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ON GYROGROUPS AND ITS FUZZY TOPOLOGIES
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In this paper, a new approach for fuzzy gyronorms on gyrogroups is presented. The relations
between fuzzy metrics(in the sense of Morsi), fuzzy gyronorms, gyronorms on gyrogroups are
studied. Also, some sufficient conditions, which can make a fuzzy normed gyrogroup to be a
topological gyrogroup and a fuzzy topological gyrogroup, are found. Meanwhile, the relations
between topological gyrogroups, fuzzy topological gyrogroups and stratified fuzzy topological
gyrogroups are studied. Finally, the properties of fuzzifying topological gyrogroups are studied.
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1. INTRODUCTION

In [13], Ungar introduced the notion of a gyrogroups, arising from the parameterization
of the Lorentz transformation group. This leads to the formation of gyrogroup theory,
a rich subject in mathematics. Loosely speaking, a gyrogroup is a group-like structure
in which the associative law fails to satisfy. It turns out that gyrogroups share remark-
able analogies with groups. Suksumran extended several well-known results in group
theory to the case of gyrogroups such as the Lagrange theorem [10], the fundamental
isomorphism theorems, the Cayley theorem [11], the orbit-stabilizer theorem, the class
equation, and the Burnside lemma [12]. From the topological aspect, Atiponrat [2]
introduced the notion of topological gyrogroups, in spite of having a weaker algebraic
form, topological gyrogroups carry almost the same basic properties owned by topolog-
ical groups. After this, Cai et al. [4] extened the famous Birkhoff-Kakutani theorem by
proving that every first-countable Hausdorff topological gyrogroup is metrizable.

In fuzzy topological algebra, the combination of fuzzy metric structure and alge-
braic structure is a noteworthy subject. Fuzzy normed spaces and fuzzy metric spaces
are the most frequently studied structures. Several scholars studied fuzzy metrics on
group. They find some sufficient conditions to make nonsymmetric topological algebraic
structure become stronger topological structure. In particular, Salvador Romaguera [7]
introduced the notion of fuzzy metric groups and investigated properties of the quotient
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subgroups of a fuzzy metric group. Sánchez and Sanchis [8] proved that the comple-
tion of a fuzzy metric group (G,M, ∗) such that (M, ∗) is invariant on G. Recently,
Suksumran [9, 10] introduced the normed gyrogroup and proved that the normed gy-
rogroups are homogeneous. Also, Suksumran form left invariant metric spaces and derive
a version of the Mazur-Ulam theorem. Specially, Suksumran gave certain sufficient con-
ditions, involving the right-gyrotranslation inequality and Klee’s condition, for a normed
gyrogroup to be a topological gyrogroup. Base the notion of fuzzy norm which is in-
troduced by Bag and Samanta [3], Xie [16] introduced the notion of fuzzy gyronorms
on gyrpgroup and discussed the fuzzy metric structures on fuzzy normed gyrogroups in
2022. Also, some sufficient conditions, which make a fuzzy normed gyrogroup to be a
topological gyrogroup, were found.

As we have known, the fuzzy norm in the sense of Morsi is also a very widely used
norm, especially in the field of fuzzy topology. For example, Yan [17] discussed the
fuzzifying topological structure in Morsi’s normed spaces. Influenced by [16] and [17],
we intend to give a new approach for fuzzy gyronorms on gyrogroups in this paper, some
properties of fuzzy normed gyrogroups are studied. Also, the relations between fuzzy
normed gyrogroups and normed gyrogroups, fuzzy metrics(in the sence of Morsi) and
fuzzy gyronorms on gyrogroups are studied. Then we find the conditions, which make
fuzzy normed gyrogroup to be fuzzy topological gyrogroup and fuzzifying topological
gyrogroup. The paper is organized as follows. In section 2, some basic facts and defini-
tions are stated. In section 3, we mainly show the relations between a family of ordinary
gyronorms and a fuzzy gyronorm. Section 4 is devoted to study the relations between
fuzzy metrics in the sense of Morsi and fuzzy gyronorms on gyrogroups. In section 5,
It is shown that some sufficient conditions can make a fuzzy normed gyrogroup to be
a topological gyrogroup and a fuzzy topological gyrogroup. In addition, the relations
between topological gyrogroups, fuzzy topological gyrogroups and stratified fuzzy topo-
logical gyrogroups are discussed. In section 6, we study the properties of fuzzifying
topological gyrogroups.

2. PRELIMINARIES

Throughout this paper, I = [0, 1], the family of all fuzzy sets on X is denoted by IX .
Recall that a binary operation S : [0, 1] × [0, 1] → [0, 1] is a continuous s-norm if S
satisfies the following conditions:

(i) S is associative and commutative;

(ii) S is continuous;

(iii) S(x, 0) = x, ∀x ∈ [0, 1];

(iv) S(a, b) = S(c, d) whenever a ≤ c, b ≤ d, with a, b, c, d ∈ [0, 1].

The basic s-norms may be as follows:

(1) SM (a, b) = max{a, b};

(2) SP (a, b) = a+ b− a · b;

(3) SL(a, b) = min{a+ b, 1}.
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The s-norm is said to be strictly monotone if S(a1, b1) < S(a, b) for all a1 < a, b1 < b.
The example of strictly monotone and continuous s-norm is max. One can easily show
that S ≥ max for every continuous s-norm S.

Definition 2.1. (Morsi [6]) Let η be a nonascending function R → I. The notations
η(b−), η(b+) denote the limit of η from the left at b and the limit of η from the right
at b for all b ∈ R, respectively. An equivalence relation ∼ is defined on the collection of
nonascending functions R → I as follows: For two such functions η and ζ, η ∼ ζ iff for
all b ∈ R, η(b−) = ζ(b−) and η(b+) = ζ(b+).

A fuzzy real number is an equivalence class, under the above equivalence relation ∼, of
nonascending left continuous functions η : R → I with η(−∞+) = 1 and η(+∞−) = 0.
The set of all fuzzy real numbers is denoted by R(I).

We shall not distinguish between a fuzzy real number and any of its representative
functions R → I.

Definition 2.2. (Morsi [6])

(1) The relation smaller than or equal to ⪯ is defined on R(I) by η ⪯ ζ iff η(t) ≤ ζ(t)
for all t ∈ R.

(2) A fuzzy real number η is said to be positive if η(r) = 1 for some real r > 0, and
R+(I) is the collection of all positive fuzzy real numbers.

(3) R∗(I) is the collection of all fuzzy real numbers η with η(0) = 1.

For every r ∈ R, the fuzzy real number r̃ : R → I is given as follows:

r̃(s) =

{
1, s ≤ r,

0, s > r.

Definition 2.3. (Morsi [6]) Let η, ξ ∈ R(I), η + ξ is the fuzzy real number defined by
(η + ξ)(t) =

∨
r+s=t(η(r) ∧ ξ(s)) for all t ∈ R.

Lemma 2.4. (Morsi [6]) Let η, ξ ∈ R(I) and r ∈ R, then (η + ξ)(t) =
∧

r+s=t(η(r) ∨
ξ(s)).

Definition 2.5. (Morsi [6]) For every b ∈ R, the fuzzy subsets Rb and Lb of R(I) are
defined as follows: for all η ∈ R(I),

Rb(η) = η(b+) and Lb(η) = 1− η(b).

Definition 2.6. (Morsi [6]) A fuzzy pseudo-metric on a nonempty set X is a mapping
d : X ×X → R∗(I) which satisfies: for all x, y, z ∈ X,

(FM1) d(x, x) = 0̃;

(FM2) d(x, y) = d(y, x);

(FM3) d(x, z) ⪯ d(x, y) + d(y, z).

(X, d) is called a fuzzy pseudo-metric space. If, in addition, d satisfies:

(FM4) x ̸= y ⇒ d(x, y) ∈ R+(I).
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Definition 2.7. (Morsi [6]) Let (X, d) be a fuzzy pseudo-metric space, x ∈ X, and
η ∈ R∗(I)− {0̃}. The fuzzy open ball in (X, d) with center x and radius η is the fuzzy
subset B(x; η) ∈ IX defined as follows: for all y ∈ X,

B(x; η)(y) = sup{Rs(η) ∧ Ls[d(x, y)] : s ∈ R}.

The notation B(; ) for fuzzy open balls will be maintained in the sequel.

Let c : X → [0, 1] be a mapping defined by c(x) = c,∀x ∈ X, i.e, c ∈ IX is a constant
fuzzy set.

Definition 2.8. (Abdulkadir [1]) A fuzzy topological space is an ordered pair (X,T )
such that X is a set and T ⊂ IX satisfies the following conditions

(i) 0, 1 ∈ T ;

(ii) If λ1, λ2 ∈ T , then λ1 ∧ λ2 ∈ T ;

(iii) If λi ∈ T for all i ∈ J , then
∨

i∈J λi ∈ T .

In [5], Lowen proposed a more natural definition of fuzzy topology, called strati-
fied fuzzy topology, since constant functions may not be open in general with Chang’s
definition.

Definition 2.9. (Lowen [5]) A stratified fuzzy topological space is an ordered pair
(X,T ) such that X is a set and T ⊂ IX satisfies the following conditions

(i) c ∈ T for all c ∈ [0, 1];

(ii) If λ1, λ2 ∈ T , then λ1 ∧ λ2 ∈ T ;

(iii) If λi ∈ T for all i ∈ J , then
∨

i∈J λi ∈ T .

Lowen [5] gave a relation between the category of classical topologies and the category
of fuzzy topologies by introducing the following two mappings ω and ι.

Definition 2.10. (Lowen [5]) Let X be a nonempty set, τ be a topology on X. Define
ω(τ) = {λ : λ is lower semicotinuous}.

Proposition 2.11. (Lowen [5]) Let X be a nonempty set, τ be a topology on X. Then
ω(τ) is a stratified fuzzy topology on X.

Proposition 2.12. (Lowen [5]) Let (X,T ) be a fuzzy topological space and 0 ≤ α < 1.
The family ια(T ) = {[λ]α : λ ∈ T } is a topology on X, which is called the α-level
topology of T , where [λ]α = {x ∈ X : λ(x) > α}. On the other hand,

⋃
{ια(T ) : α ∈

[0, 1)} is a subbase for the topology ι(T ).

Let {τα : α ∈ [0, 1)} be a family of topologies on X. In order to guarantee the
existence of at least one fuzzy topology T on X such that ια(T ) = τα for all α ∈ [0, 1),
a necessary and sufficient condition was given in [14, 15].



A new approach for fuzzy gyronorms on gyrogroups and its fuzzy topologies 23

Proposition 2.13. (Pwuyts [14]) Let {τα : α ∈ [0, 1)} be a family of topologies on X.
Then the following are equivalent:

(a) There exists at least a fuzzy topology T on X such that ∀α ∈ [0, 1) : ια(T ) = τα;

(b) LT-property: ∀α ∈ [0, 1),∀G ∈ τα,∃(Gβ)β∈(α,1) ∈
∏

β∈(α,1) τβ descending and

G =
⋃

β∈(α,1) Gβ .

Proposition 2.14. (Pwuyts [15]) Let F = {τα : α ∈ [0, 1)} be a family of topologies
on X. Then there exist a fuzzy topology T on X having F as their level topologies, I. e.
such that

ια(T ) = τα,∀α ∈ [0, 1) (⋆)

if and only if F has the LT-property. Moreover, the fuzzy topology T (F ) = {λ : [λ]α ∈
τα,∀α ∈ [0, 1)} is the finest of all stratified I-topologies on X if (⋆) holds.

Theorem 2.15. (Morsi [6]) Let (X, d) be a fuzzy pseudo-metric space. Let x, y ∈ X
and r be a positive real number. Then

B(x; r̃)(y) = Lr[d(x, y)] = 1− d(x, y)(r).

Definition 2.16. (Morsi [6]) Let (X, d) be a fuzzy pseudo-metric space. The fuzzy
topology on (X, d) is the fuzzy topology on X with subbase the collection of all fuzzy
open balls in (X, d).

This fuzzy topology is also called the fuzzy topology associated with d. When d is a
fuzzy metric, its associated fuzzy topology will be called a fuzzy metric topology.

Definition 2.17. (Morsi [6]) Let α ∈ [0, 1). A fuzzy topological space (X, τ) is said to
be

(i) α− T0 if for every x ̸= y in X there is U ∈ τ such that U(x) > α and U(y) = 0 or
U(y) > α and U(x) = 0;

(ii) α− T1 if for every x ̸= y in X there is U ∈ τ such that U(x) > α and U(y) = 0;

(iii) α−T2 if for every x ̸= y in X there are disjoint U, V ∈ τ such that U(x)∧V (y) > α.

Definition 2.18. (Ying [18]) Given a set X, a mapping T : 2X → [0, 1] is called a
fuzzifying topology on X if it satisfies the following axioms:

(FY1) T (∅) = T (X) = 1;

(FY2) T (U ∩ V ) ≥ T (U) ∧ T (V ),∀U, V ∈ 2X ;

(FY3) T (
⋃

j∈J Uj) ≥
∧

j∈J T (Uj),∀Uj ⊆ 2X(j ∈ J).
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Definition 2.19. (Zhang [19]) A fuzzifying neighborhood structure on a set X is a
family of functions P = {px : 2X → [0, 1]|x ∈ X} with the following conditions. For all
x ∈ X,U, V ⊆ X:

(N1) px(X) = 1;

(N2) px(U) > 0 ⇒ x ∈ U ;

(N3)] px(U ∩ V ) = px(U) ∧ px(V ).

The pair (X,P ) is called a fuzzifying neighborhood space, and it will be called topo-
logical if it additionally satisfies the following condition, for all x ∈ X,U, V ⊆ X:

(N4) px(U) =
∨

V ∈ẋ|U
∧

y∈V py(V ).

In [19], it is shown that P T = {pTx |x ∈ X} is a generalized neighborhood system if
T is a fuzzifying topology, where pTx : 2X → [0, 1] is defined by pTx (U) =

∨
x∈V⊆U T (V )

and T p(U) =
∧

x∈U px(U) is a fuzzifying topology if P = {px|x ∈ X} is a generalized
neighborhood system.

LetG be a nonempty set, and let⊕ : G×G → G be a binary operation onG. Then the
pair (G,⊕) is called a groupoid or a magma. A function f from a groupoid (G1,⊕1) to
a groupoid (G2,⊕2) is said to be a groupoid homomorphism if f(x⊕1 y) = f(x)⊕2 f(y)
for any elements x, y ∈ G1. In addition, a bijective groupoid homomorphism from
a groupoid (G,⊕) to itself will be called a groupoid automorphism. We will write
Aut(G,⊕) for the set of all automorphisms of a groupoid (G,⊕).

Definition 2.20. (Suksumran [9]) Let (G,⊕) be a nonempty groupoid. We say that
(G,⊕) or just G (when it is clear from the context) is a gyrogroup if the following holds:

(1) There is an identity element e ∈ G such that e⊕ x = x for all x ∈ G.

(2) For each x ∈ G, there exists an inverse element ⊖x ∈ G such that ⊖x⊕ x = e.

(3) For any x, y ∈ G, there exists an gyroautomorphism gyr[x, y] ∈ Aut(G,⊕) such
that x⊕ (y ⊕ z) = (x⊕ y)⊕ gyr[x, y](z) for all z ∈ G.

(4) For any x, y ∈ G, gyr[x⊕ y, y] = gyr[x, y].

One can easily show that any gyrogroup has a unique two-sided identity e, and an
element a of the gyrogroup has a unique two-sided inverse ⊖a. Let (G, ·) be a group. It is
clear that G with the trivial gyroautomorphisms, that is, gyr[x, y] is the identity map for
all x, y ∈ G, is a gyrogroup. Conversely, every gyrogroup with trivial gyroautomorphisms
forms a group. From this point of view, gyrogroups naturally generalize groups.

Proposition 2.21. (Suksumran [9]) Let (G,⊕) be a gyrogroup and a, b, c ∈ G. Then

(1) ⊖(⊖a) = a;

(2) ⊖a⊕ (a⊕ b) = b;

(3) gyr[a, b](c) = ⊖(a⊕ b)⊕ (a⊕ (b⊕ c));

(4) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a](c));
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(5) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c));

(6) ⊖(a⊕ b) = gyr[a, b](⊖b⊖ a);

(7) (⊖a⊕ b)⊕ gyr[⊖a, b](⊖b⊕ c) = ⊖a⊕ c;

(8) gyr[a, b] = gyr[⊖a,⊖b];

(9) gyr[a, b] = gyr−1[b, a], the inverse of gyr[b, a];

(10) gyr[gyr[a, b](a), gyr[a, b](b)] = gyr[a, b].

Atiponrat extended the idea of topological groups to topological gyrogroups as gy-
rogroups with a topology such that its binary operation is jointly continuous and the
operation of taking the inverse is continuous.

Definition 2.22. (Atiponrat [2]) A triple (G, τ,⊕) is called a topological gyrogroup if
the following hold:

(1) (G, τ) is a topological space;

(2) (G,⊕) is a gyrogroup;

(3) The binary operation ⊕ : G×G → G is continuous, where G×G is endowed with
the product topology;

(4) The operation of taking the inverse ⊖(·) : G → G, I. e. x → ⊖x, is also continuous.

Definition 2.23. (Atiponrat [2]) Let (G, τ,⊕) be a topological gyrogroup, and let A,B
be subsets of G. Defining A⊕B and ⊖A to be the following sets:

A⊕B = {a⊕ b : a ∈ A, b ∈ B};

⊖A = {⊖a : a ∈ A} = (⊖)−1(A).

A is said to be symmetric if ⊖A = A. By abuse of notion, we write x⊕A and A⊕ x
to mean {x} ⊕A and A⊕ {x}, respectively, for any x ∈ G.

Suksumran introduce the notion of gyronorms on gyrogroups.

Definition 2.24. (Suksumran [9]) Let (G,⊕) be a gyrogroup. A function p : G → R
is called a gyronorm on G if the following properties hold: For all x, y ∈ G,

(G1) p(x) ≥ 0 and p(x) = 0 if and only if x = e;

(G2) p(x) = p(⊖x);

(G3) p(x⊕ y) ≤ p(x) + p(y);

(G4) p(x) = p(gyr[a, b](x)) for all a, b ∈ G.
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3. THE RELATIONS BETWEEN A FAMILY OF ORDINARY GYRONORMS AND
A FUZZY GYRONORM

In this section we shall introduce a new notion of fuzzy gyronorms on gyrogroups. Also,
the relationships between a family of ordinary gyronorms and a fuzzy gyronorm are
studied.

In 2018, Suksumran introduced the notions of gyronorms on gyrogroups and said that
any gyrogroup with a gyronorm is called a normed gyrogyoup. In 1988, Morsi provide a
method for introducing fuzzy pseudo-metrics for pairs of crisp points, and fuzzy pseudo-
norms for crisp points, as fuzzy real numbers ≥ 0̃. Then we introduce the notion of
fuzzy gyronorms on gyrogroups as follows.

Definition 3.1. Let (G,⊕) be a gyrogroup and S be a continuous s-norm. The pair
(∥ · ∥, S) is called a fuzzy gyronorm on G if ∥ · ∥ : G → R∗(I) satisfying the following
conditions: For all x, y ∈ G and for all s, t ∈ (0,+∞),

(FG1) ∥e∥ = 0̃;

(FG2) x ̸= e ⇒ ∥x∥ ∈ R+(I);

(FG3) ∥x∥ = ∥ ⊖ x∥;

(FG4) ∥x⊕ y∥(s+ t) ≤ S(∥x∥(s), ∥y∥(t));

(FG5) ∥x∥ = ∥gyr[a, b](x)∥ for all a, b ∈ G.

Then the ordered triple (G, ∥ · ∥, S) is called a fuzzy normed gyrogroup if (∥ · ∥, S) is
a fuzzy gyronorm on G.

The relations between a family of ordinary gyronorms and a fuzzy gyronorm are
shown as follows:

Theorem 3.2. Let (G, ∥ ·∥, S) be a fuzzy normed gyrogroup and S be a strictly mono-
tone. For each a ∈ (0, 1], define the mapping as pa(x) =

∧
{t > 0 : ∥x∥(t) < a} for all

x ∈ G. Then {pa(·)}a∈(0,1] is a family of left continuous and nonascending gyronorms
on G.

P r o o f . First, we have one conclusion: pa(x) < s if and only if ∥x∥(s) < a. If
pa(x) < s, then there exists t0 < s such that ∥x∥(t0) < a. Then ∥x∥(s) ≤ ∥x∥(t0) < a.
on the contrary, if a > ∥x∥(s) = limt→s− ∥x∥(t), then exists t < s such that ∥x∥(t) < a,
thus pa(x) < t < s.

(G1). We have that pa(e) =
∧
{t > 0 : ∥e∥(t) < a} =

∧
{t : t > 0} = 0. Suppose

that x ∈ G and x ̸= e. Then there exists t0 > 0 such that ∥x∥(t0) = 1, which implies
∥x∥(t0) ≥ a, hence pa(x) ≥ t0 > 0.

(G2). For all x ∈ G, pa(x) =
∧
{t > 0 : ∥x∥(t) < a} =

∧
{t > 0 : ∥ ⊖ x∥(t) < a} =

pa(⊖x).
(G3). For all x, y, a, b ∈ G and any ε > 0, there are t1 < pa(x)+

ε
2 and t2 < pb(y)+

ε
2

such that ∥x∥(t1) < a and ∥y∥(t2) < b. Then

∥x⊕ y∥(t1 + t2) ≤ S(∥x∥(t1), ∥y∥(t2)) < S(a, b).
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Thus pS(a,b)(x ⊕ y) < t1 + t2 < pa(x) + pb(y) + ε. By the arbitrariness of ε, we have
pS(a,b)(x⊕ y) ≤ pa(x) + pb(y).

(G4). For all x, α, β ∈ G, pa(x) =
∧
{t > 0 : ∥x∥(t) < a} =

∧
{t > 0 : ∥gyr[α, β](x)∥(t) <

a} = pa(gyr[α, β](x)).
For all a ≥ b, the relation pa(x) ≤ pb(x) holds trivially.
Finally, we need to show that pa(x) is left continuous for a ∈ (0, 1]. For all b > a,

we have pb(x) ≤ pa(x), which implies that pb(x) ≤
∧

a<b pa(x). Let pb(x) < s, we have
∥x∥(s) < b, then there exists c < b such that ∥x∥(s) < c < b. By conclusion, we have
pc(x) < s. It follows that

∧
a<b pa(x) ≤ pc(x) < s. By the arbitrariness of s, hence

pb(x) ≥
∧

a<b pa(x). □

Theorem 3.3. Let {pa(·)}a∈(0,1] be a family of left continuous and nonascending gy-
ronorms on G, S be a continuous s−norm, and the mapping ∥ · ∥p : G → R∗(I) be
defined as follows:

∥ · ∥p(t) =
∧

{a : pa(x) < t}.

Then (G, ∥ · ∥p, S) is a fuzzy normed gyrogroup.

P r o o f . First we know that ∥x∥p(t) < a if and only if pa(x) < t. In fact, if pa(x) ≥ t
and pb(x) < t, then b ≥ a. Thus ∥x∥p(t) ≥ a, which is a contradiction. Hence pa(x) < t.
Conversely, if pa(x) < t, then ∥x∥p(t) ≤ a. We suppose that ∥x∥p(t) = a, in this case
pb(x) < t ⇒ b ≥ a. It implies that pb(x) ≥ t for all b > a. Then pa(x) = limb→a− pb(x) ≥
t, which is a contradiction. Hence ∥x∥p(t) < a.

Then we show ∥x∥p ∈ R∗(I) for all x ∈ G. It is clear ∥x∥p(−∞+) = 1, ∥x∥p(+∞−) =
0 and the mapping ∥·∥p(·) : R → [0, 1] is decreasing function. For each t < 0, ∥x∥p(t) = 1,
we have ∥x∥p(0−) = ∥x∥p(0). For each t ∈ (0,+∞), let {tn} be an increasing sequence
and it is convergent to t. If ∥x∥p(t) < a, then pa(x) < t. Then there exists n0 ∈ N such
that pa(x) < tn for all n ≥ n0. It implies that ∥x∥p(tn) < a for all n ≥ n0. By the
arbitrariness of a, we have ∥x∥p(t) = lims→t− ∥x∥p(s).

Finally, it needs to show that ∥ · ∥p satisfies the conditions (FG1),(FG2),(FG4) since
the other conditions hold trivially.

(FG1). For all t ∈ R,

∥e∥p(t) =
∧
{a : pa(e) < t} =

{
∧∅, t ≤ 0
0, t > 0

=

{
1, t ≤ 0
0, t > 0

= 0̃(t).

(FG2). Let x ∈ G and x ̸= e, specially, p1(x) ̸= 0. Then there exists t1 > 0 such that
p1(x) > t1 > 0. It implies that 1 ≥ ∥x∥p(t1) ≥ 1, hence ∥x∥p(t1) = 1, I. e., ∥x∥p ∈ R+(I).

(FG4). Let ∥x∥p(t) = β and ∥y∥p(s) = γ. For all ε > 0, there exists α1, α2 ∈ (0, 1)
such that α1 < β + ε and α2 < γ + ε with pα1

(x) < t and pα2
(y) < s. Thus pβ+ε(x) ≤

pα1
(x) < t and pγ+ε(y) ≤ pα2

(y) < s. Then pS(β+ε,γ+ε)(x ⊕ y) ≤ pβ+ε(x) + pγ+ε(y) <
t+ s. It implies that ∥x⊕ y∥p(t+ s) ≤ S(β + ε, γ + ε). By the arbitrariness of ε, hence
∥x⊕ y∥p(t+ s) ≤ S(∥x∥p(t), ∥y∥p(s)).

Therefore, (G, ∥ · ∥p, S) is a fuzzy normed gyrogroup. □
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Proposition 3.4. Let {pa(·)}a∈(0,1] be a family of left continuous and nonascending
gyronorms on G and ∥ ·∥p be a fuzzy gyronorm determined by {pa(·)}a∈(0,1] as Theorem
3.3. Suppose {qa(·)}a∈(0,1] is a family of gyronorms determined by Theorm 3.2. Then
for each a ∈ (0, 1], qa(x) = pa(x) for all x ∈ G.

P r o o f . For each a ∈ (0, 1], x ∈ G, t > 0, from the conclusion in Theorem 3.3,
pa(x) < t if and only if ∥x∥p(t) < a. From the conclusion in Theorem 3.2, ∥x∥p(t) < a
if and only if qa(x) < t. Hence qa(x) = pa(x). □

Proposition 3.5. Let ∥ · ∥ be a fuzzy gyronorm on G and {pa(·)}a∈(0,1] be a family
of left continuous and nonascending gyronorms determined by ∥ · ∥ as Theorem 3.2.
Suppose ∥ · ∥p is a fuzzy gyronorm determined by Theorem 3.3. Then ∥x∥ = ∥x∥p for
all x ∈ G.

P r o o f . For each x ∈ G and t > 0, from the conclusion in Theorem 3.2, ∥x∥(t) < a
if and only if pa(x) < t. From the conclusion in Theorem 3.3, pa(x) < t if and only if
∥x∥p(t) < a. Hence ∥x∥(t) = ∥x∥p(t). □

4. THE RELATIONS BETWEEN FUZZY METRICS AND FUZZY GYRONORMS
ON GYROGROUPS

In this section, we study the relations between fuzzy metrics and fuzzy gyronorms on
gyrogroups.

Proposition 4.1. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Define d(x, y) =

∥ ⊖ x⊕ y∥ for all x, y ∈ G. Then d∥∥ is a fuzzy metric on G.

P r o o f . (FM1). For each x ∈ G, d∥∥(x, x) = ∥ ⊖ x⊕ x∥ = ∥e∥ = 0̃.
(FM2). For all x, y ∈ G,

d∥∥(x, y) = ∥ ⊖ x⊕ y∥

= ∥ ⊖ (⊖x⊕ y)∥ (by Proposition 2.21 (1))

= ∥gyr[⊖x, y](⊖y ⊕ x)∥ (by Proposition 2.21 (6))

= ∥ ⊖ y ⊕ x∥ (by Definition 3.1 (FG5))

= d∥∥(y, x).

(FM3). For all x, y, z ∈ G, t, r ∈ R,

d∥∥(x, z)(t) = ∥ ⊖ x⊕ z∥(t)

= ∥(⊖x⊕ y)⊕ gyr[⊖x, y](⊖y ⊕ z)∥(t) (by Proposition 2.21 (7))

≤
∧
r∈R

∥ ⊖ x⊕ y∥(r)
∨
∥ ⊖ y ⊕ z∥(t− r) (by Definition 3.1 (FG4))

= (∥ ⊖ x⊕ y∥+ ∥ ⊖ y ⊕ z∥)(t)

= (d∥∥(x, y) + d∥∥(y, z))(t).
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(FM4). For all x, y ∈ G and x ̸= y, then ⊖x⊕ y ̸= e, hence d∥∥(x, y) = ∥ ⊖ x⊕ y∥ ∈
R+(I). □

The fuzzy metric induced by a fuzzy gyronorm in Proposition 4.1 is called a fuzzy
gyronorm metric on G.

Proposition 4.2. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Then the fuzzy

gyronorm metric d∥∥ with respect to (∥ ·∥,
∨
) is invariant under the left gyrotranslation:

d∥∥(a⊕ x, a⊕ y) = d∥∥(x, y) for all x, y, a ∈ G.

P r o o f . Let x, y, a ∈ G. Then

d∥∥(a⊕ x, a⊕ y)

= ∥ ⊖ (a⊕ x)⊕ (a⊕ y)∥

= ∥gyr[a, x](⊖x⊖ a)⊕ (a⊕ y)∥ (by Proposition 2.21 (6))

= ∥gyr[x, a]gyr[a, x](⊖x⊖ a)⊕ gyr[x, a](a⊕ y)∥

= ∥(⊖x⊖ a)⊕ gyr[x, a](a⊕ y)∥ (by Proposition 2.21 (9))

= ∥ ⊖ x⊕ y∥ = d∥∥(x, y). (by Proposition 2.21 (7)) □

Theorem 4.3. Let G be a gyrogroup with a fuzzy metric d and S be a continuous s-
norm. Suppose d is invariant under the left gyrotranslation, I. e., d(a⊕x, a⊕y) = d(x, y)
for all x, y, a ∈ G. Define ∥x∥d = d(e, x), then (∥ · ∥d, S) is a fuzzy gyronorm on G.

P r o o f . It is clear that ∥x∥d ∈ R∗(I) for all x ∈ G. Then we show ∥x∥d satisfies the
conditions in Definition 3.1.

(FG1). ∥e∥d = d(e, e) = 0̃.
(FG2). For all x ∈ G and x ̸= e, thus ∥x∥d = d(e, x) ∈ R+(I).
(FG3). For all x ∈ G, ∥x∥d = d(e, x) = d(x, e) = d(⊖x⊕x,⊖x) = d(e,⊖x) = ∥⊖x∥d.
(FG4). For all x, y ∈ G, t, r ∈ R,

∥x⊕ y∥d(t) = d(e, x⊕ y)(t) = d(⊖x, y)(t)

≤ (d(⊖x, e) + d(e, y))(t)

= (d(e, x) + d(e, y))(t)

= (∥x∥d + ∥y∥d)(t)

≤ S(∥x∥d(r), ∥y∥d(t− r)).

(FG5). For all x, y, a, b ∈ G,

∥gyr[a, b](x)∥d = d(e,⊖(a⊕ b)⊕ (a⊕ (b⊕ x)))

= d(a⊕ b, a⊕ (b⊕ x))

= d(b, b⊕ x)

= d(e, x)

= ∥x∥d. □
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Proposition 4.4. Let (∥ · ∥,
∨
) be a fuzzy gyronorm on G and d∥∥ be a fuzzy metric

determined by ∥ · ∥ as Proposition 4.1. Suppose ∥ · ∥d∥∥ is a fuzzy gyronorm determined
by Theorem 4.3. Then ∥x∥ = ∥x∥d∥∥ for all x ∈ G.

P r o o f . According to Proposition 4.1 and Proposition 4.2, we have ∥ ⊖ x ⊕ y∥d∥∥ =
d∥∥(e,⊖x⊕ y) = d∥∥(x, y) = ∥ ⊖ x⊕ y∥. □

5. FUZZY TOPOLOGICAL GYROGROUP INDUCED BY FUZZY GYRONORMS

Many researchers are interested in the study of topological groups and fuzzy topological
groups. In 2017, Atiponrat [2] introduced the notion of topological gyrogroups, which
as being a generalization of a topological group. In this section, we intend to construct a
stratified fuzzy topology with the help of level topologies. Therefore, this fuzzy topology
on gyrogroup will form a fuzzy topological gyrogroup.

Some sufficient conditions which make gyrogroups with some topologies become topo-
logical gyrogroups are found.

Proposition 5.1. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and d∥∥ be a fuzzy

gyronorm metric with respect to (∥ ·∥,
∨
). Then the following conditions are equivalent:

(1) Right-gyrotranslation inequality: d∥∥(x⊕ a, y ⊕ a) ≤ d∥∥(x, y) + 0̃, I. e.,

∥ ⊖ (x⊕ a)⊕ (y ⊕ a)∥ ≤ ∥ ⊖ x⊕ y∥+ 0̃ for all x, y, a ∈ G;

(2) d∥∥(x⊕ y, a⊕ b) ≤ d∥∥(x, a) + d∥∥(y, b) + 0̃, I. e.,

∥ ⊖ (x⊕ y)⊕ (a⊕ b)∥ ≤ ∥ ⊖ x⊕ a∥+ ∥ ⊖ y ⊕ b∥+ 0̃ for all x, y, a, b ∈ G.

P r o o f . (1) ⇒ (2). We have

d∥∥(x⊕ y, a⊕ b) ≤ d∥∥(x⊕ y, x⊕ b) + d∥∥(x⊕ b, a⊕ b)

= d∥∥(y, b) + d∥∥(x⊕ b, a⊕ b) ≤ d∥∥(y, b) + d∥∥(x, a) + 0̃.

(2) ⇒ (1). We have

d∥∥(x⊕ a, y ⊕ a) ≤ d∥∥(x, y) + d∥∥(a, a) + 0̃ = d∥∥(x, y) + 0̃.

□

Theorem 5.2. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and α ∈ [0, 1). Suppose

the fuzzy gyronorms satisfying right-gyrotranslation inequality. Then the family

Bα = {B(x, r, t) : x ∈ G, r ∈ (0, 1− α), t > 0}

is a base for a topology τα on G, where B(x, r, t) = {y : ∥⊖ x⊕ y∥(t) < r}. Also, G is a
topological gyrogroup endowed with the topology τα.
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P r o o f . For all x, y ∈ G. Since ∥⊖ x⊕ y∥ = ∥⊖ y⊕ x∥, then we have y ∈ B(x, r, t) ⇔
x ∈ B(y, r, t). Let z ∈ B(x, r1, t) ∩ B(y, r2, s) where r1, r2 ∈ (0, 1 − α), t, s > 0. Thus
∥ ⊖ x⊕ z∥(t) < r1 and ∥ ⊖ y ⊕ z∥(s) < r2. Then there exist t0 < t and s0 < s such that
∥ ⊖ x⊕ z∥(t0) < r1 and ∥ ⊖ y ⊕ z∥(s0) < r2. Let r = r1 ∧ r2 a nd p = t− t0 ∧ s− s0. It
needs to show B(z, r, p) ⊆ B(x, r1, t)∩B(y, r2, s). Let u ∈ B(z, r, p), then ∥⊖z⊕u∥ < r.
Thus

∥ ⊖ x⊕ u∥(t) = ∥ ⊖ x⊕ (z ⊕ (⊖z ⊕ u))∥(t) (by Proposition 2.21 (2))

= ∥(⊖x⊕ z)⊕ gyr[⊖x, z](⊖z ⊕ u)∥(t) (by Proposition 2.21 (5))

≤ ∥ ⊖ x⊕ z∥(t0) ∨ ∥ ⊖ z ⊕ u∥(t− t0)

< r1 ∨ r

= r1.

Then u ∈ B(x, r1, t). Similarly, ∥⊖ y⊕ u∥(s) ≤ ∥⊖ y⊕ z∥(s0)
∨

∥⊖ z ⊕ u∥(s− s0) <
r2

∨
r = r2. Thus u ∈ B(y, r2, s). Hence B(z, r, p) ⊆ B(x, r1, t) ∩ B(y, r2, s). Then

(G, τα) is a topology space.

Then it needs to show the binary operation ⊕ : τα × τα → τα is continuous. For all
U ∈ τα, given x ⊕ y ∈ U , there exist λ ∈ (0, 1 − α), s > 0 such that B(x ⊕ y, λ, s) ⊆
U . It is shown that B(x, λ, s

2 ) ⊕ B(y, λ, s
2 ) ⊆ B(x ⊕ y, λ, s). Let a ∈ B(x, λ, s

2 ) and
b ∈ B(y, λ, s

2 ). Then we have ∥ ⊖ x⊕ a∥( s2 ) < λ and ∥ ⊖ y ⊕ b∥( s2 ) < λ. According the

Right-gyrotranslation inequality and 0̃(s) = 0 with s > 0. Thus

(∥ ⊖ (x⊕ y)⊕ (a⊕ b)∥)(s) ≤ (∥ ⊖ x⊕ a∥+ ∥ ⊖ y ⊕ b∥+ 0̃)(s)

≤ ∥ ⊖ x⊕ a∥( s2 ) ∨ ∥ ⊖ y ⊕ b∥( s2 ) ∨ 0 < λ.

It follows that a⊕b ∈ B(x⊕y, λ, s). Hence B(x, λ, s
2 )⊕B(y, λ, s

2 ) ⊆ B(x⊕y, λ, s) ⊆ U
with B(x, λ, s

2 ) ∈ τα and B(y, λ, s
2 ) ∈ τα.

Finally it is shown ⊖ : τα → τα is continuous. For all V ∈ τα, it is clear that
(⊖)−1(V ) = V ∈ τα. Then the operation of taking the inverse is continuous. Therefore,
G is a topological gyrogroup endowed with the topology τα. □

Remark 5.3. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and α ∈ [0, 1). The family

{τα : α ∈ [0, 1)} is a decreasing family of topologies, since Bα ⊆ Bβ whenever β < α.
By the definition of τα, we have τ0 = τ∥·∥

Let A ⊆ G. Then A ∈ τα if and only if for each x ∈ A, there exist t > 0 and
r ∈ (0, 1 − α) such that B(x, r, t) ⊆ A. It is equivalent to A =

⋃
0<r<1−α,t>0
B(x,r,t)⊆A

B(x, r, t).

Besides, the family {τα : α ∈ [0, 1)} satisfies LT -property. For all A ∈ τα, let Aβ =⋃
0<r<1−β,t>0
B(x,r,t)⊆A

B(x, r, t) with β ∈ (α, 1). It is clear that (Aβ)β∈(α,1) ∈ τβ . Thus

A =
⋃

0<r<1−α,t>0
B(x,r,t)⊆A

B(x, r, t) =
⋃

β>α

⋃
0<r<1−β,t>0
B(x,r,t)⊆A

B(x, r, t) =
⋃

β>α Aβ .

According to Proposition 2.13, we can construct a fuzzy topology, which is the fol-
lowing Proposition 5.4.



32 Y. SHEN AND C.H. YAN

Proposition 5.4. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and {τα : α ∈ [0, 1)}

be the family of topologies induced by this fuzzy gyronorms. Then

T ∥·∥ := {λ : [λ]α ∈ τα,∀α ∈ [0, 1)}.

is the finest stratified fuzzy topology satisfying ια(T ∥·∥) = τα. As a consequence, we
have ι(T ∥·∥) = τ∥·∥.

Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup, we introduce an open ball in G.

Definition 5.5. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup, x, y ∈ G, r ∈ (0, 1),

t > 0 and β ∈ (0, 1). Then the fuzzy set βµr(x, t) is called β open ball with the center
x and radius r, where

βµr(x, t)(y) =

{
β, y ∈ B(x, r, t),

0, otherwise.

Proposition 5.6. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Then the family

B1 = {βµr(x, t) : x ∈ G, r, β ∈ (0, 1), t > 0}

is a base for ω(τ∥·∥).

P r o o f . It firstly needs to show βµr(x, t) with x ∈ G, r, β ∈ (0, 1), t > 0 is lower
semicontinuous. For all ε > 0, given x0 ∈ G, we need to find U ⊆ G with x0 ∈ U such
that βµr(x, t)(y) < βµr(x, t)(x0) + ε for all y ∈ U . We only consider βµr(x, t)(y) = β
since if βµr(x, t)(y) = 0, then this inequality is clearly true. Suppose βµr(x, t)(y) = β,
thus y ∈ B(x, r, t). Then there exists s < t such that y ∈ B(x, r, s). Let U = B(x0, r, t−
s), then we have ∥⊖x0⊕x∥(t) ≤ ∥⊖x0⊕y∥(t−s)∨∥⊖y⊕x∥(s) < r. It implies that x0 ∈
B(x, r, t), hence βµr(x, t)(x0) = β. Then the inequality βµr(x, t)(y) < βµr(x, t)(x0) + ε
is true. Finally, let λ ∈ ω(τ∥·∥) and λ(x) > 0. For all δ ∈ (0, 1) satisfying λ(x) > δ there
exists r ∈ (0, 1), t > 0 such that λ(y) > λ(x)− δ for all y ∈ B(x, r, t). Let β = λ(x)− δ,
then λ(y) ≥ β = βµr(x, t)(y). Therefore, B1 is a base for ω(τ∥·∥). □

Proposition 5.7. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Then the family

B2 = {βµr(x, t) : x ∈ G, r ∈ (0, 1), t > 0, β ∈ (0, 1− r)}

is a base for T ∥·∥.

P r o o f . Firstly, we show that B2 ⊆ T ∥·∥. For each α, β ∈ (0, 1 − r), if α < β, then
[βµr(x, t)]

α = B(x, r, t) with x ∈ G, r ∈ (0, 1), t > 0. Since 1 − r > β, then 1 − r > α.
It follows that B(x, r, t) ∈ Bα ⊆ τα. Hence βµr(x, t) ∈ T ∥·∥. Let λ ∈ T ∥·∥ and
λ(x) > 0. Then [λ]α ∈ τα, according to the definition of τα, there exists r1 < 1 − α
satisfying B(x, r1, t) ⊆ [λ]α. That is, for every y ∈ B(x, r1, t), we have λ(y) > α. Let
α = αµr1(x, t)(y), then λ > αµr1(x, t). Therefore, B2 is a base for T ∥·∥. □
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Theorem 5.8. Let (G, ∥·∥,
∨
) be a fuzzy normed gyrogroup and d∥∥ be a fuzzy metric

determined by ∥ · ∥ as Proposition 4.1. Then the fuzzy topology associated with d∥∥ as

Definition 2.16 is coarser than T d∥∥ .

P r o o f . It is clear that T d∥∥ = T ∥·∥ since d∥∥(x, y) = ∥ ⊖ x ⊕ y∥ for all x, y ∈ G.

First, we show that βµ1−r(x, t) ≤ B(x; t̃) with r ∈ (0, 1), t > 0, β ∈ (0, r). For y ∈ G, if
B(x; t̃)(y) = 1− d∥∥(x, y)(t) > r, then we have y ∈ B(x, 1− r, t). Thus βµ1−r(x, t)(y) =

β < r < B(x; t̃)(y). On the other hand, if B(x; t̃)(y) = 1−d∥∥(x, y)(t) ≤ r, then we have
y /∈ B(x, 1−r, t), which implies that βµ1−r(x, t)(y) = 0 ≤ r. Hence that [βµ1−r(x, t)]

α ⊆
[B(x; t̃)]α for all α ∈ [0, 1). Since βµ1−r(x, t) ∈ T d∥∥ , then [βµ1−r(x, t)]

α ∈ τα. Thus
[B(x; t̃)]α ∈ τα. It follows that B(x; t̃) ∈ T d∥∥ . □

Definition 5.9. Let (X,TX), (Y,TY ) be two fuzzy topological spaces. We say that the
mapping f : (X,TX) → (Y,TY ) is continuous if f

−1(U) ∈ TX for all U ∈ TY .

Definition 5.10. A triple (G,T ,⊕) is called a fuzzy topological gyrogroup if the fol-
lowing hold:

(1) (G,T ) is a fuzzy topological space;

(2) (G,⊕) is a gyrogroup;

(3) The binary operation ⊕ : G×G → G is continuous, where G×G is endowed with
the product topology;

(4) The operation of taking the inverse ⊖(·) : G → G, I. e. x → ⊖x, is also continuous.

Theorem 5.11. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Suppose the fuzzy gy-

ronorms satisfying right-gyrotranslation inequality. Then (G,T ∥·∥,⊕) is a fuzzy topo-
logical gyrogroup endowed with the finest stratified fuzzy topology T ∥·∥.

P r o o f . We only need to show the binary operation ⊕ : T ∥·∥ ×T ∥·∥ → T ∥·∥ and the
operation of taking the inverse ⊖(·) : T ∥·∥ → T ∥·∥ are continuous. For all A ∈ T ∥·∥. We
have [A]α ∈ τα for all α ∈ [0, 1). Given x⊕y ∈ [A]α, then there exist r ∈ (0, 1−β), t > 0
such that B(x ⊕ y, r, t) ⊆ A for all B(x ⊕ y, r, t) ∈

⋂
β>α Bβ ⊆ Bα. Let γ = ∨β,

then γµr(x ⊕ y, t) ≤ A since [γµr(x ⊕ y, t)]α = B(x ⊕ y, r, t) ⊆ [A]α. We know that
[γµr(x,

t
2 )]

α = B(x, r, t
2 ) ∈ τα and [γµr(y,

t
2 )]

α = B(y, r, t
2 ) ∈ τα for all α ∈ [0, 1). It

implies that γµr(x,
t
2 ), γµr(y,

t
2 ) ∈ T ∥·∥. It is shown that

(γµr(x,
t
2 )⊕ γµr(y,

t
2 ))(x⊕ y) =

∧
x1⊕y1=x⊕y γµr(x,

t
2 )(x1) ∨ γµr(y,

t
2 )(x2)

≤ γµr(x,
t
2 )(x) ∨ γµr(y,

t
2 )(x) = γ = γµr(x⊕ y, t)(x⊕ y).

It implies that γµr(x,
t
2 )⊕ γµr(y,

t
2 ) ≤ γµr(x⊕ y, t) ≤ A. Hence ⊕ is continuous.

For all α ∈ [0, 1),

y ∈ [(⊖)−1(A)]α ⇔ (⊖)−1(A)(y) > α ⇔ A(⊖y) > α ⇔ ⊖y ∈ Aα ⇔ y ∈ Aα.

It follows that [(⊖)−1(A)]α = Aα ∈ τα. Hence (⊖)−1(A) ∈ T ∥·∥. Therefore, ⊖ is
continuous. □
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Proposition 5.12. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and α ∈ [0, 1). Sup-

pose the fuzzy gyronorms satisfying right-gyrotranslation inequality. Then the topology
τα associated with ∥ · ∥ is T2.

P r o o f . Let x ̸= y ∈ G, it follows that ∥ ⊖ x ⊕ y∥ ∈ R+(I), then there exists t0 such
that ∥ ⊖ x⊕ y∥(t0) = 1. For each z ∈ B(x, r, t0

2 ) ∩ B(y, r, t0
2 ) with r ∈ (0, 1). It implies

that
∥ ⊖ x⊕ y∥(t0) = ∥ ⊖ x⊕ (z ⊕ (⊖z ⊕ y))∥(t0)
= ∥(⊖x⊕ z)⊕ gyr[⊖x, z](⊖z ⊕ y)∥(t0) (by Proposition 2.21 (5))
≤ (∥ ⊖ x⊕ z∥+ ∥ ⊖ z ⊕ y∥)(t0)
≤ ∥ ⊖ x⊕ z∥( t02 ) ∨ ∥ ⊖ z ⊕ y∥( t02 )
< r ∨ r
= r.
This is a contradiction. Hence B(x, r, t0

2 ) ∩B(y, r, t0
2 ) = ∅. □

Theorem 5.13. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup. Then the topology τα

associated with ∥ · ∥ is Ti if and only if the fuzzy topology T ∥·∥ associated with ∥ · ∥ is
α− Ti for all α ∈ [0, 1) and i = 0, 1, 2,

P r o o f . We only prove one case: i = 2, because the other proofs of i = 0, 1 are similar.
If (G, τα) is T2, then for each x ̸= y ∈ G, there exists r1, r2 ∈ (0, 1−α), t1, t2 > 0 such that
B(x, r1, t1) ∩B(y, r2, t2) = ∅ satisfying x ∈ B(x, r1, t1) and x ∈ B(y, r2, t2). Given β ∈
(α, 1−r1∨r2). Let U = βµr1(x, t1) and V = βµr2(y, t2). For z ∈ G, we have (U∩V )(z) =
U(z) ∧ V (z) = 0, which implies U, V are disjoint. Also, U(x) ∧ V (y) = βµr1(x, t1)(x) ∧
βµr2(y, t2)(y) = β > α. On the contrary, for each x ̸= y ∈ G, there exist disjoint
γµr3(x, t3), γµr4(y, t4) ∈ T ∥·∥ such that γµr3(x, t3)(x) ∧ γµr4(y, t4)(y) > α satisfying
r3, r4 ∈ (0, 1−α), t3, t4 > 0 and γ ∈ (α, 1−r3∨r4). ThusB(x, r3, t3) = [γµr3(x, t3)]

α ∈ τα
and B(y, r4, t4) = [γµr4(y, t4)]

α ∈ τα. Hence B(x, r3, t3) ∩B(y, r4, t4) = ∅. □

6. FUZZIFYING TOPOLOGICAL GYROGROUP INDUCED
BY FUZZY GYRONORMS

Zhang and Yan [20] introduced the notions of L-fuzzifying topological groups as a gen-
eralization of topological group, Here we introduce a fuzzifying topological gyrogroup
induced by fuzzy gyronorms.

Definition 6.1. Let (X, TX), (Y, TY ) be two fuzzifying topological spaces. We say that
a mapping f : (X, TX) → (Y, TY ) is continuous if TY (U) ≤ TX(f−1(U)) for all U ⊆ Y .

Definition 6.2. A triple (G, T ,⊕) is called a fuzzifying topological gyrogroup if the
following hold:

(1) (G, T ) is a fuzzifying topological space;

(2) (G,⊕) is a gyrogroup;
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(3) The binary operation ⊕ : G×G → G is continuous, where G×G is endowed with
the product topology;

(4) The operation of taking the inverse ⊖(·) : G → G, I. e. x → ⊖x, is also continuous.

According to some results in [20], we have the following similar conclusions:

Proposition 6.3. Let (G,⊕) be a gyrogroup and T be a fuzzifying topology on G.
Then the binary operation ⊕ : G×G → G is continuous if and only if for every x, y ∈ G,
W ⊆ G, px⊕y(W ) ≤

∨
U⊕V⊆W px(U) ∧ py(V ), where P = {px|x ∈ G} is a fuzzifying

neighborhood structure determined by T .

Proposition 6.4. Let (G,⊕) be a gyrogroup and T be a fuzzifying topology on G.
Then the operation of taking the inverse ⊖(·) : G → G is continuous if and only if for
every x ∈ G, W ⊆ G, p⊖x(W ) ≤

∨
⊖U⊆W px(U), where P = {px|x ∈ G} is a fuzzifying

neighborhood structure determined by T .

Proposition 6.5. Let (G,⊕) be a gyrogroup and T be a fuzzifying topology on G.
Then

(1) the binary operation ⊕ : G×G → G is continuous if and only if for every x, y ∈ G,
A ⊆ G with x⊕ y ∈ A, T (A) ≤

∨
B⊕C⊆A,B∈ẋ,C∈ẏ T (B) ∧ T (C).

(2) the operation of taking the inverse ⊖(·) : G → G is continuous if and only if for
every x ∈ G, A ⊆ G with ⊖x ∈ A, T (A) ≤

∨
⊖B⊆A,B∈ẋ T (B).

Theorem 6.6. Let (G, ∥ · ∥,
∨
) be a fuzzy normed gyrogroup and α ∈ [0, 1). Suppose

the fuzzy gyronorms satisfying right-gyrotranslation inequality. Define T (A) =
∨
{α :

A ∈ τα}, where τα is a topology associated with ∥ · ∥. Then (G, T ,⊕) is a fuzzifying
topological gyrogroup.

P r o o f . First, we show that T is a fuzzifying topology.
(FY1). It is clear T (X) =

∨
{α : X ∈ τα} =

∨
[0, 1) = 1 and T (∅) =

∨
[0, 1) = 1.

(FY2). For all U, V ∈ G and a > 0, let T (U) ∧ T (V ) > p. Then there exist α, β > a
such that U ∈ τα and V ∈ τβ . Let η = α ∨ β, then η > a. For every x ∈ U ∩ V , there
exists t > 0 and r ∈ (0, 1−η) such that B(x, r, t) ⊆ U ∩V . It implies T (U ∩V ) ≥ η > a.
Hence T (U ∩ V ) ≥ T (U) ∧ T (V ).

(FY3). For all Uj ∈ G with j ∈ J and b > 0, let
∧

j∈J T (Uj) > b. Then for all
j ∈ J , T (Uj) > b. That is for each x ∈ Uj , there exists t0 > 0, r0 ∈ (0, 1 − α) such
that B(x, r, t) ⊆ Uj ⊆

⋃
j∈J Uj . It follows T (

⋃
j∈J Uj) > b. Hence T (

⋃
j∈J Uj) ≥∧

j∈J T (Uj).
Then it needs to show the binary operation ⊕ and the operation of taking the inverse

⊖(·) are continuous. That is we need to show for every x, y ∈ G, A ⊆ G with x⊕ y ∈ A,
T (A) ≤

∨
B⊕C⊆A,B∈ẋ,C∈ẏ T (B) ∧ T (C). Let w > 0 and T (A) > w. Then there exists

α > w such that A ∈ τα. Thus exists s > 0, λ ∈ (0, 1− α) such that B(x⊕ y, λ, s) ⊆ A.
Let B = B(x, λ, s

2 ) and C = B(y, λ, s
2 ). Then B,C ∈ τα, which implies that T (B) > w

and T (C) > w. According to the proof of Theorem 5.2, we know B ⊕ C = B(x, λ, s
2 )⊕

B(y, λ, s
2 ) ⊆ B(x⊕ y, λ, s) ⊆ A. Hence

∨
B⊕C⊆A,B∈ẋ,C∈ẏ T (B) ∧ T (C) > w.
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On the other hand, for every x ∈ G, A ⊆ G with ⊖x ∈ A, it needs to show T (A) ≤∨
⊖B⊆A,B∈ẋ T (B). Let m > 0 and T (A) > m. Then there exists α > m such that

A ∈ τα. Thus exists s0 > 0, λ0 ∈ (0, 1− α) such that B(x, λ0, s0) ⊆ A. Let B = ⊖B =
B(x, λ0, s0). Then B ∈ τα,which implies that T (B) > m. Hence

∨
⊖B⊆A,B∈ẋ T (B) > m.

□

7. CONCLUSIONS AND FUTURE WORK

In the present paper, the notion of Morsi’s fuzzy gyronorms on gyrogroups is introduced.
The relationships between fuzzy metrics (in the sense of Morsi), fuzzy gyronorms, gy-
ronorms on gyrogroups are studied. Also we have found some sufficient conditions
which can make a fuzzy normed gyrogroup to be a topological gyrogroup and an fuzzy
topological gyrogroup. Meanwhile, the relations between topological gyrogroups, fuzzy
topological gyrogroups and stratified fuzzy topological gyrogroups are studied. At last,
a fuzzifying topology determined by level topological gyrogroups is introduced and it is
proved that the fuzzifying topology is compatible with gyrogroup structure.

A direction worthy of future work is to study further some properties in fuzzy normed
gyrogroups. Such as, separability and fuzzy metrization in fuzzy topological gyrogroups.
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