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AGGREGATION OF FUZZY VECTOR SPACES

Carlos Bejines

This paper contributes to the ongoing investigation of aggregating algebraic structures, with
a particular focus on the aggregation of fuzzy vector spaces. The article is structured into three
distinct parts, each addressing a specific aspect of the aggregation process.

The first part of the paper explores the self-aggregation of fuzzy vector subspaces. It delves
into the intricacies of combining and consolidating fuzzy vector subspaces to obtain a coherent
and comprehensive outcome.

The second part of the paper centers around the aggregation of similar fuzzy vector sub-
spaces, specifically those belonging to the same equivalence class. This section scrutinizes
the challenges and considerations involved in aggregating fuzzy vector subspaces with shared
characteristics.

The third part of the paper takes a broad perspective, providing an analysis of the aggrega-
tion problem of fuzzy vector subspaces from a general standpoint. It examines the fundamental
issues, principles, and implications associated with aggregating fuzzy vector subspaces in a
comprehensive manner.

By elucidating these three key aspects, this paper contributes to the advancement of knowl-
edge in the field of aggregation of algebraic structures, shedding light on the specific domain of
fuzzy vector spaces.
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1. INTRODUCTION

Presently, the study of aggregation operators has emerged as a significant and actively
pursued research area within the field of Fuzzy Set Theory and its diverse applications.
The increasing demand to integrate information, typically represented by numerical
values, into a single output for decision-making purposes, has stimulated substantial
interest in investigating functions that enable such aggregation. The prominence of
aggregation operators is evidenced by their frequent inclusion in various conferences,
as well as their dedicated congress, AGOP, which convenes biennially. For a more
comprehensive understanding, extensive information on aggregation operators can be
found in [6, 7].

A prominent research direction in recent years has been the examination of the preser-
vation of properties within fuzzy algebraic structures under the influence of aggregation
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operators. This framework has garnered significant attention and is actively being de-
veloped, as evidenced by the growing number of papers (see [2, 11, 15, 18, 19]). Given
an arbitrary set S, an aggregation function A : [0, 1] × [0, 1] −→ [0, 1] and two fuzzy
subsets µ, η : S −→ [0, 1], the fuzzy set A(µ, η) : S −→ [0, 1] defined pointwise by

A(µ, η)(x) := A(µ(x), η(x))

is the aggregation of µ and η using A. Our research endeavors are focused on exploring
the algebraic structure of a specific set S. In this paper, our attention is directed
towards the scenario where S represents a vector space. Consequently, our investigation
primarily revolves around the aggregation of fuzzy vector subspaces. This concept was
introduced as an extension of the conventional vector space notion to encompass the
fuzzy framework in [14]. Similar to other algebraic structures [9], a fuzzy vector subspace
can be characterized in terms of its level sets, as indicated in Proposition 2.5.

This article is structured into multiple sections to systematically address the research
objectives. In Section 2, we remember two pivotal notions that form the cornerstone
of our investigation. Additionally, this section incorporates a preliminary result that
serves as a valuable tool for comprehending the underlying framework. Proceeding to
Section 3, we embark on an in-depth exploration by examining the aggregation of a
fuzzy vector subspace. This analysis provides insights into the intricacies and dynamics
of aggregating a single fuzzy vector subspace. Section 4 focuses on the aggregation of
fuzzy vector subspaces belonging to the same equivalence class. By investigating this
specific scenario, we delve into the challenges, considerations, and implications associated
with aggregating fuzzy vector subspaces that share common properties. The central
section of our study, Section 5, takes a broader perspective by analyzing the aggregation
of fuzzy vector subspaces from a general standpoint. In this section, we present our
primary outcome, which serves as a fundamental result characterizing the aggregation
of these particular types of algebraic structures.

Through this well-structured organization, our article provides a comprehensive ex-
amination of the aggregation process for fuzzy vector subspaces, elucidating its various
aspects, and presenting a significant result that contributes to the understanding of these
algebraic structures.

2. BASIC NOTIONS AND PRELIMINARIES

Let us commence this paper by revisiting the fundamental concepts that will be examined
and analyzed throughout the paper.

Definition 2.1. (Calvo et al. [7]) Let A : [0, 1]n −→ [0, 1] be a function. We say that
A is an aggregation function if:

(A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1. (Boundary conditions)

(A2) A(x1, . . . , xn)≤A(y1, . . . , yn) whenever xi≤yi for each 1≤ i≤n. (Monotonicity)

Two important monographs about aggregation operators are [6, 7]. Aggregation
functions are classified into four broad classes:
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1. An aggregation function A is called conjunctive if

A(x1, . . . , xn) ≤ min{x1, . . . , xn}

for all x1, . . . , xn ∈ [0, 1]. For example: t-norms.

2. An aggregation function A is called averaging if

min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤ max{x1, . . . , xn}

for all x1, . . . , xn ∈ [0, 1]. For example: OWAs.

3. An aggregation function A is called disjunctive if

max{x1, . . . , xn} ≤ A(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1]. For example: t-conorms.

4. An aggregation function A is called mixed if A does not belong to the previous
classes. For example: uninorms.

Notice that each averaging aggregation function A is idempotent because it satisfies
A(x, . . . , x) = x for each x ∈ [0, 1]. In the manual [7] can be found an analysis of these
operators.

From now, E denotes a vector space on a field K and e+ and e∗ denote to the neutral
elements of the inner operations of the field K.

Definition 2.2. (Katsaras and Liu [14]) Let (E,+, ·) be a vector space on a field K
and µ : E −→ [0, 1] a fuzzy set of E. We say that µ is a fuzzy vector subspace of E if it
satisfies the following axioms:

(E1) µ(x+ y) ≥ µ(x) ∧ µ(y) for all x, y ∈ E.

(E2) µ(ax) ≥ µ(x) for all x ∈ E and a ∈ K.

It is worth pointing out that Das in [8] published a significant study of the properties of
fuzzy vector spaces using an arbitrary t-norm in the axiom (E1) instead of the minimum
operator.

Remark 2.3. It is important to note that axiom (E2) within this context cannot be
expressed as the equality µ(ax) = µ(x) as observed in other fuzzy algebraic structures.
This distinction is particularly evident when considering fuzzy subgroups, where the
degree of each element is equivalent to the degree of its inverse. As a consequence,
the second axiom is often substituted with an equivalent formulation for the sake of
consistency and coherency [16].

As a consequence of Definition 2.2, µ(e+) ≥ µ(x) for each x ∈ E, where e+ denotes
to the neutral element of the abelian group (E,+). Also, µ(x) = µ(−x) for all x ∈ E. A
significant characterization of a fuzzy vector subpace is shown in Proposition 2.5 using
level sets.
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Definition 2.4. Let (E,+, ·) be a vector space on a field K and µ : E −→ [0, 1] a fuzzy
set of E. For each t ∈ [0, 1], the level set µt and strict level set µt are defined as follows:

µt = {x ∈ E | µ(x) ≥ t} and µt = {x ∈ E | µ(x) > t}.

The support of µ is defined by supp µ := µ0.

Proposition 2.5. Let µ : E −→ [0, 1] be a fuzzy set of a vector space E on a field K.
The following assertions are equivalent:

1. µ is a fuzzy vector subspace of E.

2. µ(ax+ by) ≥ µ(x) ∧ µ(y) for all x, y ∈ E and a, b ∈ K.

3. Each non-empty level set of µ is a vector subspace of E.

P r o o f . We provide the proof for the sake of completeness.

(1) ⇒ (3). Suppose that µt is a non-empty level set of µ, where t ∈ [0, 1]. First,
take x, y ∈ µt. Since µ satisfies (E1), µ(x + y) ≥ µ(x) ∧ µ(y) ≥ t, hence x + y ∈ µt.
Second, take x ∈ E and a ∈ K. Since µ satisfies (E2), µ(ax) ≥ µ(x) ≥ t, hence ax ∈ µt.
Therefore, µt is a vector subspace of E.

(3) ⇒ (2). Let us consider t = µ(x) ∧ µ(y). Clearly, the level set µt is not empty
because x, y ∈ µt, therefore µt is a vector subspace of E. Since x, y ∈ µt, ax+ by ∈ µt,
equivalently, µ(ax+ by) ≥ t = µ(x) ∧ µ(y).

(2) ⇒ (1). Considering a = b = 1, we have (E1) and taking b = 0 and x = y, we
have (E2), that is, µ(ax) = µ(ax+ by) ≥ µ(x) ∧ µ(y) = µ(x). �

In preparation for our analysis of the aggregation procedure for fuzzy vector sub-
spaces, we have introduced the two fundamental notions outlined in this paper.

3. SELF-AGGREGATION OF FUZZY VECTOR SPACES

Given a vector space E on a field K, in this section we present the results concerning
to the self-aggregation A(µ, µ), where µ is a fuzzy vector subspace of E and A is an
aggregation function.

Proposition 3.1. Let A : [0, 1]2 −→ [0, 1] be an aggregation function and µ : E −→
[0, 1] a fuzzy vector subspace of a vector space E. Then A(µ, µ) is a fuzzy vector subspace
of E.

P r o o f . In order to prove (E1), without loss of generality, let us consider x, y ∈ E
satisfying µ(x) ≤ µ(y). Since µ(x+ y) ≥ µ(x) and A satisfies (A2),

A(µ, µ)(x+ y) = A(µ(x+ y), µ(x+ y)) ≥ A(µ(x), µ(x)) = A(µ, µ)(x).
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Moreover, A(µ(x), µ(x)) ≤ A(µ(y), µ(y)). Therefore,

A(µ, µ)(x+ y) ≥ A(µ, µ)(x) ∧A(µ, µ)(y).

Finally, the axiom (E2) for A(µ, µ) is a straightforward consequence of (A2) and µ(ax) ≥
µ(x). �

Corollary 3.2. If A : [0, 1]n −→ [0, 1] is an aggregation function and µ : E −→ [0, 1] is
a fuzzy vector subspace of E, then A(µ, . . . , µ) is a fuzzy vector subspace of E.

In [3], a comparison was presented between µ and A(µ, µ) in the context of a group as
the universal set. Likewise, we have derived the same result for fuzzy vector subspaces.

Proposition 3.3. Let µ : E −→ [0, 1] be a fuzzy vector subspace of a vector space E
and A : [0, 1]2 −→ [0, 1] an aggregation function.

1. If A is conjunctive, then A(µ, µ) ≤ µ.

2. If A is averaging, then A(µ, µ) = µ.

3. If A is disjunctive, then A(µ, µ) ≥ µ.

P r o o f . Let us take x ∈ E. If A is conjunctive, then

A(µ(x), µ(x)) ≤ µ(x) ∧ µ(x) = µ(x).

IfA is averaging, thenA is idempotent andA(µ, µ)(x) = µ(x). Finally, ifA is disjunctive,
then

A(µ(x), µ(x)) ≥ µ(x) ∨ µ(x) = µ(x).

�

However, if A is mixed, each case can happen, even A(µ, µ) could be incomparable
to µ.

Example 3.4. Consider the real vector space R2 and µ : R2 −→ [0, 1] defined by

µ(x, y) =

 1 if x = y = 0,
a if x = 0, y 6= 0,
b otherwise,

where a, b ∈ R satisfying a ≥ b. It can be readily verified that the level sets of µ
constitute vector subspaces of R2. By applying Proposition 2.5, we can conclude that µ
is indeed a fuzzy vector subspace.

Now, let us consider the mixed aggregation function A : [0, 1]2 −→ [0, 1] given by

A(x, y) =

 1 if x > 0.5, y > 0.5,
0 if x < 0.5, y < 0.5,

0.5 otherwise.

We have the following facts.
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1. If a, b ∈ (0.5, 1), we have that A(µ, µ) : R2 −→ [0, 1] is given by

A(µ, µ)(x, y) = 1 for all x, y ∈ R.

Therefore, A(µ, µ) ≥ µ.

2. If a, b ∈ (0, 0.5), we have that A(µ, µ) : R2 −→ [0, 1] is given by

A(µ, µ)(x, y) = 0 for all x, y ∈ R.

Therefore, A(µ, µ) ≤ µ.

3. If b ∈ (0, 0.5) and a ∈ (0.5, 1), we have that A(µ, µ) : R2 −→ [0, 1] is given by

A(µ, µ)(x, y) =

{
1 if x = 0,
0 if x 6= 0.

Since A(µ, µ)(0, 1) = 1 > a = µ(0, 1) and A(µ, µ)(1, 1) = 0 < b = µ(1, 1), A(µ, µ)
is not comparable to µ.

4. If a = b = 0.5, we have that A(µ, µ) : R2 −→ [0, 1] is given by

A(µ, µ)(x, y) =

{
1 if x = y = 0,

0.5 otherwise.

Therefore, A(µ, µ) = µ.

Remark 3.5. Notice that Proposition 3.1 can be easily extended to more components
too.

Proposition 3.1 provides a compelling assurance that the self-aggregation of any given
fuzzy vector subspace results in another fuzzy vector subspace, without any limitations
or constraints. This inherent property of aggregating the same fuzzy algebraic structure
holds significant strength. However, as we will further explore in subsequent sections, it
becomes evident that certain conditions on fuzzy vector spaces or aggregation functions
are necessary for a comprehensive analysis and meaningful outcomes to be achieved.

4. AGGREGATION OF FUZZY VECTOR SPACES FROM THE SAME
EQUIVALENT CLASS

We already know that the aggregation of A(µ, η) is again a fuzzy vector space assuming
µ = η. Dedicated to broadening the scope of this observation, this section aims at an
extension of this fact to a larger class. Our particular focus lies in the examination of
the aggregation process pertaining to similar fuzzy vector subspaces.

Definition 4.1. (Das [9]) Let (E,+, ·) be a vector space on a field K and µ, η : E −→
[0, 1] two fuzzy vector subspaces of E. We say that µ is similar to η, denoted by µ ∼ η,
if they have the same level sets, i. e.,

µ ∼ η ⇐⇒ {µt}t∈Im µ = {ηs}s∈Im η (1)
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Proposition 4.2. The relation ∼ is an equivalence relation.

P r o o f . Straightforward. �

Remark 4.3. The equivalence relation ∼ has been widely studied in the framework of
fuzzy subgroups (see [1, 5, 10, 12, 17]).

If A : [0, 1] × [0, 1] −→ [0, 1] is an aggregation operator and µ, η : E −→ [0, 1] two
fuzzy vector subspaces of E, then, in general, we cannot assure that the aggregation
A(µ, η) is again a fuzzy vector subspace as the following example shows.

Example 4.4. Let us consider the real vector space R3 and the following fuzzy vector
subspaces µ, η : R3 −→ [0, 1] defined by

µ(x, y, z) =

 1 if (x, y, z) = (0, 0, 0),
0.7 if x+ y + z = 0 and (x, y, z) 6= (0, 0, 0),
0.4 otherwise.

and

η(x, y, z) =

 1 if (x, y, z) = (0, 0, 0),
0.5 if x− y = 0 and (x, y, z) 6= (0, 0, 0),
0.3 otherwise.

Choose any aggregation function A satisfying A(0.4, 0.3) < A(0.4, 0.5). For instance:
the maximum operator, product t-norm or arithmetic mean can be chosen. Then,

A(µ, η)(1, 1,−2) = A(µ(1, 1,−2), η(1, 1,−2)) = A(0.7, 0.5),

A(µ, η)(0, 0, 3) = A(µ(0, 0, 3), η(0, 0, 3)) = A(0.4, 0.5),

and
A(µ, η)(1, 1, 1) = A(µ(1, 1, 1), η(1, 1, 1)) = A(0.4, 0.3).

Therefore,

A(µ, η)(1, 1, 1) = A(0.4, 0.3) < A(0.4, 0.5) = A(µ, η)(1, 1,−2) ∧A(µ, η)(0, 0, 3)

which means that A(µ, η) does not satisfy (E1), the first axiom of a fuzzy vector sub-
space.

However, under the premise of Eq. (1), we can guarantee that the aggregation A(µ, η)
is again a fuzzy vector subspace. Drawing inspiration from Theorem 3.14 in [13], which
deals with fuzzy subgroups, we present the following lemma that satisfies a similar
criterion. For the sake of completeness, we provide the proof below.

Lemma 4.5. Let (E,+, ·) be a vector space on a field K and µ, η : E −→ [0, 1] two
fuzzy vector subspaces of E. The following assertions are equivalent

1. µ(x) < µ(y) ⇐⇒ η(x) < η(y).

2. µ ∼ η.
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P r o o f . Let us assume that µ ∼ η. We consider x, y ∈ E such that µ(x) > µ(y) and
we put t1 = µ(x) and t2 = µ(y). Then,

x ∈ µt1 , y ∈ µt2 and y /∈ µt1 .

Since µ ∼ η, we have µt1 = ηr1 for some r1 ∈ Im η ⊆ [0, 1]. Taking into account the fact
of x ∈ µt1 = ηr1 and y /∈ µt1 = ηr1 , we conclude that

η(x) ≥ r1 and η(y) < r1.

Hence, η(x) > η(y). Analogously, we can prove if η(x) > η(y).
Conversely, let us assume that µ(x) < µ(y) ⇐⇒ η(x) < η(y). In order to prove

that µ ∼ η, without loss of generality let us choose µa ∈ {µt}t∈Im µ. On the one hand,
if µa = E, clearly

a =
∧
{t ∈ [0, 1] | t ∈ Im µ},

i. e., µ attains its infimum and µ(z) = a for some z ∈ E. We are going to prove
that η attains its minimum. By reductio ad absurdum, let us suppose that η does
not attain its infimum. Put b =

∧
{t ∈ [0, 1] | t ∈ Im η}. Therefore, η(x) > b for

each x ∈ E. In particular, η(z) > b, and consequently, there exists some z′ ∈ E such
that η(z) > η(z′) > b. Under our premise, we obtain that µ(z) > µ(z′), but this is a
contradiction because µ(z) = a. On the other hand, we study the case µa 6= E. We
know that there is z ∈ E such that µ(z) = a and put b = η(z). We have that

y ∈ E \ {µa} ⇐⇒ µ(y) < a = µ(z) ⇐⇒ η(y) < η(z) = b ⇐⇒ y ∈ E \ {ηb}.

Therefore, the complementary sets of µa and ηb are equal, i. e., µa = ηb. We conclude
that

{µt}t∈Im µ ⊆ {ηs}s∈Im η.

Using the same idea, it can be to prove

{ηs}s∈Im η ⊆ {µt}t∈Im µ.

Thus, µ ∼ η. �

Theorem 4.6. Let (E,+, ·) be a vector space on a field K, A : [0, 1]2 −→ [0, 1] an
aggregation function and µ, η : E −→ [0, 1] two fuzzy vector subspaces of E. If µ is
similar to η, then A(µ, η) is a fuzzy vector space of E.

P r o o f . Firstly, let us suppose that x, y ∈ E. By monotonicity,

A(µ, η)(x+ y) = A(µ(x+ y), η(x+ y)) ≥ A(µ(x) ∧ µ(y), η(x) ∧ η(y))

Now, taking into account Lemma 4.5, we conclude that

A(µ, η)(x+ y) ≥ A(µ, η)(x) or A(µ, η)(x+ y) ≥ A(µ, η)(y).
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Hence, A(µ, η)(x + y) ≥ A(µ, η)(x) ∧ A(µ, η)(y). Secondly, let us suppose x ∈ E and
a ∈ K. From axiom (A2),

A(µ, η)(ax) = A(µ(ax), η(ax)) ≥ A(µ(x), η(x)) = A(µ, η)(x).

Hence, A(µ, η) is a fuzzy vector space of E. �

Corollary 4.7. Let (E,+, ·) be a vector space on a field K, A : [0, 1]n −→ [0, 1] an
aggregation function and µ1, . . . , µn : E −→ [0, 1] fuzzy vector subspaces of E. If µi is
similar to µj for all 1i, j ∈ {1, 2, . . . , n}, then A(µ1, . . . , µn) is a fuzzy vector space of E.

We raise the question of whether the aggregation of two similar fuzzy vector subspaces
necessarily belongs to the same equivalence class. However, it is important to note
that in general, this assumption does not hold true (as demonstrated in Example 4.8).
Consequently, we introduce a condition on the aggregation function that characterizes
this particular property (as stated in Proposition 4.10).

Example 4.8. Let us consider the real vector space R2 and the following fuzzy vector
subspaces µ, η : R2 −→ [0, 1] defined by

µ(x, y) =

 1 if (x, y) = (0, 0),
0.5 if x+ y = 0 and (x, y) 6= (0, 0),
0.25 otherwise.

and

η(x, y) =

 1 if (x, y) = (0, 0),
0.4 if x+ y = 0 and (x, y) 6= (0, 0),
0.1 otherwise.

Clearly, their level sets are the same, hence µ ∼ η. Choose any aggregation function A
satisfying A(0.5, 0.4) = 0, and consequently, A(x, y) = 0 for all x ≤ 0.5 and y ≤ 0.4. For
instance:  Lukasiewicz t-norm or the drastic conjunctor. Then,

A(µ, η)(x, y) =

{
1 if (x, y) = (0, 0),

0 otherwise.

Hence, A(µ, η) 6∼ µ.

Jointly strictly monotone property serves as a necessary and sufficient condition that
can be imposed on the aggregation operator to ensure the preservation of the inner
structure of an equivalence class when aggregating fuzzy vector subspaces.

Definition 4.9. (Calvo et al. [7]) Let A : [0, 1]n −→ [0, 1] be an aggregation function.
We say that A is jointly strictly monotone if assuming xi < yi for all i ∈ {1, 2, . . . , n},
then A(x1, . . . , xn) < A(y1, . . . , yn).
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Proposition 4.10. Let (E,+, ·) be a vector space on a field K and A : [0, 1]2 −→ [0, 1]
an aggregation function. The following assertions are equivalent.

1. A is jointly strictly monotone.

2. Given any two fuzzy vector subspaces µ and η of E satisfying µ ∼ η, we have that
A(µ, η) ∼ µ.

P r o o f . (1)⇒ (2). Let us suppose that µ ∼ η. Theorem 4.6 provides A(µ, η) is a fuzzy
vector subspace. Assume x, y ∈ E such that µ(x) < µ(y). Since µ ∼ η, η(x) < η(y).
Under the premise that A is jointly strictly monotone,

A(µ, η)(x) = A(µ(x), η(x)) < A(µ(y), η(y)) = A(µ, η)(y),

hence µ ∼ A(µ, η).
(2)⇒ (1). For this converse, we are going to prove that if A is not a jointly strictly

monotone aggregation function, then there are two similar fuzzy vector subspaces µ and
η such that µ ∼ η 6∼ A(µ, η). Since A is not jointly strictly monotone, there exist
x1, x2, y1, y2 ∈ [0, 1] satisfying x1 < x2 and y1 < y2 such that A(x1, y1) ≥ A(x2, y2).
By monotonicity, A(x1, y1) = A(x2, y2)). Now, let us choose the following fuzzy vector
subspaces µ, η : E −→ [0, 1] given by

µ(x) =

{
a2 if x = e,
a1 if x 6= e.

η(x) =

{
b2 if x = e,
b1 if x 6= e.

Trivially, µ and η are fuzzy vector subspaces of E because their level sets are vector
subspaces of any vector space. Clearly, µ ∼ η. Eventually, we prove that A(µ, η) 6∼ µ.
Choose z 6= e, we have

A(µ, η)(e) = A(µ(e), η(e)) = A(a2, b2) = A(a1, b1) = A(µ(z), η(z)) = A(µ, η)(z).

Since µ(e) = a2 > a1 = µ(z), taking into account Lemma 4.5, we conclude that A(µ, η) 6∼
µ. �

5. AGGREGATION OF FUZZY VECTOR SPACES

In this concluding section, our attention shifts towards arbitrary fuzzy vector subspaces.
It is important to note that, in general, the aggregation of such subspaces does not
result in a fuzzy vector subspace, as demonstrated in Example 4.4. However, as we
have observed in previous sections, certain conditions can be established to ensure that
their aggregation does form a new fuzzy vector subspace. Our primary objective is to
characterize this phenomenon.

To facilitate our analysis, we introduce a notion that plays a crucial role in the ag-
gregation process. It is noteworthy that this notion holds broader significance compared
to Definition 3.12 in [4].

Definition 5.1. Let S be a set, and consider two fuzzy sets µ, η : S −→ [0, 1]. We
denote by L(µ, η) the subset of the Cartesian product S × S defined by:

L(µ, η) := {(x, y) ∈ S × S | µ(x) < µ(y) and η(x) > η(y)}.
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We are interested in the algebraic structure of the set S. For instance, if S is a group,
Definition 5.1 is equal to the given in [4]. If S = E is a vector space, then we can create
a binary relation on the set of fuzzy vector subspaces of a vector space E:

µ ' η ⇐⇒ L(µ, η) = ∅.

It is evident that the relation ' is reflexive and symmetric. However, it does not
possess the transitive property in general. To illustrate this, consider the fuzzy vector
subspace ν defined by ν(x) = 1 for all x ∈ E. It can be observed that every fuzzy vector
subspace µ trivially satisfies µ ' ν. If ' were a transitive relation, then for any pair
(µ, η) of fuzzy vector subspaces, we would have µ ' η, which is clearly not the case (as
shown in Example 4.4).

In order to establish a characterization of the aggregation of fuzzy vector subspaces,
we present a preliminary lemma.

Lemma 5.2. Let µ : E −→ [0, 1] be a fuzzy vector subspace of a vector space E on a
field K and x, y ∈ E. If µ(x) 6= µ(y), then

µ(x+ y) = µ(x) ∧ µ(y).

P r o o f . From (E1), µ(x + y) ≥ µ(x) ∧ µ(y). By reductio ad absurdum, we assume
µ(x + y) > µ(x) ∧ µ(y). Without loss of generality, we can consider µ(x) < µ(y).
Consequently, µ(x+y) > µ(x) and taking into account that µ is a fuzzy vector subspace,
we obtain

µ(x) ≥ µ(x+ y) ∧ µ(−y) = µ(x+ y) ∧ µ(y).

This is a contradiction because µ(x) < µ(y) and µ(x) < µ(x+ y). �

Theorem 5.3. Let (E,+, ·) be a vector space on a field K and and µ, η : E −→ [0, 1]
two fuzzy vector subspaces. Then, L(µ, η) = ∅ if and only if for any aggregation function
A : [0, 1]2 −→ [0, 1], we have that A(µ, η) is a fuzzy vector subspace.

P r o o f . First, let us assume L(µ, η) = ∅.

(E1) Choose x, y ∈ E, we have three cases to study:

1. µ(x) < µ(y). Since L(µ, η) = ∅, necessary η(x) ≤ η(y). By monotonicity of
A,

A(µ(x+ y), η(x+ y)) ≥ A(µ(x) ∧ µ(y), η(x) ∧ η(y)) = A(µ(x), η(x)).

Hence,

A(µ, η)(x+ y) ≥ A(µ, η)(x) ≥ A(µ, η)(x) ∧A(µ, η)(y)).

2. µ(x) > µ(y). By a similar argument to the previous case.
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3. µ(x) = µ(y). We have η(x) ≤ η(y) or η(x) ≥ η(y). Without loss of generality,
let us assume η(x) ≤ η(y). By monotonicity,

A(µ(x+ y), η(x+ y)) ≥ A(µ(x) ∧ µ(y), η(x) ∧ η(y)) = A(µ(x), η(x)).

Hence,

A(µ, η)(x+ y) ≥ A(µ, η)(x) ≥ A(µ, η)(x) ∧A(µ, η)(y).

(E2) Choose x ∈ E and a ∈ K, then

A(µ, η)(ax) = A(µ(ax), η(ax)) ≥ A(µ(x), η(x)) = A(µ, η)(x).

Conversely, let us assume L(µ, η) 6= ∅. We are going to prove that there is an aggrega-
tion function A satisfying A(µ, η) is not a fuzzy vector subspace. By hyphotesis, since
L(µ, η) 6= ∅, there are x, y ∈ E such that µ(x) < µ(y) and η(x) > η(y). Let us define
the following aggregation function A : [0, 1]2 −→ [0, 1],

A(r, s) =

 1 if r ≥ µ(x) and s ≥ η(x),
1 if r ≥ µ(y) and s ≥ η(y),
0 otherwise.

Clearly, A is well-defined and satisfies the two axioms of an aggregation function. By
Lemma 5.2,

A(µ, η)(x+ y) = A(µ, η(x) ∧A(µ, η)(y).

Now, let us notice that A(µ(x), η(x)) = 1 = A(µ(y), η(y)) and A(µ(x), η(y)) = 0. Thus,

A(µ, η)(x+y) = A(µ(x+y), η(x+y)) = A(µ(x), η(y)) = 0 < 1 = A(µ, η)(x)∧A(µ, η)(y),

which is a contradiction. �

Building upon Theorem 5.3, we derive three consequential corollaries. The first corol-
lary demonstrates that if there exists a strictly monotone aggregation function B that
preserves the algebraic structure of fuzzy vector subspaces, then any aggregation func-
tion that satisfies this condition will also preserve the algebraic structure. Notably,
Ordered Weighted Averaging (OWA) functions serve as noteworthy examples of strictly
monotone aggregation functions in practical applications (see [7]).

Corollary 5.4. Let (E,+, ·) be a vector space on a field K and and µ, η : E −→ [0, 1]
two fuzzy vector subspaces. If B is a strictly monotone aggregation function, then the
following assertions are equivalent:

1) L(µ, η) = ∅.

2) B(µ, η) is a fuzzy vector subspace.

3) A(µ, η) is a fuzzy vector subspace for each aggregation function A.
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P r o o f . Since trivially 3) ⇒ 2), taking into account Theorem 5.3, it is only needed
to prove 2) ⇒ 1). Let us assume that B(µ, η) is a fuzzy vector subspace of E. By
reductio ad absurdum, L(µ, η) 6= ∅, i. e., there are x, y ∈ E satisfying µ(x) < µ(y) and
η(y) < η(x). By Lemma 5.2, we have that

µ(x+ y) = µ(x) < µ(y) and η(x+ y) = η(y) < η(x).

Choose t = B(µ, η)(x) ∧B(µ, η)(y) and consider the following level set

A(µ, η)t = {z ∈ E | B(µ, η)(z) ≥ t}.

Trivially x, y ∈ B(µ, η)t and taking into account that B(µ, η) is fuzzy vector subspace,
using Proposition 2.5, B(µ, η)t is a vector subspace of E (in the crisp sense). Hence,
x+ y ∈ B(µ, η)t. Oppositely, since B is strictly monotone,

B(µ, η)(x+ y) = B(µ(x+ y), η(x+ y)) = B(µ(x), η(y)) < B(µ(y), η(y)) = B(µ, η)(y)

and

B(µ, η)(x+ y) = B(µ(x+ y), η(x+ y)) = B(µ(x), η(y)) < B(µ(x), η(x)) = B(µ, η)(x)

concluding B(µ, η)(x+ y) < t, that is, a contradiction. Therefore, L(µ, η) = ∅. �

In various scenarios, the strictly monotone property is only partially required within
a subset of the unit interval, such as in the case of t-norms or t-conorms. Subject to
certain conditions on the fuzzy vector subspaces, the following two corollaries provide
a characterization of the aggregation process for fuzzy vector subspaces, taking into
consideration these types of fuzzy operators.

Corollary 5.5. Let (E,+, ·) be a vector space on a field K and and µ, η : E −→ [0, 1]
two fuzzy vector subspaces satisfying that µ(x) > 0 and η(x) > 0 for each x ∈ E.
If B0 is an aggregation function which is strictly monotone on the Cartesian product
(0, 1]× (0, 1], then the following assertions are equivalent:

1) L(µ, η) = ∅.

2) B0(µ, η) is a fuzzy vector subspace.

3) A(µ, η) is a fuzzy vector subspace for any aggregation function A.

P r o o f . Since trivially 3) ⇒ 2), taking into account Theorem 5.3, it is only needed
to prove 2) ⇒ 1). Suppose that B0(µ, η) is a fuzzy vector subspace. By reductio
ad absurdum, there are x, y ∈ E satisfying 0 < µ(x) < µ(y) and 0 < η(y) < η(x).
By Lemma 5.2, we have that 0 < µ(x + y) = µ(x) < µ(y) and 0 < η(x + y) =
η(y) < η(x). Choose t = B0(µ, η)(x) ∧ B0(µ, η)(y) and let us consider the level set
B0(µ, η)t = {z ∈ E | B0(µ, η)(z) ≥ t}. Clearly, x, y ∈ B0(µ, η)t. Since B0(µ, η) is a
fuzzy vector subspace by hypothesis, B0(µ, η)t is a vector subspace of E (in the crisp
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sense). Then, x + y ∈ B0(µ, η)t. Since B0 is strictly monotone on (0, 1] × (0, 1] and
µ(x) 6= 0 6= η(y),

B0(µ, η)(x+y) = B0(µ(x+y), η(x+y)) = B0(µ(x), η(y)) < B0(µ(y), η(y)) = B0(µ, η)(y)

and

B0(µ, η)(x+ y) = B0(µ(xy), η(x+ y)) = B0(µ(x), η(y)) < B0(µ(x), η(x)) = B0(µ, η)(x)

then B0(µ, η)(x+y) < t. Hence x+y /∈ B0(µ, η)t, which is a contradiction. We conclude
that L(µ, η) = ∅. �

Corollary 5.6. Let (E,+, ·) be a vector space on a field K and and µ, η : E −→ [0, 1]
two fuzzy vector subspaces satisfying µ(x) = 1 if and only if x = e+ and η(x) = 1 if
and only if x = e+. If B1 is an aggregation function which is strictly monotone on
[0, 1)× [0, 1), then the following assertions are equivalent:

1) L(µ, η) = ∅.

2) B1(µ, η) is a fuzzy vector subspace.

3) A(µ, η) is a fuzzy vector subspace for any aggregation function A.

P r o o f . Since trivially 3) ⇒ 2), taking into account Theorem 5.3, it is only needed
to prove 2) ⇒ 1). Let us assume that B1(µ, η) is a fuzzy vector space. By reductio
ad absurdum, there are x, y ∈ E sastisfying µ(x) < µ(y) and η(y) < η(x). Trivially,
x 6= e 6= y. By hyphotesis, µ(y) < 1 and η(x) < 1, and Lemma 5.2, we have that
µ(x + y) = µ(x) < µ(y) < 1 and η(x + y) = η(y) < η(x) < 1. Let us choose t =
B1(µ, η)(x)∧B1(µ, η)(y) and consider the level set B1(µ, η)t = {z ∈ E | B1(µ, η)(z) ≥ t}.
Clearly, x, y ∈ B1(µ, η)t. Since B1(µ, η) is a fuzzy vector subspace, B1(µ, η)t is a vector
subspace of E (in the crisp sense). Thus, x, y ∈ B1(µ, η)t. Since B1 is strictly monotone
on [0, 1)× [0, 1) and µ(x) 6= 1 6= η(y), we have

B1(µ, η)(x+y) = B1(µ(x+y), η(x+y)) = B1(µ(x), η(y)) < B1(µ(y), η(y)) = B1(µ, η)(y)

and

B1(µ, η)(x+y) = B1(µ(x+y), η(x+y)) = B1(µ(x), η(y)) < B1(µ(x), η(x)) = B1(µ, η)(x)

then B1(µ, η)(x+y) < t. Hence x+y /∈ B1(µ, η)t, which is a contradiction. We conclude
that L(µ, η) = ∅. �

6. CONCLUDING REMARKS

This paper contributes to the ongoing research on the aggregation of algebraic structures,
focusing specifically on the domain of fuzzy vector spaces. The study is divided into
several key components, each addressing different aspects of the aggregation process.
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The first part of the paper delves into a comprehensive analysis of the self-aggregation
of fuzzy vector spaces. By exploring the inherent properties and characteristics of these
algebraic structures, providing a thorough understanding of the aggregation process
within this domain.

Moving forward, the paper presents a series of propositions that investigate the ag-
gregation of fuzzy vector subspaces belonging to equivalent classes. We examine the
conditions under which these aggregations preserve the equivalence class, shedding light
on the factors that influence the outcome of the aggregation process. This analysis pro-
vides valuable insights into the behavior of fuzzy vector subspaces during aggregation
and enhances our understanding of the underlying mechanisms at play.

Furthermore, the preservation of these equivalence classes is thoroughly examined in
a dedicated section. By studying the properties and constraints that ensure the preser-
vation of equivalence classes, we contribute to the theoretical framework surrounding
the aggregation of fuzzy vector subspaces. This analysis adds depth to our knowledge
of how aggregation impacts the algebraic structure of these subspaces.

The culmination of the paper is the presentation of the main result: a character-
ization of the aggregation of fuzzy vector subspaces based on an algebraic condition
imposed on the subspaces. This significant finding contributes to our understanding of
the aggregation process and provides a valuable tool for further research and analysis in
the field of fuzzy vector spaces.

In addition to the main result, the paper concludes with three significant corollar-
ies that explore the role of strictly monotone aggregation functions. These corollaries
highlight the impact of such functions on the aggregation of fuzzy vector subspaces,
providing further insights and implications for practical applications.

Overall, this paper provides a comprehensive and in-depth investigation of the aggre-
gation of fuzzy vector spaces.
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