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COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT
ALGORITHM FOR LINEAR PROGRAMMING BASED
ON A NEW CLASS OF KERNEL FUNCTIONS

Safa Guerdouh, Wided Chikouche, Imene Touil and Adnan Yassine

In this paper, we first present a polynomial-time primal-dual interior-point method (IPM)
for solving linear programming (LP) problems, based on a new kernel function (KF) with a
hyperbolic-logarithmic barrier term. To improve the iteration bound, we propose a parame-
terized version of this function. We show that the complexity result meets the currently best
iteration bound for large-update methods by choosing a special value of the parameter. Nu-
merical experiments reveal that the new KFs have better results comparing with the existing
KFs including log t in their barrier term.

To the best of our knowledge, this is the first IPM based on a parameterized hyperbolic-
logarithmic KF. Moreover, it contains the first hyperbolic-logarithmic KF (Touil and Chikouche
in Filomat 34:3957-3969, 2020) as a special case up to a multiplicative constant, and improves
significantly both its theoretical and practical results.

Keywords: linear programming, primal-dual interior-point methods, kernel function, com-
plexity analysis, large and small-update methods

Classification: 90C05, 90C51

1. INTRODUCTION

LP also referred as ”linear optimization” is a specific class of mathematical optimization
problems. It represents optimization problems that involve linear relationships between
the decision variables and the linear objective function, as well as linear constraints.
LP has several applications in real life such as production planning, transportation and
distribution, resource allocation, portfolio optimization, and many more. Due to the
theoretical and practical importance of LPs, various methods were proposed to solve
them. IPMs rank among the most efficient methods both theoretically and practically.
IPMs were first introduced by Narendra Karmarkar in 1984 [32], the main property of
these methods is that they follow the central path in the interior of the feasible region
of the problem. The most important results on IPMs for solving LP problems are
summarized in the monographs written by Roos et al. [48], Wright [56], Ye [57] and
Peng et al. [41].
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Primal-dual IPMs based on KFs represent a fascinating subclass of IPMs. This
approach combines two fundamental concepts: primal-dual IPMs and KFs. The choice of
the KF plays an important role not only for the IPM analysis but also for the performance
of the corresponding interior-point algorithm. Specifically, the KF is used to define an
equivalent form of the central path of the IPM, to define the proximity measure, and
to obtain search directions. In fact, the central path followed by IPMs is obtained by
solving a parametric system that is characterized by a barrier function defined in terms
of a KF. In addition, the gradient of the KF serves to define a measure of the distance
between the iterates and the central path. Both the KF and the proximity measure
effect the iteration bounds since some of their properties play an important role in the
complexity analysis. That is why the complexity rate depends on the proposed KF.

The first primal-dual IPM based on the classical logarithmic barrier function was
introduced by Roos et al. [48]. After that, Peng et al. introduced primal-dual IPMs
based on the so-called self-regular barrier functions, in [39] for LP and semidefinite
programming (SDP) and in [40] for second-order conic programming (SOCP). They
significantly improved the theoretical complexity obtained for the classical logarithmic
KF and obtained the currently best iteration bound for large-update IPMs namely,
O(
√
n log n log n

ε ), with n denotes the number of variables in the problem and ε denotes
the desired accuracy in terms of the objective value. This was one of the main moti-
vations for considering other KFs as a substitute for the classical logarithmic KF. In
this context, Bai et al. [7] introduced in 2002 an IPM based on an exponential barrier
term which has a finite value at the boundary of the feasible region. The growth term
of this finite KF was later parametrized by El Ghami et al. [23] and the approach was
extended to solve different types of optimization problems including SDP [26], convex
quadratic programming (CQP) [15], P∗(κ) horizontal linear complementarity problem [8]
and Cartesian P∗(κ)−linear complementarity problem over symmetric cones (SCLCP)
[54].

In 2004, Bai et al. [6] proposed a new class of eligible KFs which are not necessarily
self-regular. This class includes the classical logarithmic KF and self-regular KFs as
special cases. They presented a unified analysis of primal-dual IPMs based on eligible
KFs for LP. The results obtained in [6] were successfully extended to SDP, CQP, con-
vex quadratic semidefinite programming (CQSDP), SOCP, convex quadratic program-
ming over symmetric cone (SCCQP), P∗(κ)−linear complementarity problem (LCP), the
Cartesian P∗(κ)−SCLCP and symmetric programming in [9, 13, 16, 20, 37, 52, 53, 55]
respectively.

In [2, 3, 4], published in 2005 and 2007, Amini and his co-authors proposed parametriza-
tions of the two exponential KFs proposed for the first time in [6]. They improved the it-
eration complexity for large-update methods fromO(

√
n log2 n log n

ε ) toO(
√
n log n log n

ε ).
The IPMs based on these parametric exponential KFs were extended to solve SDP
[17, 42], P∗(κ)−LCP [5, 43] and SOCP [18].

Upon scrutiny of the works cited above that focus on IPMs based on KFs, it can
be concluded that the theoretical complexity bounds remain unaffected by the type of
problem when switching from one problem type to another using, of course, the same KF.

We cannot talk about KFs without mentioning trigonometric KFs. This type of func-
tions has been extensively explored in the literature [14, 30, 31, 34, 36, 38, 44], starting



Complexity of an interior-point algorithm based on a new class of kernel functions 829

with the work of El Ghami et al. [25] where the authors studied an IPM based on the
first trigonometric KF introduced in [6]. They established that the complexity bounds

for large- and small-update methods are O(n
3
4 log n

ε ) and O(
√
n log n

ε ) respectively. This
function was later generalized by Bouafia et al. [12] and El Ghami el al. [45] in 2016
for LP and SDP respectively. They obtained O(

√
n log n log n

ε ) iterations complexity for
large-update methods which is a significant improvement from the results obtained by
El Ghami et al. in [25].

Recently, Touil and Chikouche [51] introduced the first IPM based on a hyperbolic-
logarithmic KF for SDP. They proved that the corresponding interior-point algorithm
meets O(n

2
3 log n

ε ) iterations as the worst case complexity bound for the large-update
method. In another paper [50], they presented an IPM based on a pure hyperbolic barrier
term. By parametrizing the latter, Guerdouh et al. in [29] improved the complexity

bound for large-update IPMs from O(n
3
4 log n

ε ) to the currently best one. Remaining
within the LP case, they proposed an IPM based on a different KF with an exponential-
hyperbolic barrier term. The obtained complexity bound for large-update methods
meets O(

√
n log2 n log n

ε ) iterations [28].
Motivated by these works, we first introduce a primal-dual IPM for solving LP prob-

lems based on a new hyperbolic-logarithmic KF. Then, we parametrized the new func-
tion. The obtained class of KFs contains the hyperbolic-logarithmic KF proposed in
[51] as a special case up to a multiplicative constant and improves its theoretical com-
plexity bound to the currently best iteration bound for large-update methods namely,
O(
√
n log n log n

ε ).
We structure our paper as follows. In Section 2, we briefly recall the basics of IPMs

for LP. In Section 3, we present the full complexity analysis for the basic KF followed
by some numerical tests on eight different examples to illustrate the effectiveness of the
proposed KF comparing to other available KFs. In section 4, we introduce a parametriza-
tion of the basic KF and derive its complexity bound with some additional numerical
experiments. We finally end the paper by providing some concluding remarks.

Let us finish this introduction with some notations used in the whole paper :
‖x‖ =

√
xTx denotes the Euclidean norm of a vector x ∈ Rn. Rn+ and Rn++ denote the

nonnegative and the positive orthants respectively, e denotes the all-one vector. For
given vectors x, s ∈ Rn, X = diag(x) denotes the n× n diagonal matrix whose diagonal
entries are the components of x, and the vector xs indicate the component-wise product
of x and s. Finally, if f(x), g(x) ≥ 0 are two real valued functions of a real nonnegative
variable, the notation f(x) = O(g(x)) means that f(x) ≤ Cg(x) for some positive
constant C and f(x) = Θ(g(x)) means that C1g(x) ≤ f(x) ≤ C2g(x) for two positive
constants C1 and C2.

2. PRELIMINARIES

In this section, we provide a brief description of the idea behind the IPMs based on KFs.
We consider the standard form of LP problems

(P )

 min cTx
Ax = b,
x ≥ 0,
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where A ∈ Rm×n, c ∈ Rn and b ∈ Rm are given, rank(A) = m ≤ n and x ∈ Rn is the
vector of variables. The dual problem of (P ) is given by

(D)

 max bT y
AT y + s = c,
s ≥ 0,

where y ∈ Rm and s ∈ Rn are the vectors of variables.

Finding an optimal solution of (P ) and (D) is equivalent to solving the non-linear
system of equations  Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = 0.

(1)

The first and second pair of equations represent primal and dual feasibility. Replacing
the last equation in (1), the so-called complementarity condition for (P ) and (D), by
the parameterized equation xs = µe, with parameter µ > 0, implies that x, s > 0 and
leads to the following system  Ax = b, x > 0,

AT y + s = c, s > 0,
xs = µe.

(2)

At this stage, we assume that the problems (P ) and (D) satisfy the interior-point con-
dition (IPC), i. e., there exists (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

This condition means that the interiors of the feasible regions of problems (P ) and (D)
are both non-empty. However, if the problem doesn’t satisfy the IPC, it can be modified
so that it does and even in such a way that x0 = s0 = e, the details can be found in
[48]. Since the IPC holds, system (2) has a unique solution (xµ, yµ, sµ) for each µ > 0,
(see [48, Theorem II.4]). The set of unique solutions {(xµ, yµ, sµ) : µ > 0} forms the
so-called central path of problems (P ) and (D). If µ → 0, then the limit of the central
path exists and yields optimal solutions for (P ) and (D).

For fixed µ > 0, we apply Newton’s method to the parameterized system (2). Thus, the
search direction (∆x,∆y,∆s) is determined by the following system of linear equations A∆x = 0,

AT∆y + ∆s = 0,
s∆x+ x∆s = µe− xs.

(3)

By taking a step along the search direction, one constructs a new iterate point

x+ := x+ α∆x, y+ := y + α∆y, s+ := s+ α∆s,
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for some 0 < α ≤ 1 satisfying the positivity condition i. e., (x+, s+) > 0.
Now, we define the scaled vector v and the scaled search directions dx and ds as follows

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (4)

System (3) can be rewritten as follows
Adx = 0,

A
T

∆y + ds = 0,
dx + ds = v−1 − v,

(5)

where A = 1
µAV

−1X, V = diag(v), X = diag(x).

Observe that the right-hand side in the last equation of (5) is equal to minus gradient
of the classical logarithmic scaled barrier (proximity) function

Ψc(v) =

n∑
i=1

ψc(vi), (6)

with

ψc(t) =
t2 − 1

2
− log t.

Thus the third equation in (5), often called the scaled centering equation, can be rewrit-
ten as follows

dx + ds = −∇Ψc(v).

This indicates that Ψc essentially determines the search direction. In addition, it’s easy
to verify that

∇2Ψc(v) = diag(e+ v−2),

and that the matrix diag(e + v−2) is positive definite. This implies that the Hessian
∇2Ψc(v) is positive definite which indicates that Ψc is strictly convex. Moreover,

∇Ψc(e) = 0.

It follows that Ψc(v) attains its minimal value at v = e, with Ψc(e) = 0. This means
that

∇Ψc(v) = 0⇔ Ψc(v) = 0⇔ v = e⇔ x = xµ and s = sµ,

where xµ and sµ are the first and third components of the solution of system (2) respec-
tively. Therefore, (xµ, sµ) can be identified as the minimizers of the function Ψc. For this
reason, Ψc serves mainly as a ”proximity” measure of closeness for (x, s) with respect
to the µ−center. These observations concerning Ψc led to the creation of the concept
of primal-dual IPMs based on KFs. The basic idea in these methods is to replace ψc
by any strictly convex function ψ : ]0,+∞[→ [0,+∞[ which is minimal at t = 1 with
ψ(1) = 0. The corresponding proximity function Ψ is then obtained by replacing ψc by
ψ in (6). This explains the reason for calling ψ the KF of the barrier function Ψ. Thus,
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Ψ still serves as a proximity measure for closeness with respect to the µ−center (xµ, sµ),
and the inequality

Ψ(v) ≤ τ,

defines a τ−neighbourhood of the µ−center.
In the literature, many KFs were proposed with a barrier term constructed by log t

combined with another type of functions. In Table 1, we can find all these KFs (to our
knowledge) and the complexity results for the corresponding algorithms, starting with
the classical logarithmic KF ψc in [48] and its generalized version ψ1,p proposed by El
Ghami et al. in [22].

In this context, we consider in this paper a new univariate KF ψ defined as follows:

ψ (t) =
t2 − 1

2
+ tanh2(1)

(
coth(t)− log t

)
− tanh(1), ∀t > 0, (7)

and generalize the barrier term of ψ by applying a positive parameter p to obtain the
following parametric KF

ψp(t) =
t2 − 1

2
+

sinh2(1)

sinh2(1) + p cothp−1(1)

(
cothp(t)− log t− cothp(1)

)
, p ≥ 2. (8)

Remark 2.1. Taking p = 1 in (8) and using the hyperbolic identity

cosh2(t)− sinh2(t) = 1, ∀t ∈ R,

we obtain KF (7).

Coming back to system (5), we can convert it to Adx = 0,

A
T

∆y + ds = 0,
dx + ds = −∇Ψ(v).

(9)

Since A has full row rank, system (9) has a unique solution. Furthermore, the vectors
dx and ds are orthogonal and thus

dTx ds = 0⇔ ∇Ψ(v) = 0⇔ v = e⇔ Ψ(v) = 0⇔ x = xµ and s = sµ.

In the sequel, we will use the norm-based proximity measure σ(v) defined by

σ(v) =
1

2
‖dx + ds‖ =

1

2
‖∇Ψ(v)‖ . (10)



Complexity of an interior-point algorithm based on a new class of kernel functions 833
T

y
p

e
K

er
n
el

fu
n
ct

io
n
s

R
ef

er
en

ce
&

T
y
p

e
o
f

p
ro

b
le

m
C

o
m

p
le

x
it

y

Simple

ψ
c
(t

)
=

t2
−
1

2
−

lo
g
t

ψ
1
,p

(t
)

=
tp

+
1
−
1

p
+
1
−

lo
g
t,

0
<
p
≤

1

ψ
2
(t

)
=

8
t2
−

1
1
t

+
2 √
t
−

4
lo

g
t

ψ
3
,p

(t
)

=
t2
−
1
−
lo
g
t

2
+

t1
−

p
−
1

2
(p
−
1
)
,
p
≥

2

[4
8
,

L
P

]
[2

2
,

L
P

]
[2

5
,

L
P

]
[1

1
,

L
P

]

O
( nlo

g
n ε

)
O
( nlo

g
n ε

)
O
( n

5 6
lo

g
n ε

)
O
( p
n

p
+

1
2
p

lo
g
n ε

)

Exponential

ψ
4
,p

(t
)

=
t2
−
1
−
lo
g
t

2
+

e
1 t
p
−

1
−
1

2
p

,
p
≥

1

ψ
5
,p

(t
)

=
t2
−

1
−

lo
g
t

+
e
p
(
1 t
−

1
)
−
1

p
,
p
≥

1

[1
9
,

L
P

]
[1

0
,

L
P

]
O
( p
√
n

(l
o
g
n

)
p
+

1
p

lo
g
n ε

)
O
( p−1

√
n

(l
o
g
n

)2
lo

g
n ε

)

Trigonometric

ψ
6
(t

)
=

t2
−
1

2
−

lo
g
t

+
1 8

ta
n
2
(π

1
−
t

4
t+

2
)

ψ
6
,λ

(t
)

=
t2
−
1

2
−

lo
g
t

+
λ

ta
n
2
(π

1
−
t

3
t+

2
),

0
<
λ
≤

8
2
5
π

ψ
7
,p

(t
)

=
t2
−
1

2
−

lo
g
t
−
∫ t 1

1
2
p
(2

+
4
x
)2

ta
n
2
p
(π

1
−
x

4
x
+
2
)d
x
,
p
∈
N

[4
6
,

L
P

]
[1

4
,

L
P

]
[3

0
,

L
C

P
]

O
( n

2 3
lo

g
n ε

)
O
( n

2 3
lo

g
n ε

)
O
( (1

+
2
k
)n

2
p
+

1
4
p
p

2
p
+

1
2
p

lo
g
n ε

)

Hyperbolic

ψ
8
(t

)
=

1
+
2
c
o
th

(1
)

2
si
n
h
2
(1

)
(t

2
−

1
)

+
co

th
2
(t

)
−

co
th

2
(1

)
−

lo
g
t

ψ
n
e
w

(t
)

=
t2
−
1

2
+

ta
n
h
2
(1

)( co
th

(t
)
−

lo
g
t) −

ta
n
h
(1

)

ψ
n
e
w
,p

(t
)

=
t2
−

1

2
+
a
( co

th
p
(t

)
−

lo
g
t
−

co
th
p
(1

)) ,

w
it

h
a

=
si

n
h
2
(1

)

si
n
h
2
(1

)
+
p

co
th
p
−
1
(1

)
a
n
d
p
≥

2

[5
1
,

S
D

P
]

[n
ew

,
L

P
]

[n
ew

,
L

P
]

O
( n

2 3
lo

g
n ε

)
O
( n

3 4
lo

g
n ε

)
O
( p
n

p
+

2
2
(
p
+

1
)

lo
g
n ε

)

T
a
b
.
1
.

E
x
is

ti
n
g

k
er

n
el

fu
n
ct

io
n
s

w
it

h
lo

g
t

in
th

ei
r

b
a
rr

ie
r

te
rm

s.



834 S. GUERDOUH, W. CHIKOUCHE, I. TOUIL AND A. YASSINE

Now, we can describe the algorithm briefly. Given a strictly feasible point (x0, y0, s0)
which is in a τ -neighbourhood of the given µ-center, we reduce µ to µ+ := (1− θ)µ for
some fixed 0 < θ < 1 and then solve system (9) to obtain the search direction. The
positivity condition of a new iterate is ensured by choosing an appropriate step size α.
This procedure is repeated until we find a new iterate (x+, y+, s+) that again belongs to
the τ -neighbourhood of the current µ-center, that is, until Ψ(v) ≤ τ. Then, we update
the parameter µ to µ+ and we let (x, y, s) = (x+, y+, s+). This procedure is repeated
until we find an iterate (x+, y+, s+) such that xT+s+ < ε. In this case, an ε-approximate
optimal solution of problems (P ) and (D) is found. The generic IPM is outlined in
Algorithm 1.

From the above, we can summarize the role of KFs in what follows

• The KF, more specifically the gradient of the barrier function is used to solve
system (9) and hence to define new search directions.

• The proximity measure σ, which is used to measure the closeness of the triplet
(x, y, s) to the µ− center, is defined in term of the KF.

• The KF serves to define a τ−neighbourhood of the µ−center and thus it intervenes
in the stopping criterion of the inner iteration of the algorithm.

Algorithm 1 : Generic Interior-Point Algorithm for LP

Input
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈]0, 1[; (x0, y0, s0) satisfy the IPC and µ0 = 1 such
that
Φ
(
x0, s0;µ0

)
:= Ψ(v0) ≤ τ.

begin
x : = x0; s : = s0;µ : = µ0;
while nµ ≥ ε
begin (outer iteration)
µ : = (1− θ)µ;
while Φ(x, s;µ) := Ψ(v) > τ
begin (inner iteration)
Solve system (9) and use (4) to obtain (∆x,∆y,∆s);
Choose a suitable step size α;

x := x+ α∆x; y := y + α∆y; s := s+ α∆s; v :=
√

xs
µ ;

end while (inner iteration)
end while (outer iteration)
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3. THE NEW KERNEL FUNCTION

In this section, we give some properties of our new KF and derive the complexity analysis.

3.1. Some technical results

In the analysis of the algorithm based on ψ, we need its first three derivatives with
respect to t which are given for all t > 0 by

ψ′(t) = t− tanh2(1)

(
1

sinh2(t)
+

1

t

)
, (11)

ψ′′(t) = 1 + tanh2(1)

(
2

coth(t)

sinh2(t)
+

1

t2

)
, (12)

and

ψ′′′(t) = − tanh2(1)

(
2

sinh4(t)
+ 4

coth2(t)

sinh2(t)
+

2

t3

)
< 0. (13)

Clearly, ψ′ (1) = ψ (1) = 0, lim
t→0+

ψ (t) = lim
t→+∞

ψ (t) = +∞ and ψ′′ (t) > 0, ∀t > 0. This

implies that ψ is a KF.
Furthermore, the two functions ψ : [1,+∞[→ [0,+∞[ and ψ′ :]0, 1] →] −∞, 0] are

both monotonically increasing. So, we can define the following functions
% : [0,+∞[ −→ [1,+∞[ the inverse function of ψ (t) for t ≥ 1.

ρ : [0,+∞[ −→ ]0, 1] the inverse function of −1

2
ψ′ (t) for 0 < t ≤ 1.

In what follows, we develop some technical lemmas. From (12), we see that

ψ′′(t) ≥ 1, ∀t > 0,

thus we have the following lemma.

Lemma 3.1. (Bai at al. [7, Lemma 2.1] ) Let ψ be defined as in (7). Then

1

2
(t− 1)

2 ≤ ψ (t) ≤ 1

2
(ψ′(t))2, ∀t > 0.

Corollary 3.2. (Bai at al. [7, Corollary 2.2]) Let σ(v) be defined by (10). Then, for
any v > 0, we have

σ(v) ≥
√

Ψ (v)

2
.

Remark 3.3. Throughout the paper, we assume that τ ≥ 1. Using Corollary 3.2 and
the assumption that Ψ(v) ≥ τ , we have

σ(v) ≥
√

1

2
.



836 S. GUERDOUH, W. CHIKOUCHE, I. TOUIL AND A. YASSINE

Furthermore, we can write ψ(t) as

ψ(t) =
t2 − 1

2
+ ψb(t),

where
t2 − 1

2
is the growth term and ψb(t) is the barrier term of our KF. Moreover,

ψb(1) = 0 and ψb is monotonically decreasing. Hence, we can take advantage of the
following lemma.

Lemma 3.4. (Bai at al. [6, Lemma 6.2]) One has

√
1 + 2s ≤ % (s) ≤ 1 +

√
2s, ∀s ∈ [0,+∞[.

Now, we give an implicit lower bound for ρ (s) .

Lemma 3.5. For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2ψ
′ (t) , one has

coth(t) ≤ coth(1) (2z + 2)
1
2 .

P r o o f . Let z ≥ 0 and t ∈ ]0, 1] such that z = − 1
2ψ
′ (t) , then ρ (z) = t.

Since
1

sinh2(t)
= coth2(t)− 1, using (11), we have

2z = −ψ′(t)

= −t+ tanh2(1)

(
coth2(t)− 1 +

1

t

)
,

which implies that

coth2(t) = coth2(1)(2z + t) + 1− 1

t

≤ coth2(1)(2z + 2).

This proves the lemma. �

Lemma 3.6. (Touil and Chikouche [50, Lemma 1]) One has

2t coth(t)− 1 > 0, ∀t > 0. (14)

The following lemma reveals some key properties of the new KF.

Lemma 3.7. Let ψ be as defined in (7). Then,

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

(iii) ψ′′ is monotonically decreasing on ]0,+∞[.
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P r o o f . For the first and second item, using (11) and (12), we have

tψ′′(t)− ψ′(t) = tanh2(1)

(
2t coth(t) + 1

sinh2(t)
+

2

t

)
> 0,

and

tψ′′(t) + ψ′(t) = 2t+ tanh2(1)

(
2t coth(t)− 1

sinh2(t)

)
> 0,

by taking into acount (14) of Lemma 3.6.
For the third item, using (13), we have ψ′′′(t) < 0, ∀t > 0, then ψ′′(t) decreases mono-
tonically. This completes the proof. �

Lemma 3.8. (Peng et al. [41, Lemma 2.1.2]) A twice differentiable function ψ : R++ →
R verifies property (ii) of Lemma 3.7 if and only if it verifies one of the following equiv-
alent properties

• ψ(
√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) , ∀t1, t2 > 0.

• the function ξ 7→ ψ(eξ) is convex.

We say that ψ is exponentially convex or shortly e-convex.

3.2. Growth behaviour

Before updating µ in the generic interior-point algorithm, we have Ψ (v) ≤ τ . After
updating µ in an outer iteration, the vector v is divided by the factor (1− θ) , which
generally leads to an increase of the value of Ψ(v). Thus, during the inner iterations,
the value of Ψ (v) decreases until it passes the threshold τ. We proceed by studying the
effect of updating the barrier parameter µ on the value of Ψ(v).

Theorem 3.9. (Bai at al. [6, Theorem 3.2]) For any v > 0 and β > 1, we have

Ψ (βv) ≤ nψ
(
β%

(
Ψ(v)

n

))
.

Applying this theorem with β =
1

1− θ
, 0 < θ < 1, and taking into account the

increasing of ψ on [1,+∞[, we get

Corollary 3.10. By the assumption Ψ (v) ≤ τ just before the µ−update to (1 − θ)µ,
we have

Ψ (v+) ≤ nψ

 %
( τ
n

)
√

1− θ

 , (15)

where v+ =
v√

1− θ
.
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Lemma 3.11. (Bai at al. [6, Lemma 6.3]) Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ,
then

Ψ (v+) ≤ ψ′′(1)

2

(
θ
√
n+
√

2τ
)2

1− θ
.

Corollary 3.12. Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ (v+) ≤ 3 coth(1) + 1

(1− θ)

(
θ
√
n+
√

2τ
)2

:= Ψ0.

Ψ0 is an upper bound for Ψ (v+) during the process of the algorithm.

3.3. An estimation of the step size

The purpose of this subsection is to compute a default step size α such that the iterates
(x+, y+, s+) defined in Algorithm 1 are feasible and the proximity function decreases
sufficiently. Note that during an inner iteration the parameter µ is fixed. Hence, using
(4), we have

x+ =
x

v
(v + αdx), s+ =

s

v
(v + αds).

It follows that the new v-vector is given by

v+ =

√
x+s+
µ

=
√

(v + αdx)(v + αds).

The e-convexity property of ψ implies that

Ψ (v+) ≤ 1

2
(Ψ(v + αdx) + Ψ(v + αds)) .

Now, we consider the decrease in Ψ as a function of α noted f defined by

f(α) = Ψ (v+)−Ψ (v) .

In the remainder of this section, we put for simplicity σ := σ(v).
From Lemmas 4.3, 4.4, 4.5 and Theorem 4.6 in [6], we have the following theorem.

Theorem 3.13. (Bai at al. [6]) The largest possible value of the step size α∗ is

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Furthermore

α∗ ≥ 1

ψ′′ (ρ (2σ))
,

and we have for all α ∈ [0, α∗]:

f(α) ≤ −ασ2.
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Corollary 3.14. Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the default step size. Then

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
. (16)

We can obtain the upper bound for the decreasing value of the proximity in the inner
iteration by the following theorem.

Theorem 3.15. If ᾱ is the default step size and σ ≥ 1, then we have

f (ᾱ) ≤ −Ψ(v)
1
4

273
. (17)

P r o o f . Using (12) and (14) we have

ψ′′(t) ≤1 + tanh2(1)
(
2 coth(t)(coth2(t)− 1) + 4 coth2(t)

)
≤ 1 + tanh2(1)

(
2 coth3(t) + 4 coth2(t)

)
≤ 1 + 6 tanh2(1) coth3(t).

Hence, putting t = ρ (2σ) and using Lemma 3.5 we get

ψ′′ (ρ (2σ)) ≤
(
1 + 6 tanh2(1)

)
coth3(ρ (2σ))

≤ coth3(1)
(
1 + 6 tanh2(1)

)
(4σ + 2)

3
2

≤ coth3(1)
(
1 + 6 tanh2(1)

)
(4σ + 2(2σ))

3
2 .

Moreover,

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
.

This implies that

f (ᾱ) ≤ − σ2

coth3(1)
(
1 + 6 tanh2(1)

)
(8σ)

3
2

= −
√
σ

8
3
2 coth3(1)

(
1 + 6 tanh2(1)

) .
Using Corollary 3.2, we get

f (ᾱ) ≤ − Ψ(v)
1
4

2
1
4 8

3
2 coth3(1)

(
1 + 6 tanh2(1)

)
≤ −Ψ(v)

1
4

273
.

Hence the theorem is proved. �
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3.4. Iteration complexity

We need to compute how many inner iterations are required to return to the situation
where Ψ(v) ≤ τ after µ−update. Let us define the value of Ψ(v) after µ−update as
Ψ0, and the subsequent values in the same outer iteration as Ψk, k = 1, . . . ,K, where K
stands for the total number of inner iterations in the outer iteration. By the definition
of f(α) and according to (17) , for k = 1, . . . ,K − 1, we obtain

Ψk+1 ≤ Ψk −
Ψ

1
4

k

273
.

Lemma 3.16. (Peng et al. [39, Proposition 2.2]) Suppose t0, t1, . . . , tk be a sequence
of positive numbers such that

tk+1 ≤ tk − βt1−γk , k = 0, 1, . . . ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then

K ≤
[
tγ0
βγ

]
.

As a consequence, by taking tk = Ψk, β =
1

273
and γ =

3

4
, we get the following

lemma.

Lemma 3.17. Let K be the total number of inner iterations in the outer iteration.
Then, we have

K ≤ 364 Ψ
3
4
0 .

Now we derive the complexity bounds for large and small-update methods.

Theorem 3.18. The total number of iterations to obtain an approximate solution with
nµ ≤ ε is bounded by (

364 Ψ
3
4
0

log n
ε

θ

)
. (18)

P r o o f . It is well known that the number of outer iterations for the situation nµ ≤ ε
is bounded above by 1

θ (log n
ε ) (see [48, Lemma II.17, page 116]).

Knowing that an upper bound for the total number of iterations is obtained by mul-
tiplying the number of inner and outer iterations, we obtain the result thanks to the
above lemma. �

For large-update IPMs with τ = O (n) and θ = Θ (1) , we have O
(
n

3
4 log n

ε

)
iteration

complexity for LP problems based on our new KF.

For small-update IPMs with τ = O (1) and θ = Θ
(

1√
n

)
, we get the currently best

known iteration bound, namely O
(√
n log n

ε

)
iterations.
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3.5. Numerical tests

In this subsection, we carry out numerical experiments of the interior-point algorithm
based on different KFs. Our experiments are implemented in MATLAB R2012b and
performed on Supermicro dual-2.80 GHz Intel Core i5 server with 4.00 Go RAM.

We have taken ε = 10−8 and τ = n. We chose a practical step size α as in [33] i. e.,
α = min(αx, αs), with

αx = min
i=1..n

−
xi

∆xi
if ∆xi < 0,

1 elsewhere,

and

αs = min
i=1..n

−
si

∆si
if ∆si < 0,

1 elsewhere.

This choice of α guarantees the strict positivity of the new point. Moreover, we increase
the step size by a fixed factor 0 < β < 1 (in our case we chose β = 0.9).

Our purpose is to show that the generic interior-point algorithm based on our hyperbolic-
logarithmic KF can be very efficient in solving LP problems. As in [24], we conducted
comparative numerical tests between the KFs provided in Table 1 on the following eight
test problems with different sizes, ranging from very small to big size problems.

3.5.1. Examples with fixed size

All examples with fixed size are taken from [1].

Example 3.19. m = 2, n = 4.

A =
(

1 1 1 1
1 1 0 −3

)
, b = (1, 0.5)

T
, c = (1, 2, 3, 4)

T
,

where the initial feasible solutions are defined as follows

x0 = (0.5, 0.27, 0.14, 0.09)
T
, y0 = (0, 0)

T
, s0 = (1, 2, 3, 4)

T
.

The optimal solution is
x∗ = (0.87500, 0, 0, 0.12500)T ,
y∗ = (1.75000,−0.75000)T

s∗ = (0.00000, 1.00000, 1.25000, 0.00000)T .

Example 3.20. m = 3, n = 5.

A =

(
2 1 1 0 0
1 2 0 1 0
0 1 0 0 1

)
, b = (8, 7, 3)

T
, c = (−4,−5, 0, 0, 0)

T
,

where the initial feasible solutions are defined as follows
x0 = (2.85, 1.9, 0.4, 0.35, 1.1)

T
, y0 = (−1.2,−1.8,−0.5)

T
, s0 = (0.2, 0.3, 1.2, 1.8, 0.5)

T
.

The optimal solution is
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x∗ = (3.0000, 2.0000, 0.0000, 0.0000, 1.0000)T ,
y∗ = (−1.0000,−2.0000,−0.0000)T ,
s∗ = (0.0000, 0.0000, 1.0000, 2.0000, 0.0000)T .

Example 3.21. m = 3, n = 6.

A =

(
2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

)
, b = (0, 0, 1)

T
, c = (3,−1, 1, 0, 0, 0)

T
,

where the initial feasible solutions are defined as follows
x0 = (0.06757, 0.13258, 0.13302, 0.26774, 0.13302, 0.2664)

T
, y0 = (−2,−2,−3)

T
,

s0 = (10, 4, 6, 1, 5, 1)
T
.

The optimal solution is
x∗ = (0.0000, 0.5000, 0.0000, 0.5000, 0.0000, 0.0004)T ,
y∗ = (−0.5000,−0.5000,−0.5000)T ,
s∗ = (4.5000, 0.0000, 2.0000, 0.0000, 1.0000, 0.0000)T .

Example 3.22. m = 5, n = 9.

A =


0 1 2 −1 1 1 0 0 0
1 2 3 4 −1 0 1 0 0
−1 0 −2 1 2 0 0 1 0
1 2 0 −1 −2 0 0 0 1
1 3 4 2 1 0 0 0 0

 , b =


1
2
3
2
1

 , c = (1, 0,−2, 1, 1, 0, 0, 00)
T
,

where the initial feasible solutions are defined as follows
x0 = (0.1819, 0.0699, 0.063, 0.1105, 0.2012, 0.6732, 1.1885, 2.835, 2.1912)

T
,

y0 = (−1.3843,−0.8751,−0.4241,−0.4463,−3.0424)
T
,

s0 = (4.9398, 13.1544, 14.7156, 9.1788, 4.5072, 1.3843, 0.8751, 0.4241, 0.4463)
T
.

The optimal solution is
x∗ = (0.0000, 0.0000, 0.2664, 0.0000, 0.0000, 0.4269, 1.1406, 3.5729, 2.0000)T ,
y∗ = (−0.0000,−0.0000,−0.0000,−0.0000,−0.4999)T ,
s∗ = (1.5000, 1.4999, 0.0000, 1.9999, 1.4999, 0.0000, 0.0000, 0.0000, 0.0000)T .

3.5.2. Examples with variable size

Example 3.23. (Bouafia et al. [12]) The matrix A is defined as

A (i, j) =
{

1 if i = j or j = i+m,
0 otherwise,

c(i) = −1, c(i+m) = 0 and b(i) = 2, for i = 1, . . . ,m.
We start by an initial point (x0, y0, s0) such that
x0 = e, y0(i) = −2 and s0(i) = 1, s0(i+m) = 2, for i = 1, . . . ,m.
The optimal solution is
x∗(i) = 2, x∗(i+m) = 0, y∗(i) = −1, s∗(i) = 0, s∗(i+m) = 1, for i = 1, . . . ,m.
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Example 3.24. (Anane [1, Example 5]) The matrix A is defined as

A (i, j) =
{

1 if i = j or j = i+m,
0 otherwise,

c = −e and b (i) = 2, i = 1, . . . ,m.
We start by an initial point (x0, y0, s0) such that
x0 = s0 = e and y0 (i) = −2, for i = 1, . . . ,m.
The optimal solution is
x∗ = e, s∗ = 0, and y∗(i) = −1, for i = 1, . . . ,m.

Example 3.25. (Touil et al. [49, Example 4]) The matrix A is defined as

A (i, j) =
{

1 if i = j or j = i+m,
0 otherwise,

c = −e and b (i) = 2, i = 1, . . . ,m.
We start by an initial point (x0, y0, s0) such that
x0(i) = 1.5, x0(i+m) = 0.5, y0 (i) = −2, for i = 1, . . . ,m, and s0 = e.
The optimal solution is
x∗(i) = 1.4793, x∗(i+m) = 0.5207, y∗ (i) = −1, for i = 1, . . . ,m, and s∗ = 0.

Example 3.26. The matrix A is defined as

A (i, j) =
{

1 if i = j or j = i+m,
0 otherwise,

c(i) = 1
4 , c(i+m) = 3

4 and b (i) = 2, i = 1, . . . ,m.
We start by an initial point (x0, y0, s0) such that
x0(i) = 5

4 , x
0(i+m) = 3

4 , y
0 (i) = −7

12 , and s0(i) = 5
6 , s

0(i+m) = 4
3 , for i = 1, . . . ,m.

The optimal solution is
x∗(i) = 2, x∗(i+m) = 0, y∗ (i) = 1

4 , and s∗(i) = 0, s∗(i+m) = 1
2 , for i = 1, . . . ,m.

Problems with fixed size were tested for multiple values of θ, θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
The table corresponding to fixed size problems (Table 2) shows that, in most cases,
larger θ gives better iteration numbers. Thus, for variable size problems, we only choose
θ ∈ {0.7, 0.9, 0.99}. This reduces the number of experiments since we perform Algorithm
1 with the considered KFs on four test problems for seven different sizes n = 2m where
m ∈ {5, 25, 50, 100, 200, 400, 1000}. This left us with 104 experiments for each KF. The
summary of results is given in tables below.
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3.5.3. Comments

Recall that the numerical results were obtained by performing Algorithm 1 with the
KFs defined in Table 1 on eight test problems.
When there are parameters p ≥ 1 involved in the definition of a KF, we used two values
of these parameters: the parameter that gives the best theoretical iteration bound and a
common value p = 2, except for ψ1,p and ψ6,λ where we chose p = 1

2 and λ = 0.05 since
the parameters p and λ take their values in the intervals ]0, 1] and ]0, 8

25π ] respectively.
This left us with 15 different KFs.

For each example, we used bold font to highlight the best, i. e., the smallest, iteration
number.

From Tables 2 – 6, we may draw a few conclusions:

• For ψ1,p (the classical logarithmic barrier function ψc occurs if p = 1), although
the theoretical iteration bound of the algorithm is independent of the parameter
p, numerical tests show that p influences the iteration count. In both types of
problems (fixed or variable size), p = 1 gives better results which is in accordance
with the analysis carried out by [22].

• The function ψ1, 12
never gives the smallest iteration number in examples with

variable size, even for examples with fixed size it gives the smallest iteration number
only for the values 0.1 and 0.3 of θ.

• For KFs ψ2, ψ5,2, ψ5,logn, ψ7,[logn] and ψ8, the dashes in the corresponding columns
of Tables 2 – 6 indicate that the algorithms require more than 104 iterations to
obtain an optimal solution. Despite this, ψ2, ψ5,2, ψ5,logn and ψ8, (and exclusively
ψ8) are the only ones to give the smallest iteration number for θ = 0.9 in Examples
6 and 7 (in Example 5), while for θ = 0.99 in Example 5 (resp. in Example 8),
ψ5,2 (resp. ψ8) is the only function to achieve the best iteration number.

• The iteration numbers of the algorithm based on our KF ψnew depend on the
values of the parameter θ. In fact, the value 0.9 of θ gives better iteration numbers
in general.

• In all examples with variable size for θ = 0.7, the KF ψnew has the smallest
iterations number with the KFs ψc, ψ3,p, ψ4,p, ψ6, ψ6,0.05, ψ7,2, ψ7,[logn] except ψ4,2

in Example 5.

• For our KF, the obtained iteration numbers coincided with, or at worst was close
to the best ones with a slackness of at most 4 iterations, except the case θ = 0.99
in Example 5, where the slackness attain thirty.

To confirm the superiority of our algorithm in terms of the total number of iterations,
we compute, for each KF the percentage of cases where the KF gives the best iteration
number. As an illustration, we plot a histogram that we use as a statistical tool to
compare the performance of the algorithms.
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Fig. 1. Performance comparison between KFs in Table 1.

Supported by the performance bar graph, We may conclude some remarks:

• For ψ4,p, the parameter which gives the best theoretical complexity bound has
better percentage than p = 2. But the concordance between the theoretical and
the numerical results is not always satisfied, as we can see in the case of ψ3,p, ψ5,p

and ψ7,p.

• We can easily see that the algorithms based on hyperbolic KFs attain the most
wins, on average, among the considered algorithms based on other types.

• Although the theoretical complexity obtained for ψ8 is better than the one of ψnew,
but numerical tests reveal that ψnew has better percentage. In fact, a thorough
analysis shows that in the examples with fixed size, it’s ψnew that gives the smallest
iteration number with a slackness which can amount up to 24 iterations. As for
examples with variable size for θ = 0.7, ψnew performs better than ψ8 in Examples
5, 6 and 8 while in Examples 7, ψ8 doesn’t have the ability to complete the run
successfully. In contrast, for the values 0.9 and 0.99 of θ, ψ8 meets or exceeds ψnew

with a slackness of no more than 7 iterations.

The numerical effectiveness of ψnew comparing with all KFs with logarithmic barrier
term motivates us to propose a generalization of this function in order to achieve a better
theoretical complexity.

4. PARAMETRIZED VERSION

In the previous section, we performed a well-detailed complexity analysis for ψnew. Thus,
we discuss more briefly the analysis for the generalized KF ψnew,p.

ψnew,p(t) =
t2 − 1

2
+ ψb,p(t), (19)
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with ψb,p(t) = a
(

cothp(t)− log t− cothp(1)
)
, a =

sinh2(1)

sinh2(1) + p cothp−1(1)
and p ≥ 2.

Remark 4.1. This function can also be considered as a generalization, up to the mul-
tiplicative constant 1/a, of the KF ψ8 introduced in [51] (see Table 1).

Using simple calculations, we can easily prove that ψnew,p is indeed a KF and we
have:

ψ′new,p(t) = t− a
(p cothp−1(t)

sinh2(t)
+

1

t

)
ψ′′new,p(t) = 1 + a

(p(p− 1) cothp−2(t)

sinh4(t)
+

2p cothp(t)

sinh2(t)
+

1

t2

)
> 1

ψ′′′new,p(t) = −a
(p(p− 1)(p− 2) cothp−3(t)

sinh6(t)
+

(6p2 − 4p) cothp−1(t)

sinh4(t)
+

4p cothp+1(t)

sinh2(t)
+

2

t3

)
< 0

tψ′′new,p − ψ′new,p = a
(p(p− 1)t cothp−2(t)

sinh4(t)
+

2pt cothp(t)

sinh2(t)
+

2

t
+
p cothp−1(t)

sinh2(t)

)
tψ′′new,p + ψ′new,p = 2t+ a

(p(p− 1)t cothp−2(t)

sinh4(t)
+
p cothp−1(t)

sinh2(t)

(
2t coth(t)− 1

))

Tab. 7. The first three derivatives of ψnew,p with tψ′′new,p ± ψ′new,p.

Thus, ψnew,p satisfies all the results of Lemma 3.1, Corollary 3.2, Lemma 3.4 and
Lemma 3.7. Whereas, the equivalent of Lemma 3.5 for ψnew,p is

Lemma 4.2. For all (z, t) ∈ [0,+∞)× (0, 1] such that z = − 1
2ψ
′
new,p (t) , we have

coth(t) ≤
(

(sinh2(1) + cothp−1(1)) coth2(1)
) 1

p+1

(2z + 1)
1

p+1 .

4.1. Complexity analysis

The complexity analysis for the parameterized KF ψnew,p proceeds in the same way as
in the previous section for ψnew. To avoid repetition, we do not present all the details
of the computations. We only present the outcome of each step of our computational
scheme in Table 8.

f (ᾱ) ≤ −
√

2Ψ(v)
p

2(p+1)

72
(
1 + 2 sinh2(1) coth5(1)(p+ 5)

) Ψ(v+) ≤
coth(1)(p+ 2)

(1− θ)

(
θ
√
n+
√

2τ
)2

:= Ψ0

β =

√
2

72
(
1 + 2 sinh2(1) coth5(1)(p+ 5)

) and γ =
p+ 2

2(p+ 1)
K ≤

[
72
√

2(5 + 4p)(p+ 1)

(p+ 2)

]
Ψ

p+2
2(p+1)

0

Tab. 8. Outcomes of the computational scheme.

For small-update method with τ = O (1) and θ = Θ
(

1√
n

)
, the complexity of the

primal-dual interior-point algorithm for LP problems based on the new parametric KF
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is O(p2
√
n log n

ε ) iterations complexity.

As for large-update method i. e., τ = O (n) and θ = Θ (1) , the substitution of these
values into

K ≤

[
72
√

2(5 + 4p)(p+ 1)

(p+ 2)

]
Ψ

p+2
2(p+1)

0

does not give the best possible bound. A better bound is obtained using the following
lemma

Lemma 4.3. (El Ghami et al. [21]) Let 0 ≤ θ < 1, v+ = v√
1−θ . If Ψ(v) ≤ τ, then we

have

Ψ(v+) ≤ θn+ 2τ + 2
√

2τn

2(1− θ)
:= Ψ0.

Ψ0 is an upper bound for Ψ(v+) during the process of the algorithm.

P r o o f . For simplicity, we denote

ψ(t) := ψnew,p(t).

We can easily verify that ψb,p(1) = 0, ψ
′

b,p(1) = −1, and ψb,p is monotonically decreasing
on R++. Hence, we have

ψ(t) ≤ t2 − 1

2
, ∀t ≥ 1.

Putting t =
%( τn )
√

1− θ
≥ 1 and using (15), we get

Ψ (v+) ≤ n

2

(
%
(
τ
n

)2
1− θ

− 1

)
.

Moreover, using Lemma 3.4, we obtain

Ψ (v+) ≤ n

2


(

1 +
√

2τ
n

)2
1− θ

− 1


=
θn+ 2τ + 2

√
2τn

2(1− θ)
.

�

Using the upper bound defined in Lemma 4.3, we get O
(

(p+ 1)n
p+2

2(p+1) log n
ε

)
itera-

tions complexity for large-update methods. This expression is minimal at p =
log n

2
− 1

and then is equal to O
(√
n log n log n

ε

)
.
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4.2. Numerical tests

Now, we would like to investigate the influence of parameterizing the KF (7) on the
computational behavior of the generic primal-dual algorithm for LP presented in Algo-
rithm 1. For this purpose, we present some numerical simulations for implementing the
algorithm based on the new parametric KF (8) on the aforementioned set of problems
with the same values of the parameters θ, µ and τ and for different values of the param-
eter p. We also compare with the KF that gave the best performance in the previous
section ψ3,2 and with ψ8 which is of the same hyperbolic-logarithmic type. The obtained
results are listed in tables below.

Ex θ ψnew ψnew,2 ψnew,3 ψnew,4 ψnew, log n
2 −1

ψ3,2 ψ8

E
x
am

p
le

1 0.1
0.3
0.5
0.7
0.9

188
56
29
17
11

188
56
29
17
11

188
56
29
17
10

188
56
29
17
12

188
56
29
17
24

188
56
29
17
11

200
70
44
23
14

E
x
am

p
le

2 0.1
0.3
0.5
0.7
0.9

191
57
29
17
10

191
57
29
17
9

191
57
29
17
9

191
57
29
17
9

191
57
29
17
11

191
57
29
17
10

215
75
39
21
9

E
x
am

p
le

3 0.1
0.3
0.5
0.7
0.9

192
57
30
18
21

192
57
30
19
19

192
57
30
18
19

192
57
30
19
22

192
57
30
17
33

192
57
30
18
28

204
66
33
20
25

E
x
am

p
le

4 0.1
0.3
0.5
0.7
0.9

196
58
33
21
21

196
58
30
20
18

196
58
30
22
22

196
58
30
24
20

196
58
31
28
24

196
58
30
21
21

212
78
42
24
20

Tab. 9. Number of inner iterations for fixed size examples.
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ψi ψnew ψnew,2 ψnew,3 ψnew,4 ψnew, log n
2 −1

ψ3,2 ψ8

% 50.48 66.99 68.93 66.99 58.25 51.45 55.33

Tab. 12. The percentage of cases where the KF gives the best

iteration number.

4.2.1. Comments

By comparing the results in Tables 9 – 12, we notice that:

• The number of iterations clearly depends on the value of the parameter p as the
gap between two different values of p can amount up to 59. It should also be noted
that ψnew,3 significantly reduces the number of iterations although ψnew, log n

2 −1
has

the best complexity bound theoretically.

• Comparing with ψnew, the KFs ψnew,2, ψnew,3, ψnew,4 and ψnew, log n
2 −1

were able to

produce even better iteration numbers especially in Examples 6 and 7 for θ = 0.9
and θ = 0.99, while maintaining similar performance for θ = 0.7 in Examples 6, 7
and 8.

• ψnew,p, for all tested parameters, outperformed ψ3,2 which had the best perfor-
mance in the previous section. This confirms that the parametrization has effected
the number of iterations of the algorithm positively.

• ψnew,2 far outperformed ψ8 despite having the same complexity bounds and more
than, the same expression up to a multiplicative constant (see Remark 4.1).

5. CONCLUSIONS AND REMARKS

In this paper, we investigate an interior-point algorithm for solving LP problems based
on a new KF which is a combination of the classic KF and a hyperbolic barrier term.
The complexity analysis for large-update primal-dual IPMs based on this KF yields

an O
(
n

3
4 log n

ε

)
iteration bound which improves the classical iteration bound with a

factor n
1
4 . For small-update methods, the proposed algorithm enjoys the favourable

iteration bound. To achieve the best iteration complexity, we introduce a class of KFs
by parametrizing the new hyperbolic-logarithmic KF. The simulation results illustrate
that the proposed algorithm is efficient and robust.

As a further research we would like to extend our approach to more general opti-
mization problems. Another question of interest is whether the new KF can be used to
design an efficient infeasible interior-point algorithm as in [27, 35, 47].
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