Kybernetika 59 no. 3, 484-511, 2023

Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies

Yifei Wu, Sunyu Zheng, Rui Xu, Ronghao Wang and Zhengrong XiangDOI: 10.14736/kyb-2023-3-0484

Abstract:

This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol.

Keywords:

nonlinear systems, adaptive control, fully distributed consensus, multiagent systems, arbitrary switching

Classification:

93A14, 93C10, 93C40

References:

  1. J. Chen, J. Li and H. Wu: Fuzzy adaptive leader-following consensus of second-order multiagent systems with imprecise communication topology structure. Int. J. Robust Nonlinear Control 36 (2018), 937-949.   DOI:10.1002/acs.2876
  2. J. Chen, J. Li and X. Yuan: Global fuzzy adaptive consensus control of unknown nonlinear multiagent systems. IEEE Trans. Fuzzy Systems 28 (2019), 510-522.   DOI:10.1109/TFUZZ.2019.2908771
  3. K. Chen, J. Wang, Y. Zhang and Z. Liu: Second-order consensus of nonlinear multi-agent systems with restricted switching topology and time delay. Nonlinear Dynamics 78 (2014), 881-887.   DOI:10.1007/s11071-014-1483-1
  4. D. Cui, Y. Wu and Z. Xiang: Finite-time adaptive fault-tolerant tracking control for nonlinear switched systems with dynamic uncertainties. Int. J. Robust Nonlinear Control 31 (2021), 2976-2992.   DOI:10.1002/rnc.5429
  5. H. Du, Y. Cheng, Y. He and R. Jia: Second-order consensus for nonlinear leader-following multi-agent systems via dynamic output feedback control. Int. J. Robust Nonlinear Control 26 (2016), 329-344.   DOI:10.1002/rnc.3317
  6. H. Du, Y. He and Y. Cheng: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Systems I: Regular Papers 61 (2014), 1778-1788.   DOI:10.1109/TCSI.2013.2295012
  7. X. Feng, Y. Yang and D. Wei: Adaptive fully distributed consensus for a class of heterogeneous nonlinear multi-agent systems. Neurocomputing 428 (2021), 12-18.   DOI:10.1016/j.neucom.2020.11.043
  8. J. Fu and J. Wang: Adaptive consensus tracking of high-order nonlinear multi-agent systems with directed communication graphs. Int. J. Control Automat. Systems 12 (2014), 919-929.   DOI:10.1007/s12555-013-0325-0
  9. J. Fu and J. Wang: Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Systems Control Lett. 93 (2016), 1-12.   DOI:10.1016/j.sysconle.2016.03.006
  10. G. Gu, L. Marinovici and F. L. Lewis: Consensusability of discrete-time dynamic multiagent systems. IEEE Trans. Automat. Control 57 (2011), 2085-2089.   DOI:10.1109/TAC.2011.2179431
  11. C. Hua, X. You and X. Guan: Adaptive leader-following consensus for second-order time-varying nonlinear multiagent systems. IEEE Trans. Cybernetics 47 (2016), 1532-1539.   DOI:10.1109/TCYB.2016.2551220
  12. C. C. Hua, X. You and X. P. Guan: Leader-following consensus for a class of high-order nonlinear multi-agent systems. Automatica 73 (2016), 138-144.   DOI:10.1016/j.automatica.2016.06.025
  13. J. Huang, Y. Song. W. Wang, C. Wen and G. Li: Fully distributed adaptive consensus control of a class of high-order nonlinear systems with a directed topology and unknown control directions. IEEE Trans. Cybernet. 48 (2018), 2349-2356.   DOI:10.1109/TCYB.2017.2737652
  14. X. Jin: Adaptive iterative learning control for high-order nonlinear multi-agent systems consensus tracking. Systems Control Lett. 89 (2016), 16-23.   DOI:10.1016/j.sysconle.2015.12.009
  15. Q. Li and Z. Jiang: Flocking control of multi-agent systems with application to nonholonomic multi-robots. Kybernetika 45 (2009), 84-100.   CrossRef
  16. Z. Li, W. Ren, X. Liu and M. Fu: Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Automat. Control 58 (2012), 1786-1791.   DOI:10.1109/TAC.2012.2235715
  17. Z. Li, G. Wen, Z. Duan and W. Ren: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Automat. Control 60 (2014), 1152-1157.   DOI:10.1109/TAC.2014.2350391
  18. S. Li, W. Zou, X. Chen, C. Chen and Z. Xiang: Adaptive fully distributed consensus for a class of second-order nonlinear multi-agent systems with switching networks. Int. J. Control Automat. Systems, under review.   CrossRef
  19. X. Liu, X. Gao and J. Han: Observer-based fault detection for high-order nonlinear multi-agent systems. J. Franklin Inst. 353 (2016), 72-94.   DOI:10.1016/j.jfranklin.2015.09.022
  20. W. Liu and J. Huang: Leader-following consensus for linear multiagent systems via asynchronous sampled-data control. IEEE Trans. Automat. Control 65 (2019), 3215-3222.   DOI:10.1109/TAC.2019.2948256
  21. M. Liu and L. Liu: Consensus of heterogeneous second-order nonlinear uncertain multi-agent systems under switching networks. IEEE Trans. Automat. Control 66 (2021), 3331-3338.   DOI:10.1109/TAC.2020.3019737
  22. Y. Liu, H. Min, S. Wang, Z. Liu and S. Liao: Distributed consensus of a class of networked heterogeneous multi-agent systems. J. Franklin Inst. 351 (2014), 1700-1716.   DOI:10.1016/j.jfranklin.2013.12.020
  23. W. Liu, S. Zhou, Y. Qi and X. Wu: Leaderless consensus of multi-agent systems with Lipschitz nonlinear dynamics and switching topologies. Neurocomputing 173 (2016), 1322-1329.   DOI:10.1016/j.neucom.2015.09.005
  24. R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.   DOI:10.1109/TAC.2004.834113
  25. C. Qian and W. Lin: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems Control Lett. 42 (2001), 185-200.   DOI:10.1016/S0167-6911(00)00089-X
  26. Y. Qian, X. Wu, J. Lü and J. A. Lu: Second-order consensus of multi-agent systems with nonlinear dynamics via impulsive control. Neurocomputing 125 (2014), 142-147.   DOI:10.1016/j.neucom.2012.10.027
  27. C. Ren, R. Nie and S. He: Finite-time positiveness and distributed control of Lipschitz nonlinear multi-agent systems. J. Franklin Inst.356 (2019), 8080-8092.   DOI:10.1016/j.jfranklin.2019.06.044
  28. Q. Shi, T. Li, J. Li, C. P. Chen, Y. Xiao and Q. Shan: Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems. Neurocomputing 350 (2019), 282-290.   DOI:10.1016/j.neucom.2019.03.045
  29. S. Shi, S. Xu, W. Liu and B. Zhang: Global fixed-time consensus tracking of nonlinear uncertain multiagent systems with high-order dynamics. IEEE Trans. Cybernet. 50 (2018), 1530-1540.   DOI:10.1109/tcyb.2018.2879892
  30. Q. Song, J. Cao and W. Yu: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Systems Control Lett. 59 (2010), 553-562.   DOI:10.1016/j.sysconle.2010.06.016
  31. S. Su, Z. Lin and A. Garcia: Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybernetics 46 (2015), 325-338.   DOI:10.1109/TCYB.2015.2402192
  32. M. E. Valcher and I. Zorzan: On the consensus of homogeneous multi-agent systems with arbitrarily switching topology. Automatica 84 (2017), 79-85.   DOI:10.1016/j.automatica.2017.07.011
  33. Z. Wang, Y. Feng, C. Zheng, Y. Lu and L. Pan: Asynchronous sampling-based leader-following consensus in second-order multi-agent systems. Kybernetika 54 (2018), 61-78.   DOI:10.14736/kyb-2018-1-0061
  34. Q. Wang, J. Fu and J. Wang: Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics. Systems Control Lett. 99 (2017), 33-39.   DOI:10.1016/j.sysconle.2016.11.003
  35. F. Wang, Z. Liu and Z. Chen: Distributed containment control for second-order multiagent systems with time delay and intermittent communication. Int. J. Robust Nonlinear Control 28 (2018), 5730-5746.   DOI:10.1002/rnc.4341
  36. G. Wang, C. Wang and L. Li: Fully distributed low-complexity control for nonlinear strict-feedback multiagent systems with unknown dead-zone inputs. IEEE Trans. Systems Man Cybernet.: Systems 50 (2020), 421-431.   DOI:10.1109/TSMC.2017.2759305
  37. G. Wen, Y. Yu, Z. Peng and A. Rahmani: Consensus tracking for second-order nonlinear multi-agent systems with switching topologies and a time-varying reference state. Int. J. Control 89 (2016), 2096-2106.   DOI:10.1080/00207179.2016.1149221
  38. G. Wen, W. Yu, Y. Xia, X. Yu and J. Hu: Distributed tracking of nonlinear multiagent systems under directed switching topology: An observer-based protocol. IEEE Trans. Systems Man Cybernet.: Systems 47 (2016), 869-881.   DOI:10.1109/TSMC.2016.2564929
  39. J. Xi, Z. Fan, H. Liu and T. Zheng: Guaranteed-cost consensus for multiagent networks with Lipschitz nonlinear dynamics and switching topologies. Int. J. Robust Nonlinear Control 28 (2018), 2841-2852.   DOI:10.1002/rnc.4051
  40. K. Yang, W. Zou, Z. Xiang and R. Wang: Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances.. Discrete Continuous Dynamical Systems-S 14 (2021), 1535-1551.   DOI:10.3934/dcdss.2020396
  41. X. You, C. Hua and X. Guan: Self-triggered leader-following consensus for high-order nonlinear multiagent systems via dynamic output feedback control. IEEE Trans. Cybernet. 49 (2018), 2002-2010.   DOI:10.1109/TNS.2002.801512
  42. X. You, C. Hua, K. Li and X. Jia: Fixed-time leader-following consensus for high-order time-varying nonlinear multiagent systems. IEEE Trans. Automat. Control 65 (2020), 5510-5516.   DOI:10.1109/TAC.2020.3005154
  43. W. Yu, H. Ni, H. Dong and D. Zhang: Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles. Kybernetika 26 (2020), 278-297.   DOI:10.14736/kyb-2020-2-0278
  44. Z. Zhang, S. Chen and Y. Zheng: Fully distributed scaled consensus tracking of high-order multiagent systems with time delays and disturbances. IEEE Trans. Industr. Inform. 18 (2021), 305-314.   CrossRef
  45. H. Zhang and F. L. Lewis: Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48 (2012), 1432-1439.   DOI:10.1016/j.automatica.2012.05.008
  46. Y. Zhang and S. Li: Adaptive near-optimal consensus of high-order nonlinear multi-agent systems with heterogeneity. Automatica 85 (2017), 426-432.   DOI:10.1016/j.automatica.2017.08.010
  47. L. Zhang, J. Sun and Q. Yang: Event-triggered output consensus for linear multi-agent systems via adaptive distributed observer. Kybernetika 56 (2020), 217-238.   DOI:10.14736/kyb-2020-2-0217
  48. G. Zhao and M. Zhu: Pareto optimal multirobot motion planning. IEEE Trans. Automat. Control 66 (2021), 3984-3999.   DOI:10.1109/TAC.2020.3025870
  49. J, Zhu, Y. P. Tian and J. Kuang: On the general consensus protocol of multi-agent systems with double-integrator dynamics. Linear Algebra Appl. 431 (2009), 701-715.   DOI:10.1016/j.laa.2009.03.019
  50. W. Zou, Y. Huang, C. K. Ahn and Z. Xiang: Containment control of linear multiagent systems with stochastic disturbances via event-triggered strategies. IEEE Systems J. 14 (2020), 4810-4819.   DOI:10.1109/JSYST.2020.2975247
  51. Z. Zou, J. Zhang and Y. Wang: Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Trans. Industr. Electronics 62 (2014), 3923-3931.   DOI:10.1109/tie.2014.2367034
  52. W. Zou, C. Zhou, J. Guo and Z. Xiang: Global adaptive leader-following consensus for second-order nonlinear multiagent systems with switching topologies. IEEE Trans. Circuits Systems II: Express Briefs 68 (2020), 702-706.   DOI:10.1109/TCSII.2020.3009291