Kybernetika 59 no. 3, 437-460, 2023

Generalized synchronization in the networks with directed acyclic structure

Sergej Čelikovský, Volodymyr Lynnyk, Anna Lynnyk and Branislav RehákDOI: 10.14736/kyb-2023-3-0437


Generalized synchronization in the direct acyclic networks, i.e. the networks represented by the directed tree, is presented here. Network nodes consist of copies of the so-called generalized Lorenz system with possibly different parameters yet mutually structurally equivalent. The difference in parameters actually requires the generalized synchronization rather than the identical one. As the class of generalized Lorenz systems includes the well-known particular classes such as (classical) Lorenz system, Chen system, or Lü system, all these classes can be synchronized using the presented approach as well. The main theorem is rigorously mathematically formulated and proved in detail. Extensive numerical simulations are included to illustrate and further substantiate these theoretical results. Moreover, during these numerical experiments, the so-called duplicated system approach is used to double-check the generalized synchronization.


chaos, generalized synchronization, generalized Lorenz system, networks


93C10, 05C82, 34D06


  1. H. D. I. Abarbanel, N. F. Rulkov and M. M. Sushchik: Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E 53 (1996), 5, 4528-4535.   DOI:10.1103/PhysRevE.53.4528
  2. V. S. Afraimovich, N. N. Verichev and M. I. Rabinovich: Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum El. 29 (1086), 9, 795-803.   DOI:10.1007/bf01034476
  3. H. Bao and J. Cao: Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal. Model. 21 (2016), 3, 306-324.   DOI:10.15388/NA.2016.3.2
  4. S. Boccaletti, J. Kurths, G. Osipov, D. Valladares and C. Zhou: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-2, 1-101.   DOI:10.1016/s0370-1573(02)00137-0
  5. S. Boccaletti, A. Pisarchik, C. del Genio and A. Amann: Synchronization: From Coupled Systems to Complex Networks. Cambridge University Press, 2018.   CrossRef
  6. S. Čelikovský and G. Chen: On a generalized {Lorenz} canonical form of chaotic systems. Int. J. Bifurcat. Chaos 12 (2002), 08, 1789-1812.   DOI:10.1142/S0218127402005467
  7. S. Čelikovský and A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 4, 403-424.   DOI:10.1088/0963-6625/3/4/004
  8. G. Chen and T. Ueta: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 09 (1999), 07, 1465-1466.   DOI:10.1142/S0218127499001024
  9. G. Chen, X. Wang and X. Li: Fundamentals of Complex Networks: Models, Structures and Dynamics. Wiley, 2014.   CrossRef
  10. H. Fujisaka and T. Yamada: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1983), 1, 32-47.   DOI:10.1143/ptp.69.32
  11. H. K. Khalil: Nonlinear Systems. Pearson, Upper Saddle River, NJ, 3 edition, 2002.   CrossRef
  12. L. Kocarev and U. Parlitz: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76 (1996), 11, 1816-1819.   DOI:10.1103/PhysRevLett.76.1816
  13. J. Liu, G. Chen and X. Zhao: Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals 29 (2021), 04, 2150081.   DOI:10.1142/S0218348X2150081X
  14. E. N. Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 2, 130-141.   DOI:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  15. J. Lü and G. Chen: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12 (2002), 03, 659-661.   DOI:10.1142/S0218127402004620
  16. V. Lynnyk, B. Rehák and S. Čelikovský: On detection of generalized synchronization in the complex network with ring topology via the duplicated systems approach. In: 8th International Conference on Systems and Control ({ICSC}), IEEE 2019, pp. 251-256.   DOI:10.1109/icsc47195.2019.8950538
  17. R. Mainieri and J. Rehacek: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82 (1999), 15, 3042-3045.   DOI:0.1103/PhysRevLett.82.3042
  18. M. A. Müller, A. Martínez-Guerrero, M. Corsi-Cabrera, A. O. Effenberg, A. Friedrich, I. Garcia-Madrid, M. Hornschuh, G. Schmitz and M. F. Müller: How to orchestrate a soccer team: Generalized synchronization promoted by rhythmic acoustic stimuli. Front. Hum. Neurosci. 16 (2022).   CrossRef
  19. L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 8), 821-824.   DOI:0.1103/PhysRevLett.64.821
  20. A. S. Pikovsky: On the interaction of strange attractors. Z. Phys. B Con. Mat. 55 (1984), 2, 149-154.   DOI:10.1902/jop.1984.55.3.149
  21. K. Pyragas: Weak and strong synchronization of chaos. Phys. Rev. E 54 (1996), 5, R4508-R4511.   DOI:10.1103/PhysRevE.54.R4508
  22. B. Rehák and V. Lynnyk: Decentralized networked stabilization of a nonlinear large system under quantization. In: Proc. 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys 2019), pp. 1-6.   CrossRef
  23. B. Rehák and V. Lynnyk: Network-based control of nonlinear large-scale systems composed of identical subsystems. J. Franklin I. 356 (2019), 2, 1088-1112.   DOI:10.1016/j.jfranklin.2018.05.008
  24. B. Rehák and V. Lynnyk: Synchronization of symmetric complex networks with heterogeneous time delays. In: 2019 22nd International Conference on Process Control (PC), IEEE 2019, pp. 68-73.   DOI:10.2307/j.ctv1z3hkxb.15
  25. B. Rehák and V. Lynnyk: Consensus of a multi-agent systems with heterogeneous delays. Kybernetika (2010), 363-381.   CrossRef
  26. B. Rehák and V. Lynnyk: Leader-following synchronization of a multi-agent system with heterogeneous delays. Front. Inform. Tech. El. 22 (2021), 1, 97-106.   DOI:10.1631/FITEE.2000207
  27. M. G. Rosenblum, A. S. Pikovsky and J. Kurths: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 11, 1804-1807.   DOI:10.1103/PhysRevLett.76.1804
  28. M. G. Rosenblum, A. S. Pikovsky and J. Kurths: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78 (1997), 22, 4193-4196.   DOI:10.1103/PhysRevLett.78.4193
  29. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and H. D. I. Abarbanel: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51 (1995), 2, 980-994.   DOI:10.1103/PhysRevE.51.980
  30. Y. W. Wang and Z. H. Guan: Generalized synchronization of continuous chaotic system. Chaos Soliton. Fract. 27 (2006), 1, 97-101.   DOI:10.1016/j.chaos.2004.12.038
  31. Z. Zhu, S. Li and H. Yu: A new approach to generalized chaos synchronization based on the stability of the error system. Kybernetika 44 (2008), 8, 492-500.   CrossRef