variable
selection is performed by selecting and trimming away redundant regressors from the
model. In the algorithm, the notation RBFℓ,N,λ is used for a version of an RBF network
with loss function ℓ, N RBF units, and regularization parameter λ. If the network is
computed over all variables except for those contained in a set S, it will be convenient
to denote it by RBFℓ,N,λ(S).

Within the backward procedure, values of N and λ are not optimized repeatedly.
Instead, the tedious computations are simplified by running the whole backward selection
with a single choice of N and λ optimized for each individual dataset. At the end of the
backward selection, the number of regressors p is reduced to a smaller number denoted
as p̃; the optimal N is determined again after the variable selection.

Fig. 2. A general scheme for training RBF networks. Dimensionality

reduction is used only in the experiments of Section 4.

3. EXPERIMENTS OVER 405 TRAINED RBF NETWORKS

The first study is performed without any dimensionality reduction and uses 15 publicly
available datasets with n between 151 and 9358 and with p between 3 and 128. Nonlinear
regression represents a meaningful task for these datasets, which have been previously
used as benchmarking datasets for regression modeling. All the computations in this
paper were performed in Keras [6].

3.1. Experiments

For each dataset, the response is always normalized to the interval [0, 1]; this allows
to aggregate the results obtained for different datasets. Only continuous or binary
regressors are retained ignoring the other ones. Further, all observations with at least
one missing value were omitted, i. e. we perform a so-called complete case analysis. After
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Index Name of the dataset p n Source
1 Air Quality 15 9358 [9]
2 Auto MPG 8 398 [9]
3 Bennett5 3 154 [28]
4 Boston Housing 14 506 [9]
5 Communities and Crime 128 1994 [9]
6 Concrete Compressive Strength 9 1030 [9]
7 Chwirut1 3 214 [28]
8 ENSO 9 168 [28]
9 Gauss1 8 250 [28]
10 Hahn1 7 236 [28]
11 Kirby2 5 151 [28]
12 Parkinsons Telemonitoring 26 5875 [9]
13 SkillCraft1 Master Table 20 3395 [9]
14 SML2010 24 4137 [9]
15 Solar Flare 10 1389 [9]

Tab. 1. The datasets considered in the experiments of Section 3.

these steps are performed, each dataset is divided to a training set and a test set, where
the test set is randomly chosen to contain 20 % of the samples.

In the training data, 10-fold cross-validation is performed to find the optimal values
of N and λ (only for regularized methods); the pair of N and λ that yields the minimal
cross-validation MSE is selected, where N is considered from the set {100, 200, 400} and
λ is from the set {0.0001, 0.001, 0.01, 0.1, 0.25}. Within the cross-validation, each of the
variables was standardized to values between 0 and 1. There are 10 folds for each of
the 15 datasets and each type of the network is thus evaluated in 15× 10× 3× 5 = 2250
situations, i. e. for 3 values of N and 5 values of λ.

After the optimalN and λ are found, the trained RBF networks are applied to the test
sets to perform independent validation of the performance of different methods: there
were 9 methods (9 types of networks given in Table 3) and 3 types of regularization
applied to train the network and to make predictions for the test sets of 15 datasets. At
this point, there were thus altogether 9× 3× 15 = 405 trained versions of networks used
in the analysis. While λ is optimized for MSE, we compute MAE, TMSE, and TMAE
with the value of λ that is optimal for MSE.

MLPs and LWS-MLPs [18] are also trained for the sake of comparisons. They are used
with 2 hidden layers containing T and 2 neurons, respectively, with a sigmoid activation
function in the hidden layers, and with a linear output layer with a single neuron. As
values of T , all numbers from the set ST = {25, 50, 100, 200, 400} have been used; the
results are then considered for the value of T that yields the smallest loss function among
all possible values from ST . An L2-regularized version of MLPs is considered as well,
because L2-regularization turned out to be the best choice among various regularization
techniques in [18].
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LS- LAD- TLS- LTS- LTA- LWS- LWA- LWS-
RBF RBF RBF RBF RBF RBF RBF MLP MLP

LS-RBF
LAD-RBF 70
TLS-RBF 89 77
LTS-RBF 87 74 36
LTA-RBF 87 72 32 46
LWS-RBF 87 73 35 58 53
LWA-RBF 85 73 30 43 48 39

MLP 44 24 11 16 19 21 19
LWS-MLP 88 78 35 55 46 41 44 87

Tab. 2. Results of pairwise comparisons of Section 3 for TMSE

aggregated over all different combinations of regularization types,

values of λ, and datasets. Each value is a percentage of experiments,

where the row method is better (has a smaller TMSE) than the

column method.

3.2. Prediction error measures

Four prediction error measures are used to evaluate the prediction performance of the
trained networks. Their values computed for each of the test sets are averaged across
the 15 datasets. Using robust versions of the mean square error (MSE) is motivated by
the vulnerability of MSE with respect to outliers. The definitions of the used measures
will be now recalled using the notation m for the number of samples in a particular test
set and u1, . . . , um for the prediction errors (residuals) of the test samples.

• Mean square error MSE =
∑m

i=1 u
2
i /m.

• Mean absolute deviation MAE =
∑n

i=1 |ui|/m.

• Trimmed mean square error (TMSE) and trimmed mean absolute error (TMAE).
We use the notation (7) and denote |u|(1) ≤ · · · ≤ |u|(m) for ordered absolute
values. Taking h = ⌊3m/4⌋, where ⌊x⌋ denotes the integer part of x ∈ R, we
define

TMSE =
1

h

h∑
i=1

u2(i) and TMAE =
1

h

h∑
i=1

|u|(i). (19)

3.3. Results

As revealed in Table 3, robust RBF networks turn out to beneficial and also the regu-
larization is beneficial for them; the choice of the best regularization type depends on
the choice of the particular loss function. We do not consider MSE and MAE to be ap-
propriate for data influenced by severe outliers and TLS-RBF turns out to outperform
other networks if using highly robust prediction error measures (TMSE, TMAE). For
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both TMSE and TMAE, the best results are obtained for TLS-RBF if L2-regularization
is used. The fact that L2-regularization is so beneficial corresponds to the experience
described in the literature on regularized RBF networks [33]. Results of LWS-RBF,
LWA-RBF, LTS-RBF, and LTA-RBF stay slightly behind the best results. Results ob-
tained with LWS-MLP much outperform those of non-robust MLP here, but do not
reach the level of TLS-RBF.

More detailed results obtained for TMSE are reported in Table 2, which contains
results of pairwise comparisons aggregated for 3 types of regularization, 5 values of λ ∈
{0.0001, 0.001, 0.01, 0.1, 0.25}, and 15 datasets. The results are percentages evaluated
across 3 × 5 × 15 = 225 situations. Particularly, each value in the table is the number
of situations, where the method in the particular row has a better (smaller) TMSE on
the test set compared to the method in the particular column. For example, LWS-RBF
yields a smaller TMSE than LS-RBF in 87 % of situations. The table reveals the weak
performance of LS-RBF compared to all robust versions of RBF networks and confirms
TLS-RBF networks to be the winner of the comparions.

3.4. Hypothesis testing

In addition, hypothesis testing was further performed to assess the significance of differ-
ent loss functions and/or different regularization types. The nonparametric Friedman
test applied to the prediction error measures (PEMs) evaluated for individual RBF net-
works rejects the null hypothesis that the results are equal for all combinations of loss
functions and regularization types; the p-values are smaller than 10−5 for MSE, 10−6

for TMSE, and 10−3 for both MAE and TMAE.

Because of the significant results of the Friedman test, we may proceed with posthoc
tests of equal performance in terms of the 4 PEMs for all three pairwise comparisons,
i. e. (i) loss functions, (ii) regularization types, and (iii) complete models with all inter-
actions between individual choices of (i) and (ii). The correction to multiple hypotheses
testing is performed for all these comparisons with the Tukey honest significance differ-
ence (HSD) test [42], which controls the family-wise error rate (FWER). Comparing the
effect of loss function, the posthoc tests are used to compare their 9×(9−1)/2 = 36 pairs.
Among them, the effect of the loss function is significant in 21 pairs for all the 4 PEMs.
There are 6 pairs that do not significantly differ for any of the 4 PEMs; these are the
pairs between RBF networks based on LTS, LTA, LWS, and LWA. Comparing the effect
of regularization type, the posthoc tests reveal that L2- and L1-regularizations do not
significantly differ for any of the 4 PEMs, and each of them is significantly different from
results obtained without regularization for all the 4 PEMs. Finally, the posthoc tests are
applied to testing between individual pairs of complete models including interaction be-
tween a loss function and a regularization type. Among the (9×3)×((9×3)−1)/2 = 351
pairs, there are 212 pairs with significant difference for all the 4 PEMs, and only 39 pairs
with insignificant difference for all the 4 PEMs.
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Version of Prediction error measure
network MSE MAE TMSE TMAE

(A) No regularization
LS-RBF 0.434 0.341 0.387 0.296
LAD-RBF 0.477 0.313 0.333 0.260
TLS-RBF 0.490 0.298 0.240 0.214
LTS-RBF 0.603 0.330 0.271 0.225
LTA-RBF 0.616 0.322 0.276 0.217
LWS-RBF 0.628 0.315 0.259 0.230
LWA-RBF 0.611 0.317 0.272 0.218

MLP 0.471 0.336 0.395 0.272
LWS-MLP 0.582 0.329 0.294 0.231

(B) L2-regularization
LS-RBF 0.405 0.314 0.369 0.264
LAD-RBF 0.443 0.287 0.307 0.253
TLS-RBF 0.469 0.296 0.221 0.206
LTS-RBF 0.574 0.313 0.245 0.211
LTA-RBF 0.592 0.309 0.264 0.208
LWS-RBF 0.599 0.296 0.260 0.210
LWA-RBF 0.590 0.314 0.266 0.212

MLP 0.449 0.320 0.350 0.257
LWS-MLP 0.546 0.305 0.278 0.220

(C) L1-regularization
LS-RBF 0.415 0.308 0.361 0.269
LAD-RBF 0.457 0.296 0.307 0.257
TLS-RBF 0.478 0.281 0.228 0.220
LTS-RBF 0.588 0.315 0.249 0.213
LTA-RBF 0.601 0.301 0.260 0.210
LWS-RBF 0.606 0.311 0.253 0.211
LWA-RBF 0.599 0.305 0.256 0.315

MLP 0.453 0.315 0.374 0.263
LWS-MLP 0.560 0.303 0.275 0.226

Tab. 3. Results of Section 3: Values of 4 prediction error measures

evaluated for various loss functions and regularization types, averaged

across the 15 datasets (evaluated over their test sets). The best result

in every column is shown in boldface.
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4. EXPERIMENTS WITH BACKWARD VARIABLE SELECTION

Further, the effect of backward variable selection is investigated. Because the proce-
dure is computationally tedious, we analyze only two real publicly available datasets
with a sufficiently large p. These datasets have been repeatedly used as benchmarking
datasets for nonlinear regression.

1. The first dataset is the Communities and Crime Dataset from the UCI reposi-
tory [9]. While two versions of this dataset are available, we take the normalized
version of this dataset with n = 1994 and p = 128. We take the total number of
crimes (violent and non-violent) per 100 000 inhabitants as the dependent variable.

2. The second dataset is the Residential Building Dataset from the UCI repository
with n = 372 and p = 105. The actual sales price is used here as the response
variable.

In both the datasets, all the variables are continuous and there are no missing values.
We normalized all the variables to the interval [0, 1]. After that, each dataset is divided
to a training set and a test set, where the test set was randomly chosen to contain 20 %
of the samples. The datasets are analyzed

(i) Without any dimensionality reduction, and

(ii) Using the prior dimensionality reduction of Section 2.5, which is trained over the
training data.

Under (i), the cross-validation for finding the optimal N and λ (if applicable) over the
training data is used in the same way as in Section 3. Naturally, the trained (standard
or robust) RBF networks are evaluated over the test data.

Under (ii), the dimensionality reduction is performed for a particular choice of the
type of RBF network and particular regularization. The dimensionality reduction con-
tains a cross-validation for finding the optimal N and λ. Thus, after the dimensionality
reduction is computed yielding the relevant set of p̃ variables, the trained RBF network
is evaluated directly over the test data.

The choice of N is the only difference here from the approach of Section 3. This is
motivated by the need to fulfil the requirement p < N < n. For the Communities and
Crime Dataset, the optimal value of N is found from the set {200, 400, 800} in both
(i) and (ii). For the Residential Building Dataset, N = 150 is always taken in both (i)
and (ii).

In both (i) and (ii), MLPs are used or the sake of comparisons; the same architecture
is used as described in Section 3.1.

The results evaluated over the test sets are presented in Tables 4 and 5. There,
different regularization types are used (none, L2, L1). For each method, 3 prediction
error measures are reported together with the number of variables used in the model
(p or p̃) and the optimal λ. The values of MSE, MAE, and TMSE in both tables 1 should
be multiplied by 10−2. The left parts of the tables are evaluated over all variables and
the right parts after performing the backward variable selection of Section 2.5. In each
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Algorithm 2 Backward variable selection for a (possibly robust and/or regularized)
RBF network

Input: Training data (XT
1 , Y1)

T , . . . , (XT
n , Yn)

T , where Xi ∈ R
p and Yi ∈ R for i =

1, . . . , n
Input: Selected type of RBF network given by its loss function ℓ including a possible

regularization with parameter λ > 0
Input: Prediction error measure PEM ∈ {MSE, MAE, TMSE, TMAE}
Input: N = {200, 400, 800} (Communities and Crime Dataset) or N = {150} (Resi-

dential Building Dataset)
Input: Λ = {0.0001, 0.001, 0.01, 0.1, 0.25} for regularized types of RBF networks; other-

wise Λ := {}
Input: c = 1.1
Output: Set of selected relevant regressors S̃
Output: Optimal N and λ for data after backward selection
Output: Minimal cross-validation PEM for data after backward selection
1: for λ ∈ Λ do
2: for N ∈ N do
3: Fit the RBFℓ,N,λ network
4: PEMℓ,N,λ := cross-validation PEM of RBFℓ,N,λ

5: end for
6: end for
7: λ0 := argminλ∈Λ PEMℓ,N,λ

8: N0 := argminN∈N PEMℓ,N,λ0

9: S0 := {}
10: repeat
11: for j /∈ S do
12: Fit the RBFℓ,N0,λ0,(S ∪ {j}) network
13: PEMℓ,N0,λ0

(S ∪ {j}) := cross-validation PEM of RBFℓ,N0,λ0
(S ∪ {j})

14: end for
15: j̃ := argminj /∈S PEMℓ,N0,λ0

S ∪ {j}
16: S := S ∪ {j̃}
17: until PEMℓ,N0,λ0

(S) ≥ cPEMℓ,N0,λ0

18: S̃ := S \ {j̃}
19: for λ ∈ Λ do
20: for N ∈ N do
21: Fit the RBFℓ,N,λ(S̃) network

22: PEMℓ,N,λ(S̃) := cross-validation PEM of RBFℓ,N,λ(S̃)
23: end for
24: end for
25: (

Ñ

λ̃

)
:= argmin

N∈N , λ∈Λ
PEMℓ,N,λ(S̃) (20)

26:

P̃EM := PEMℓ,Ñ,λ̃(S̃) (21)
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of the individual results of Table 4, the optimal N was determined as N = 200. Results
obtained with TMAE are omitted for reasons of space.

LS-RBF outperforms all the competing methods for MSE and LAD-RBF for MAE.
However, it is important to recall that LS-RBF is based on minimizing MSE and so it
LAD-RBF designed to minimize MAE over the training data. TMSE can be described
as a more interesting measure, because it is highly robust to outliers. While LTS-RBF
is designed to minimize TMSE over the training data, both Tables 4 and 5 show that
TLS-RBF is the winner for the evaluation over test sets for TMSE and also for TMAE,
where the latter is not shown for reasons of space. Using TMSE, LS-RBF networks are
revealed to be harmed by outliers heavily just like in Section 3. LWS-RBF, LWA-RBF,
LTS-RBF, and LTA-RBF networks perform quite well although they stay slightly behind
TLS-RBF networks. A detailed analysis now presented here reveals the sensitivity of
LWS-RBF and LWA-RBF networks to the adjustment of the learning rate. Their loss
functions are highly nonlinear and have the form of a minimum obtained across all the
individual losses of individual LS-RBF or LAD-RBF networks, respectively.

Using a regularization usually decreases the prediction error here. This is also true
for the L1-regularization, which induces sparsity, i. e. the prediction error is improved in
spite of a smaller number of relevant parameters used within the network. The results
with L2-regularization turn out to be superior to those with L1-regularization. If the
variable selection is performed, the prediction becomes slightly weaker; Tables 4 and 5

show the numbers of variables selected by the variable selection. There turns out to be
a set of some 30 relevant variables for the Communities and Crime Dataset and 40 to
50 for the Residential Building Dataset, while the remaining variables may be ignored
without a heavy influence on the resulting prediction performance.

Linear combinations of two versions of the RBF networks do not yield promising
results and are not shown here for reasons of space. For example, a combination of
LS-RBF and LWS-RBF was considered, where the weights of both versions for their
weighted average was searched for in order to maximize the resulting cross-validation
MSE.

5. CONCLUSIONS

The experiments presented in this paper can be described as the first available study
comparing various robust regularized RBF networks. All the versions of RBF networks
that are used in this paper can be formulated also for the context of multilayer per-
ceptrons (MLPs). Particular attention is paid here to the effect of a backward variable
selection on the performance of (robust and/or regularized) RBF networks. Using TMSE
as a highly robust measures of prediction performance, the best results are obtained for
the novel robust TLS-RBF networks with optimal τ1 and τ2 obtained according to Al-
gorithm 1. The high vulnerability of standard RBF networks (LS-RBF) with respect
to outliers is demonstrated here clearly. The RBF networks based on the LWS, LWA,
LTS, and LTA estimators stay slightly behind the best results for TMSE, however their
weight functions were chosen as fixed and were not optimized for the sake of additional
computational demands. We can also say that L2-regularization turns out to be more
suitable compared to L1-regularization here.



Highly robust training of regularized RBF networks 53
N
o
d
im

en
si
o
n
al
it
y
re
d
u
ct
io
n

B
a
ck
w
a
rd

va
ri
a
b
le

se
le
ct
io
n

M
et
h
o
d

M
S
E

M
A
E

T
M
S
E

M
S
E

M
A
E

T
M
S
E

R
eg
u
la
ri
za
ti
o
n
:
R
eg
u
la
ri
za
ti
o
n
:
R
eg
u
la
ri
za
ti
o
n
:
R
eg
u
la
ri
za
ti
o
n
:
R
eg
u
la
ri
za
ti
o
n
:
R
eg
u
la
ri
za
ti
o
n
:

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

L
S
-R

B
F

1.
71

1.
5
0

1.
64

1.
25

1
.0
7

1.
18

0.
46

0
.3
3

0
.4
1

1
.9
5

1
.8
0

1
.8
6

1
.3
9

1
.1
3

1
.1
8

0
.4
0

0
.3
5

0
.3
7

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
6

3
4

3
0

4
0

4
2

3
6

4
3

3
9

3
5

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
A
D
-R

B
F

1.
93

1.
6
9

1.
84

0.
97

0
.7
9

0.
82

0.
31

0
.2
5

0
.2
9

2
.2
3

2
.1
0

2
.1
9

1
.1
6

0
.8
2

0
.8
6

0
.3
4

0
.2
9

0
.3
1

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
5

3
3

3
1

3
8

4
1

3
2

3
2

3
0

2
9

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

T
L
S
-R

B
F

2.
47

2.
3
0

2.
36

1.
20

1
.0
3

1.
14

0.
19

0
.1
6

0
.1
9

2
.7
8

2
.5
1

2
.6
4

1
.2
5

1
.1
4

1
.1
8

0
.2
3

0
.1
9

0
.2
1

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
1

2
9

2
8

3
5

4
0

3
0

2
8

2
7

2
4

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
T
S
-R

B
F

2.
86

2.
6
7

2.
78

1.
22

1
.0
5

1.
19

0.
21

0
.1
7

0
.1
8

3
.2
0

3
.0
3

3
.1
1

1
.2
6

1
.1
5

1
.1
7

0
.2
4

0
.2
0

0
.2
1

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
7

3
4

3
5

4
2

4
1

3
2

3
3

3
1

3
0

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
T
A
-R

B
F

2.
65

2.
4
9

2.
56

1.
22

1
.0
3

1.
17

0.
23

0
.1
9

0
.2
0

2
.9
6

2
.7
8

2
.8
4

1
.2
6

1
.1
5

1
.1
8

0
.2
5

0
.2
2

0
.2
2

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
7

3
4

3
2

4
2

4
1

3
3

3
4

3
1

2
7

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
W

S
-R

B
F

2.
92

2.
7
5

2.
84

1.
24

1
.0
6

1.
14

0.
20

0
.1
7

0
.1
9

3
.2
4

3
.0
5

3
.1
3

1
.2
7

1
.1
4

1
.1
7

0
.2
5

0
.2
0

0
.2
1

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
0

2
8

2
5

4
2

4
2

3
5

2
9

2
8

2
5

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
W
A
-R

B
F

2.
85

2.
6
8

2.
77

1.
24

1
.0
6

1.
13

0.
22

0
.1
8

0
.2
1

3
.1
8

3
.0
2

3
.0
9

1
.3
0

1
.1
8

1
.1
9

0
.2
4

0
.2
1

0
.2
0

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
2

3
0

3
0

4
2

4
3

3
4

3
2

2
9

2
4

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

M
L
P

1.
99

1.
8
3

1.
94

1.
36

1
.1
9

1.
26

0.
43

0
.3
7

0
.3
9

2
.1
2

1
.9
0

1
.9
7

1
.5
2

1
.2
6

1
.2
7

0
.3
6

0
.3
3

0
.3
4

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
6

3
4

3
1

4
4

4
5

3
9

3
8

3
4

3
1

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

L
W

S
-M

L
P

2.
77

2.
6
1

2.
70

1.
23

1
.0
4

1.
14

0.
26

0
.2
2

0
.2
3

3
.0
6

2
.8
8

2
.9
4

1
.3
3

1
.3
0

1
.3
1

0
.2
9

0
.2
6

0
.2
7

#
of

va
r.

12
8

12
8

1
28

1
28

1
28

12
8

1
28

1
28

1
2
8

3
3

3
1

3
0

4
1

4
5

3
5

3
1

2
9

2
5

λ
-

0
.1

0
.1

-
0
.1

0
.1

-
0.
1

0
.1

-
0
.0
1

0
.0
1

-
0
.1

0
.1

-
0
.0
1

0
.0
1

T
a
b
.
4
.
R
es
u
lt
s
fo
r
th
e
C
o
m
m
u
n
it
ie
s
a
n
d
C
ri
m
e
D
a
ta
se
t
o
f
S
ec
ti
o
n
4

fo
r
d
iff
er
en
t
re
g
re
ss
io
n
m
et
h
o
d
s
u
si
n
g
d
iff
er
en
t
re
g
u
la
ri
za
ti
o
n
ty
p
es
.



54 J. KALINA, P. VIDNEROVÁ AND P. JANÁČEK

N
o
d
im

en
sion

ality
red

u
ction

B
a
ck
w
a
rd

va
ria

b
le

selection
M
eth

o
d

M
S
E

M
A
E

T
M
S
E

M
S
E

M
A
E

T
M
S
E

R
egu

larization
:
R
egu

larization
:
R
egu

lariza
tio

n
:
R
eg
u
la
riza

tio
n
:
R
eg
u
la
riza

tio
n
:
R
egu

larization
:

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

-
L
2

L
1

L
S
-R

B
F

3
.9
1

3.60
3.86

2.72
2.33

2.58
0.74

0.52
0
.5
8

4
.3
2

4
.0
7

4
.2
9

3
.0
5

2
.7
6

2
.8
9

0.81
0.58

0.62
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
5

4
8

4
1

4
7

5
0

4
2

52
55

45
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
A
D
-R

B
F

4
.3
5

4.03
4.22

2.27
1.95

2.09
0.58

0.42
0
.5
1

4
.8
0

4
.4
1

4
.6
7

2
.4
3

2
.0
5

2
.2
2

0.64
0.48

0.53
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
7

4
9

3
9

4
7

4
8

3
7

50
52

44
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
T
L
S
-R

B
F

4
.4
5

4.14
4.30

2.31
1.99

2.13
0.54

0.40
0
.4
6

4
.8
5

4
.4
4

4
.6
8

2
.5
1

2
.1
6

2
.2
3

0.60
0.44

0.49
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
1

4
5

3
6

4
2

4
6

3
3

45
41

43
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
T
S
-R

B
F

5
.1
8

4.87
5.06

2.54
2.18

2.29
0.55

0.44
0
.4
9

5
.7
1

5
.3
3

5
.4
6

2
.6
7

2
.2
7

2
.3
6

0.61
0.47

0.53
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
2

4
4

3
4

4
5

4
5

3
7

45
41

31
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
T
A
-R

B
F

5
.2
2

4.90
5.01

2.51
2.26

2.38
0.56

0.46
0
.4
8

5
.4
9

5
.1
5

5
.3
7

2
.6
6

2
.3
3

2
.4
8

0.61
0.45

0.51
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
1

4
3

3
3

4
3

4
5

3
4

45
43

36
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
W

S
-R

B
F

4
.6
7

4.34
4.57

2.69
2.36

2.47
0.56

0.44
0
.4
9

5
.2
1

4
.8
6

5
.0
3

2
.6
7

2
.4
8

2
.5
7

0.62
0.48

0.52
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

3
8

4
1

3
1

4
3

4
4

3
5

44
41

31
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
W
A
-R

B
F

4
.8
3

4.51
4.75

2.42
2.20

2.35
0.56

0.40
0
.4
7

5
.1
0

4
.6
8

4
.9
4

2
.6
4

2
.2
9

2
.4
3

0.62
0.50

0.54
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

3
8

4
3

3
1

4
3

4
5

3
3

45
42

32
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
M
L
P

4
.1
2

3.84
4.08

2.75
2.37

2.50
0.75

0.52
0
.5
7

4
.4
5

4
.0
5

4
.2
8

3
.0
5

2
.6
6

2
.8
5

0.78
0.61

0.66
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
7

5
0

3
9

4
6

5
1

3
9

49
53

40
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01
L
W

S
-M

L
P

4
.5
2

4.19
4.35

2.56
2.21

2.40
0.59

0.46
0
.5
3

4
.8
5

4
.4
3

4
.5
5

2
.7
3

2
.4
5

2
.5
8

0.62
0.49

0.55
#

of
va
r.

10
5

105
105

105
105

105
105

105
1
0
5

4
0

4
3

3
5

4
4

4
7

3
7

46
44

36
λ

-
0.1

0.1
-

0.1
0.1

-
0.1

0
.1

-
0
.1

0
.1

-
0
.1

0
.1

-
0.01

0.01

T
a
b
.
5
.
R
esu

lts
fo
r
th
e
R
esid

en
tia

l
B
u
ild

in
g
D
a
ta
set

o
f
S
ectio

n
4

fo
r
d
iff
eren

t
reg

ressio
n
m
eth

o
d
s
u
sin

g
d
iff
eren

t
reg

u
la
riza

tio
n
ty
p
es.



Highly robust training of regularized RBF networks 55

Robustness and regularization turn out to be beneficial also for MLPs in accordance
with previous results e. g. of [18]. The prior variable selection allows to reduce the
number of relevant variables at the cost of a small weakening of the prediction ability.
On the whole, robust regularized versions RBF networks turn out to be powerful and
computationally straightforward. The backward variable selection may contribute to
a more efficient computation of RBF networks [13]. The combination of robustness
and regularization may be exploited also in other contexts, particularly in classification
tasks, and might be extended to deep networks with RBF layers or for energy-efficient
computation of convolutional neural networks (CNNs) [39].

Regularization ensures local robustness to small perturbations e. g. due to rounding.
At the same time, regularization may be interpreted as a Bayesian approach, which
corresponds to estimating (training) the parameters with a possible contamination by
small errors [41]. For this reason, regularized estimation is important for the field of
approximate neurocomputing, where the effect of rounding the parameters or computing
in a low-precision arithmetic are of interest [5]. As future work, it is intended to study
the connection of regularized training with Bayesian estimation also for robust RBF
networks; in this context, we perceive the training of robust MLPs as a maximization of
certain quasi-likelihood functions, i. e. as an optimization task analogous to likelihood-
based statistical estimation problems.

Finally, let us comment the possibility of comparing the results with other analy-
ses of the given data published elsewhere. Although the datasets are benchmarking,
i. e. suitable for computing different methods and making comparisons, comparing with
different papers would require to use exactly the very same setup that was used in these
papers: the same pre-processing, data standardization, details of cross-validation, even
the same construction of the test set. Typically, however, the experimental papers do
not describe all the details of their analysis, so the results are not directly compara-
ble. For example, the pre-processing applied to the analysis of the residential building
dataset is not described in [20]. In addition, sophisticated pre-processing (cleaning the
data, transformations) is often performed with the given data. For example in [48], the
pre-processing was performed to reduce noise and to reduce the influence of outliers.
Our approach is much more realistic: we keep the data as much unchanged as possible,
because we want to retain outliers. Thus, in our setup, the disadvantages of standard
RBF networks are revealed and the benefits of the robust training are demonstrated.
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REFERENCES

[1] G. Blokdyk: Artificial Neural Network: A Complete Guide. Createspace Independent
Publishing Platform, Scotts Valey 2017.
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