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DISTRIBUTED ACCELERATED NASH EQUILIBRIUM
LEARNING FOR TWO-SUBNETWORK ZERO-SUM GAME
WITH BILINEAR COUPLING

Xianlin Zeng, Lihua Dou and Jinqiang Cui

This paper proposes a distributed accelerated first-order continuous-time algorithm for
O(1/t2) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bi-
linear couplings. First-order methods, which only use subgradients of functions, are frequently
used in distributed/parallel algorithms for solving large-scale and big-data problems due to
their simple structures. However, in the worst cases, first-order methods for two-subnetwork
zero-sum games often have an asymptotic or O(1/t) convergence. In contrast to existing time-
invariant first-order methods, this paper designs a distributed accelerated algorithm by combin-
ing saddle-point dynamics and time-varying derivative feedback techniques. If the parameters
of the proposed algorithm are suitable, the algorithm owns O(1/t2) convergence in terms of
the duality gap function without any uniform or strong convexity requirement. Numerical
simulations show the efficacy of the algorithm.
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1. INTRODUCTION

Two-subnetwork zero-sum games are an important class of distributed non-cooperative
games that have found a wide range of applications, including signal/image processing
[4], statistical learning [29, 35, 40], formation control [21, 25, 44], and resource allo-
cation [11, 20, 23, 41]. In a two-subnetwork zero-sum game (see [24, 34]), agents in
one subnetwork cooperate to minimize their payoff function using local information ex-
change, and agents in the other subnetwork try to maximize the same payoff function.
Two-network zero-sum games are powerful for modeling distributed robust optimiza-
tion, distributed optimization with adversaries, and distributed optimization using the
Lagrangian method. Hence, developing efficient distributed algorithms for solving a
Nash equilibrium to two-network zero-sum games is very important.

Researchers have paid much attention to the research on distributed algorithms for
solving a Nash equilibrium of two-subnetwork zero-sum games over multi-agent systems.
Focusing on two-subnetwork zero-sum games, [15] proposed distributed algorithms using
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time-invariant saddle-point dynamics over directed and undirected network topologies.
To relax the requirement on fixed communication graphs, [24] proposed a subgradient-
based distributed algorithm to compute a Nash equilibrium under uniformly jointly
strongly connected directed graphs with homogeneous stepsizes. Focusing on nonsmooth
cost functions and bounded constraints, [45] proposed a distributed continuous-time
algorithm for min-max optimization (equivalent to two-network zero-sum games) using
the proportional-integral design. Using the no-regret learning technique, [19] proposed a
distributed mirror descent algorithm for computing a Nash equilibrium and established
regret bounds on iterates using diminishing stepsizes and constant stepsizes. However,
the prior research only focused on proving the convergence of algorithms to a Nash
equilibrium and did not address estimating the convergence rate.

Recently, there is a substantial body of research on accelerated algorithms for cen-
tralized saddle point problems, which model classic zero-sum games. Focusing on sad-
dle point problems, (time-invariant) saddle-point dynamics have possessed O(1/t) or
asymptotic convergence rates under the worst choice of convex/concave cost functions
[12, 16]. By using adaptive parameters to increase the convergence rate, [6] has proposed
a primal-dual algorithm with a rate of convergence O(1/t2) for saddle point problems
under the assumption that either primal or dual cost function is uniformly convex. [43]
has proposed an accelerated design for the primal-dual block coordinate method that
has O(1/t2) convergence for the Lagrangian method with strongly convex functions. [42]
has proposed a linearized augmented Lagrangian method with an acceleration O(1/t2)
for strongly convex functions with adaptive parameters. [1] has proposed accelerated
methods for solving smooth convex-concave saddle-point problems with a structure. [7]
has focused on saddle point problems with bilinear couplings and proposed an acceler-
ated method using a multistep acceleration scheme. All these works focus on centralized
saddle point problems, and the analysis is hard.

Continuous-time optimization algorithms have been appealing for analyzing accel-
erated and distributed algorithms, because their analysis is often easier than that of
discrete-time counterparts. When considering unconstrained convex optimization prob-
lems, works [26, 27] have shown that the best rate of convergence for first-order algo-
rithms is O(1/t2) under convex cost functions. However, the intuitions of the discrete-
time algorithms in [26, 27] are not well understood. Recently, [31, 37] have proposed an
ordinary differential equation with O( 1

t2 ) convergence, and have given a better under-
standing of design intuitions of the accelerated optimization methods. [2] has further
shown that the best convergence rate for continuous-time accelerated algorithm is o( 1

t2 )
for well-tuned parameters. To deal with nonsmooth functions, [32] has generalized the
results in [2] to differential inclusions by replacing gradients with subdifferentials. [30]
further proposed alternative ordinary differential equations for Nesterov’s accelerated
methods, which are called high-resolution ODE models because they use Hessians of cost
functions to distinguish between Nesterov’s accelerated gradient method for strongly
convex functions and Polyak’s heavy-ball method. To extend the accelerated flow to
primal-dual cases, [17, 50] proposed a primal-dual flow with an O( 1

t2 ) convergence rate
for optimization problems subject to affine constraints, and applied the flow to network
optimization. [49] has further extended the algorithm in [50] to saddle point problems.
However, distributed accelerated continuous-time algorithms for two-subnetwork zero-
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sum games with nonsmooth and non-strongly convex cost functions are rarely reported.
The main shortcoming of existing works for distributed two-subnetwork zero-sum

games is that they only haveO(1/t) or asymptotic convergence rates under convex/concave
cost functions. This shortcoming motivates this paper, where we aim to propose an
accelerated first-order method with a convergence rate O(1/t2) for distributed two-
subnetwork zero-sum games without the strong convexity or uniform convexity assump-
tion. The main contributions of this paper can be stated as follows:

1. This paper proposes a distributed accelerated continuous-time algorithm for a class
of two-subnetwork nonsmooth zero-sum games with bilinear coupling structures,
by combining Nesterov’s momentum technique and the saddle point dynamics. It
is shown that the proposed algorithm has an optimal convergence rate of order
O(1/t2) (in terms of the duality gap function) by choosing suitable parameters.
To our best knowledge, this is the fastest convergence rate on distributed algo-
rithms for two subnetwork nonsmooth zero-sum games without strongly-convex
and strongly-concave assumption on cost functions.

2. This paper shows that the proposed algorithm is well-defined and valid in the
presence of nonsmooth cost functions, using the Lyapunov stability theory of dif-
ferential inclusions. In contrast, most accelerated continuous-time algorithms fo-
cus on differentiable cases. The proposed algorithm extends the recent works in
[49, 50] to two-subnetwork zero-sum games, and relaxes the assumption on the
differentiability of cost functions in these works.

The paper is organized as follows. Section 2 gives mathematical preliminaries. Section
3 presents the two-subnetwork nonsmooth zero-sum game with bilinear couplings, and
proposes a distributed accelerated algorithm for seeking a Nash equilibrium. Section 4
proves that the proposed algorithm owns an O(1/t2) rate of convergence, which is faster
than existing results. Finally, Section 5 gives concluding remarks.

2. MATHEMATICAL PRELIMINARY

2.1. Notation

R denotes the set of real numbers; R+ denotes the set of nonnegative real numbers; Rn

denotes the set of n-dimensional real column vectors; Rn×m denotes the set of n-by-m
real matrices; In denotes the n × n identity matrix; (·)T denotes transpose. We write
rankA for the rank of the matrix A, range(A) for the range of the matrix A, ker(A) for
the kernel of the matrix A, 1n for the n× 1 ones vector, 0n for the n× 1 zeros vector,
and A⊗ B for the Kronecker product of matrices A and B. Furthermore, ‖ · ‖ denotes
the Euclidean norm; ‖ · ‖p denotes the p-norm where p ≥ 1; A > 0 (A ≥ 0) denotes that
matrix A ∈ Rn×n is positive definite (positive semi-definite); dist(p,M) denotes the
distance from a point p to the set M, that is, dist(p,M) , infx∈M ‖p− x‖; x(t)→M
as t → ∞ denotes that x(t) approaches the set M, that is, for each ε > 0 there exists
T > 0 such that dist(x(t),M) < ε for all t > T .

Let f : Ω → R be a continuous function. Function f is said to be (strictly) convex
if f(λs2 + (1 − λ)s1) ≤ (<)λf(s2) + (1 − λ)f(s1) for any s1, s2 ∈ Ω and λ ∈ (0, 1).
If f is convex, ∂f(x) denotes the subdifferential of f(·). For convenience, we define



Distributed accelerated Nash equilibrium learning for zero-sum game 421

∂[−f(x)] = −∂f(x) when f is a convex function without causing confusions. Consider
an absolutely continuous function x(·) ∈ Ω. It is shown in [3] that a convex function
f satisfies d

dtf(x(t)) = v>ẋ(t) for all v ∈ ∂f(x(t)) and almost all t. A vector-valued
function f : Rn → Rm is Lipschitz continuous if there exists κ > 0 such that ‖f(s2) −
f(s1)‖ 6 κ‖s2 − s1‖ for all s1, s2 ∈ Rn. Let f : R+ → R+. f(t) = O(1/tn) denotes that
there exist constant C > 0 and t0 ∈ R+ such that f(t) ≤ Ct−n for all t ≥ t0.

2.2. Graph Theory

An undirected graph G is denoted by G(V, E , A), where V = {1, . . . , n} is a set of nodes,
E ⊂ V × V is a set of edges, and A = [ai,j ] ∈ Rn×n is the adjacency matrix such
that ai,j = aj,i > 0 if (j, i) ∈ E and ai,j = 0 otherwise. The Laplacian matrix is
Ln = D − A, where D ∈ Rn×n is diagonal with Di,i =

∑n
j=1 ai,j , i ∈ {1, . . . , n}. If

the graph G is undirected and connected, then Ln = L>n ≥ 0, rankLn = n − 1, and
ker(Ln) = {k1n : k ∈ R}.

2.3. Nonsmooth Analysis

Consider a second-order differential inclusion given by

ü(t) + ∂F (u(t)) 3 h(t, u(t), u̇(t)), (1)

where t ≥ t0 ≥ 0, u(t0) = u0 ∈ Rd, u̇(t0) = u̇0 ∈ Rd, h : R+×Rd×Rd → Rd, F : Rd → R,
and u ∈ Rd is the state variable.

Definition 2.1. (Paoli [28]) A function u : [t0, T ] → Rd is a solution of (1) with
u(t0) = u0 and u̇(t0) = u̇0 if

1. u is Lipschitz continuous,

2. u̇ is an absolutely continuous function,

3. function (1) holds almost everywhere in [t0, T ].

To guarantee the existence of solutions to system (1), the following assumption is
needed.

Assumption 2.2.

(1) Function h is a continuous function from [t0, T ]× Rd × Rd to Rd and is Lipschitz
continuous in its last two arguments uniformly with respect to the first one.

(2) Function F is a convex function from Rd to R ∪ {+∞}, lower bounded, non-
identically equal to +∞ and lower semicontinuous.

Then, we provide a result (a special case of Theorem 3.1 of [28]) on the existence of
solutions to system (1).

Lemma 2.3. Let Assumption 2.2 hold. For any initial condition (u0, u̇0), system (1)
has a solution in the sense of Definition 2.2.
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3. PROBLEM FORMULATION AND DISTRIBUTED ALGORITHM

In this section, we present a class of two-subnetwork zero-sum games with nonsmooth
cost functions and bilinear couplings, and propose a distributed algorithm with damping
and increasing coefficients.

3.1. Problem Description

Consider two subnetworks G1(V1, E1, A1) and G2(V2, E2, A2) with V1 = {1, . . . , n1} and
V2 = {1, . . . , n2}. Define strategy variables, feasibility sets, and payoff functions of the
nonsmooth subnetwork bilinear zero-sum game as follows.

• Strategic variables of networks G1 and G2 are x = [x>1 , . . . , x
>
n1

]> ∈ Rpn1 and
y = [y>1 , . . . , y

>
n2

]> ∈ Rqn2 , respectively. The local variable of agent i in G1 (G2) is
xi ∈ Rp (yi ∈ Rq).

• Feasible sets for strategic variables of G1 and G2 are

Ω1 = {x ∈ Rpn1 : xi = xj , ∀i, j ∈ V1}, Ω2 = {y ∈ Rqn2 : yi = yj , ∀i, j ∈ V2}.

That is, the strategy variables of agents in the same subnetwork are required to
be consensus.

• The payoff functions of networks G1 (G2) is U(·) (−U(·)), where function U :
Rpn1 × Rqn2 → R is given by

U(x,y) = f̃(x) + y>Hx− g̃(y), (2)

with f̃(x) =
∑n1

i=1 fi(xi), g̃(y) =
∑n2

i=1 gi(yi), y
>Hx =

∑n1

i=1

∑n2

j=1 y
>
j Hi,jxi. Ma-

trix Hi,j ∈ Rq×p is a non-zero matrix if agent i of G1 and agent j of G2 can observe
each other’s strategy variable. Define N0 as the set of connected edges between
two subnetworks such that (i, j) ∈ N0 if Hi,j 6= 0q×p. Agent i ∈ {1, . . . , n1} of G1

knows the information of fi(·), xi, Hi,j , and yj for (i, j) ∈ N0; agent j ∈ {1, . . . , n2}
of G2 knows the information of gj(·), Hi,j , yj , and xi for (i, j) ∈ N0.

In this setup, subnetwork G1 chooses its strategy x ∈ Ω1 to minimize U(x,y), and
subnetwork G2 chooses y ∈ Ω2 to maximize U(x,y). Then we give the definition of a
Nash equilibrium of the game.

Definition 3.1. A strategy (x∗,y∗) ∈ Ω1 × Ω2 is a Nash equilibrium of the two-
subnetwork zero-sum game if

x∗ ∈ arg min
x∈Ω1

U(x,y∗), y∗ ∈ arg max
y∈Ω2

U(x∗,y).

The two-subnetwork zero-sum game with nonsmooth cost functions and bilinear cou-
plings is reformulated as

min
x∈Rpn1

max
y∈Rqn2

U(x,y) (3a)

s.t.L1x = 0pn1
, L2y = 0qn2

, (3b)
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where L1 = L1 ⊗ Ip, L2 = L2 ⊗ Iq, and L1 and L2 are Laplacian matrices of G1 and G2.
The objective of this paper is to propose a distributed algorithm for subnetworks G1

and G2 to solve (3), in a distributed manner that each agent i ∈ V1 of G1 (j ∈ V2 of G2)
only communicates with its neighbors in the same subnetwork and observes strategy of
agents j, (i, j) ∈ N0 (agent i, (i, j) ∈ N0) in the other network.

Remark 3.2. Problem (3) models distributed optimization problems with parameter
uncertainties and adversaries. It becomes the widely studied distributed optimization
problem [8, 9, 22] if variable y is removed. Practical applications include the distributed
optimal consensus of multiple vehicles [33, 39] and distributed control of redundant
mobile manipulators [38]. It also arises in distributed adversarial resource allocation
of multiple communication channels [15, 24], in which one sub-network allocates signal
power and one adversarial sub-network gives noises.

Remark 3.3. In problem (3), we do not consider set constraints for easy analysis.
Suppose there are set constraints xi ∈ Xi and yi ∈ Yi, where Xi and Yi are convex sets
(whose projection operators are computationally simple). One can use exact penalty
techniques in [5, Proposition 1.5.3] to deal with the set constraints as in [51].

The following assumption is standard for distributed algorithms.

Assumption 3.4.

(1) Graphs G1 and G2 are connected and undirected.

(2) Functions fi(·) and gj(·) are convex, continuous, and lower bounded for all i ∈
{1, . . . , n1} and j ∈ {1, . . . , n2}.

(3) Problem (3) has at least one Nash equilibrium point.

Next, we establish the sufficient and necessary conditions, which are a special case of
[48, Theorem 4.1], for a Nash equilibrium of problem (3).

Lemma 3.5. Under Assumption 3.4, a point (x∗,y∗) ∈ Ω1 × Ω2 ⊂ Rpn1 × Rqn2 is a
Nash equilibrium of problem (3) if and only if there exist λ∗ ∈ Rpn1 and µ∗ ∈ Rqn2 such
that

L1x
∗ =0pn1 , (4a)

L2y
∗ =0qn2 , (4b)

∂f̃(x∗) +H>y∗ + L1λ
∗ 30pn1

, (4c)

∂g̃(y∗)−Hx∗ + L2µ
∗ 30qn2

. (4d)

Define a Lagrangian function as

S(x, µ,y, λ) = U(x,y) + λ>L1x− µ>L2y +
1

2
x>L1x−

1

2
y>L2y. (5)

If Assumption 3.4 holds, S is convex with respect to (x, µ) and concave with respect to
(y, λ), and hence, a point (x∗, µ∗,y∗, λ∗) ∈ Rpn1 × Rqn2 × Rqn2 × Rpn1 satisfies (4) if
and only if

S(x, µ,y∗, λ∗) ≥ S(x∗, µ∗,y∗, λ∗) ≥ S(x∗, µ∗,y, λ). (6)
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3.2. Distributed Algorithm

The algorithm for agent i of G1 and agent j of G2 is proposed as

ẍi(t) ∈ −
α1,i

t
ẋi(t)− ∂fi(xi(t))−

n2∑
j=1

H>i,j
(
yj(t) +

t

2
ẏj(t)

)
−

n1∑
k=1

ai,k
(
λi(t) +

t

2
λ̇i(t)− λj(t)−

t

2
λ̇j(t)

)
−

n1∑
k=1

ai,k
(
xi(t)− xj(t)

)
, (7a)

λ̈i(t) =− α1,i

t
λ̇i(t) +

n1∑
k=1

ai,k
(
xi(t) +

t

2
ẋi(t)− xj(t)−

t

2
ẋj(t)

)
, (7b)

ÿj(t) ∈ −
α2,j

t
ẏj(t)− ∂gj(yj(t)) +

n1∑
i=1

Hi,j

(
xi(t) +

t

2
ẋi(t)

)
−

n1∑
k=1

ai,k
(
µi(t) +

t

2
µ̇i(t)− µj(t)−

t

2
µ̇j(t)

)
−

n2∑
k=1

aj,k
(
yj(t)− yk(t)

)
, (7c)

µ̈j(t) =− α2,j

t
µ̇j(t) +

n2∑
k=1

aj,k
(
yj(t) +

t

2
ẏj(t)− yk(t)− t

2
ẏk(t)

)
, (7d)

where t ≥ t0 > 0, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, α1,i > 3, α2,j > 3, xi(0) = xi,0 ∈ Rp,

ẋi(0) = ẋi,0 ∈ Rp, yj(0) = yj,0 ∈ Rq, ẏj(0) = ẏj,0 ∈ Rq, λi(0) = λi,0 ∈ Rp, λ̇i(0) = λ̇i,0 ∈
Rp, µj(0) = µj,0 ∈ Rq, µ̇j(0) = µ̇j,0 ∈ Rq, and a1

i,k (a2
j,k) is the (i, k)th ((j, k)th) element

of the adjacency matrix of graph G1 (G2).

Remark 3.6. In algorithm (7), α1,i > 3 and α2,j > 3 are suitable choices, which can
be proven following the techniques in [49].

Remark 3.7. The dual variable yj(t) in algorithm (7) arises from the specific property
of the game and makes the convergence challenging. Unlike distributed algorithms with
second-order dynamics in [14, 36, 47], algorithm (7) incorporates derivatives multiplied
by time-varying gains to obtain a convergence rate of O( 1

t2 ), which are proven to be
faster than existing ones with the convergence rate of O( 1

t ) in Section 4.

For convenience, we omit time t in the remaining of this paper without confusion. Let
D1 = diag[α1,1, . . . , α1,n1 ] ∈ Rn1×n1 , D2 = diag[α2,1, . . . , α2,n2 ] ∈ Rn2×n2 , and define
D1 = D1 ⊗ Ip, D2 = D2 ⊗ Iq. Algorithm (7) has an equivalent form

ẍ ∈ − 1

t
D1ẋ− ∂f̃(x)− L1x−H>

(
y +

t

2
ẏ
)
− L1(λ+

t

2
λ̇), (8a)

λ̈ =− 1

t
D1λ̇+ L1

(
x +

t

2
ẋ
)
, (8b)

ÿ ∈ − 1

t
D2ẏ − ∂g̃(y)− L2y +H(x +

t

2
ẋ)− L2

(
µ+

t

2
µ̇
)
, (8c)

µ̈ =− 1

t
D2µ̇+ L2

(
y +

t

2
ẏ
)
. (8d)
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4. MAIN RESULT

This section presents the convergence results of algorithm (8).

4.1. Existence of Solutions

If u = [x>, µ>,y>, λ>]> ∈ R2pn1+2qn2 , F (u) = f̃(x) + g̃(y), and

h(t, u, u̇) =


− 1

t D1ẋ− L1x−H>
(
y + t

2 ẏ
)
− L1(λ+ t

2 λ̇)

− 1
t D1λ̇+ L1

(
x + t

2 ẋ
)

− 1
t D2ẏ − L2y +H(x + t

2 ẋ)− L2

(
µ+ t

2 µ̇
)

− 1
t D2µ̇+ L2

(
y + t

2 ẏ
)

 ,
then algorithm (8) can be rewritten as (1). For any interval [t0, T ], one can verify that
Assumption 2.2 holds if Assumption 3.4 is satisfied. Hence, it follows from Lemma 2.3
that algorithm (8) has a solution over any bounded interval [t0, T ] under Assumption
3.4.

4.2. Convergence of Algorithm

For ease of notion, we define z , [x>, µ>,y>, λ>]> ∈ R2pn1+2qn2 . Let z∗ ∈ R2pn1+2qn2

be an equilibrium of algorithm (8). Clearly, z∗ satisfies (4), and hence, there exist
fx∗ ∈ ∂f̃(x∗) and gy∗ ∈ ∂g̃(y∗) that

L1x
∗ =0pn1 , (9a)

L2y
∗ =0qn2 , (9b)

fx∗ +H>y∗ + L1λ
∗ =0pn1

, (9c)

gy∗ −Hx∗ + L2µ
∗ =0qn2

. (9d)

By Lemma 3.5, (x∗,y∗) is a Nash equilibrium of problem (3). Define the duality gap
function as

G(x,y) = S(x, µ,y∗, λ∗)− S(x∗, µ∗,y, λ)

= f̃(x)− f̃(x∗) + g̃(y)− g̃(y∗) + y∗>H(x− x∗)− (y − y∗)>Hx∗

+λ∗>L1x + µ∗>L2y +
1

2
x>L1x +

1

2
y>L2y.

By the property of saddle points (see (4)) and the positive semi-definiteness of L1,L2,

G(x,y) ≥ 1

2
x>L1x +

1

2
y>L2y ≥ 0, ∀(x,y) ∈ Rpn1 × Rqn2 . (10)

Define function

V (t, z, ż) = V1(t,x,y) + V2(t,x, ẋ) + V3(t, µ, µ̇) + V4(t,y, ẏ) + V5(t, λ, λ̇), (11)

where V1 = 1
2 t

2G(x,y),

V2 = ‖x +
t

2
ẋ− x∗‖2 +

1

2
(x− x∗)>(D1 − 3Ipn1

)(x− x∗),
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V3 = ‖µ+
t

2
µ̇− µ∗‖2 +

1

2
(µ− µ∗)>(D2 − 3Iqn2

)(µ− µ∗),

V4 = ‖y +
t

2
ẏ − y∗‖2 +

1

2
(y − y∗)>(D2 − 3Iqn2)(y − y∗),

and

V5 = ‖λ+
t

2
λ̇− λ∗‖2 +

1

2
(λ− λ∗)>(D1 − 3Ipn1)(λ− λ∗).

The following Lemma shows that function V (·) along algorithm (8) is non-increasing
to time.

Lemma 4.1. Suppose that Assumption 3.4 holds. The derivative of V (·) along algo-
rithm (8) satisfies

V̇ (t, z, ż) = −1

2
x>L1x−

1

2
y>L2y − ẋ>(D1 − 3Ipn1)ẋ

−ẏ>(D2 − 3Iqn2
)ẏ − λ̇>(D1 − 3Ipn1

)λ̇− µ̇>(D2 − 3Iqn2
)µ̇ ≤ 0. (12)

The proof of Lemma 4.1 is given in Appendix.
Then we give the following theorem to show the convergence rate of the proposed

algorithm in terms of the gap function G(·).

Theorem 4.2. Suppose that Assumption 3.4 holds. Let z(t) be a trajectory of algo-
rithm (8).

(i) The trajectory of (z(t), tż(t)) is bounded for any t ≥ t0.

(ii) The trajectory (x(t),y(t)) satisfies that G(x(t),y(t)) = O( 1
t2 ), x>L1x = O( 1

t2 ),
and y>L2y = O( 1

t2 ).

(iii) If, in addition, fi(·) and gj(·) are strictly convex for some i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n2}, (x(t),y(t)) converges to the Nash equilibrium of problem (3).

P r o o f . (i) Consider function (11). It is clear that V is radially unbounded and positive
definite with respect to (z − z∗, tż) for all t ≥ t0. It follows from Lemma 4.1 that
V̇ (t, z, ż) ≤ 0, and hence, the trajectory of (z(t), tż(t)) is bounded for t ≥ t0.

(ii) Since V̇ (t, z(t), ż(t)) ≤ 0, then V (t, z(t), ż(t)) ≤ m0 , V (t0, z(t0), ż(t0)). Recall
that Vi(·) ≥ 0 for i ∈ {1, . . . , 5}. It follows from (11) and definition of V1(·) that

0 ≤ 1

2
G(x(t),y(t)) =

1

t2
V1(t,x(t),y(t)) ≤ 1

t2
m0.

Hence, G(x(t),y(t)) = O( 1
t2 ). It follows from (10) that x>L1x = O( 1

t2 ), and y>L2y =
O( 1

t2 ).
(iii) Since the trajectory of z is bounded for t ≥ t0, x>L1x = O( 1

t2 ) and y>L2y =
O( 1

t2 ) imply that (x(t),y(t))→ Ω1 ×Ω2 as t→∞. If fi(·) and gj(·) are strictly convex
for some i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}, then the minimizer of G(·) subject to the
constraint set Ω1 × Ω2 is unique. Thus, (x(t),y(t)) → (x∗,y∗) as t → ∞. It follows
from Lemma 3.5 that (x∗,y∗) is a Nash equilibrium of problem (3). The proof is thus
completed. �
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Remark 4.3. Theorem 4.2 shows that algorithm (8) has an O( 1
t2 ) convergence rate (in

terms of the duality gap function), which is faster than existing results in [13, 15, 24],
and relaxes the strongly monotone requirements in [10, 18, 46]. The main challenge for
establishing the convergence rate of the proposed algorithm is finding a suitable Lya-
punov candidate function. Augmented Lagrangian functionss and quadratic functions
are combined to overcome this issue.

Remark 4.4. Theorem 4.2 (iii) assumes that there are some i ∈ {1, . . . , n1} and j ∈
{1, . . . , n2} such that fi(·) and gj(·) are strictly convex for showing the convergence of
the proposed algorithm. One main contribution is relaxing the assumptions of uniform
convexity [6] and strong convexity [43]. If the assumption is further relaxed as either fi(·)
or gj(·) is strictly convex, we have some convergence property in a weaker sense. Without
loss of generality, if fi(·) is strictly convex for some i ∈ {1, . . . , n1}, then x(t)→ x∗ and
for every unbounded positive increasing sequence {tk}∞k=1 such that ŷ = limtk→∞ y(tk),
(x∗, ŷ) is a Nash equilibrium of problem (3).

4.3. Comparison with Existing Results

In this subsection, we compare the rate of convergence of algorithm (8) with that of an
algorithm proposed in [15]. Specifically, the design in [15] for this problem is

ẋi(t) ∈ − ∂fi(xi(t))−
n2∑
j=1

H>i,jyj(t)

−
n1∑
k=1

ai,k
(
λi(t)− λj(t)

)
−

n1∑
k=1

ai,k
(
xi(t)− xj(t)

)
, (13a)

λ̇i(t) =

n1∑
k=1

ai,k
(
xi(t)− xj(t)

)
, (13b)

ẏj(t) ∈ − ∂gj(yj(t)) +

n1∑
i=1

Hi,jxi(t)

−
n1∑
k=1

ai,k
(
µi(t)− µj(t)

)
−

n2∑
k=1

aj,k
(
yj(t)− yk(t)

)
, (13c)

µ̇j(t) =

n2∑
k=1

aj,k
(
yj(t)− yk(t)

)
. (13d)

The convergence and boundedness of algorithm (13) are proved in [15]. Define the

ergodic trajectory as x̂(t) = 1
t

∫ t

0
x(s) ds, ŷ(t) = 1

t

∫ t

0
y(s) ds, λ̂(t) = 1

t

∫ t

0
λ(s) ds, and

µ̂(t) = 1
t

∫ t

0
µ(s) ds. We further show the rate of convergence of algorithm (13) for

problem (3), which is not obtained in [15].

Lemma 4.5. Suppose that Assumption 3.4 holds. Let (x(t),y(t), λ(t), µ(t)) be a tra-

jectory of algorithm (13). The the ergodic trajectory (x̂(t), ŷ(t), λ̂(t), µ̂(t)) satisfies
G(x̂(t), ŷ(t)) = O( 1

t ).
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P r o o f . Define function V (x,y, λ, µ) = 1
2‖x−x∗‖2 + 1

2‖y−y∗‖2 + 1
2‖λ−λ

∗‖2 + 1
2‖µ−

µ∗‖2, where (x∗,y∗, λ∗, µ∗) is an equilibrium of algorithm (13), equivalently, (x∗,y∗) is
a Nash equilibrium of problem (3). The derivative of V is

V̇ = (x− x∗)>ẋ + (y − y∗)>ẏ + (λ− λ∗)>λ̇+ (µ− µ∗)>µ̇.

Note that S is convex (concave) with respect x and µ (y and λ). It follows from algorithm
(13) that

(x− x∗)>ẋ + (µ− µ∗)>µ̇ ≤ S
(
x∗, µ∗,y, λ

)
− S

(
x, µ,y, λ

)
,

(y − y∗)>ẏ + (λ− λ∗)>λ̇ ≤ S
(
x, µ,y, λ

)
− S

(
x, µ,y∗, λ∗

)
.

Hence, V̇ (x,y, λ, µ) ≤ S
(
x∗, µ∗,y, λ

)
− S

(
x, µ,y∗, λ∗

)
= −G(x,y) ≤ 0. Hence

V (x(t),y(t), λ(t), µ(t))− V (x0,y0, λ0, µ0) ≤ −
∫ t

0

G(x(s),y(s)) ds ≤ 0.

Since V (·) ≥ 0,
∫ t

0
G(x(s),y(s)) ds ≤ V (x0,y0, λ0, µ0). It follows from Jensen’s inequal-

ity and the convex-concave property of S that

S
(
x∗, µ∗, ŷ(t), λ̂(t)

)
≥ 1

t

∫ t

0

S
(
x∗, µ∗,y(s), λ(s)

)
ds,

S
(
x̂(t), µ̂(t),y∗, λ∗

)
≤ 1

t

∫ t

0

S
(
x(s), µ(s),y∗, λ∗

)
ds.

By definition of G(·), we have

G(x̂(t), ŷ(t)) ≤ 1

t

∫ t

0

G(x(s),y(s)) ds.

Hence, G(x̂(t), ŷ(t)) ≤ 1
tV (x0,y0, λ0, µ0). ♦ �

Remark 4.6. By comparing Theorem 4.2 and Lemma 4.5, we show that the proposed
method (8) has a faster convergence rate compared with existing results in [15].

4.4. Numerical Simulation

Consider the two-subnetwork zero-sum game (3). We take p = q = 2, n1 = n2 = 25,
and H = I50.

Case 1 (Convex functions): fi(xi) = 2
3 log(1 + (xi,1 + i)2) + 1

3 log(1 + (xi,2 − i)2),
gi(yi) = log((yi,1 − iyi,2)2 + 1/2) for i ∈ {1, . . . , 25}.

Case 2 (Quadratic convex functions): fi(xi) = (xi,1 − xi,2 + i)2 and gi(yi) =
(yi,1 + yi,2 + i)2 for i ∈ {1, . . . , 25}.

We approximate the numerical trajectories of proposed algorithms using function
ODE45 of Matlab. For case 1, Figure 1 gives trajectories of S(·) (defined in (5)) along
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algorithm (8) with α = 2, 4, and shows that α = 4 gives a better performance. Figure 2

compares algorithm (8) and a primal-dual algorithm in [15] for case 1. Figure 2 indicates
that the proposed algorithm has a better performance than the primal-dual method in
[15] for case 1. Figure 3 shows that, for case 2 whose cost functions are quadratic, the
primal-dual method in [15] has a better convergence performance than the proposed
algorithm (8). The reason for this is that the primal-dual method in [15] is an affine
algorithm whose convergence rate is linear.

0 1 2 3 4 5 6

Time (sec)

100

110

120

130

140

150

160

 = 2
 = 4

Fig. 1. Trajectories of S(·) along algorithm (8) with α = 2, 4 for

case 1.
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Fig. 2. Trajectories of S(·) along algorithm (8) and primal-dual

algorithm in [15] for case 1.
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Fig. 3. Trajectories of S(·) along algorithm (8) and primal-dual

algorithm in [15] for case 2.

5. CONCLUSION

This paper has proposed a distributed accelerated first-order algorithm owning O(1/t2)
convergence to a Nash equilibrium in a class of two-subnetwork zero-sum games. This
paper has established a rate of convergence O(1/t2) by choosing suitable parameters,
using the stability theory of differential inclusions. The proposed distributed algorithm
is considerably different in algorithm design and convergence analysis. The algorithm
has been proven to converge faster than existing results under mild conditions. Fu-
ture research includes incorporating complex constraints and developing discrete-time
counterparts of the proposed continuous-time algorithm.

APPENDIX. PROOF OF LEMMA 4.1

It follows from algorithm (8) that there exist fx ∈ ∂f̃(x) and gy ∈ ∂g̃(y) such that

ẍ =− 1

t
D1ẋ− fx −H>(y +

t

2
ẏ)− L1

(
λ+

t

2
λ̇
)
− L1x, (14a)

ÿ =− 1

t
D2ẏ − gy +H(x +

t

2
ẋ)− L2

(
µ+

t

2
µ̇
)
− L2y. (14b)

The derivative of V at time t is

V̇ (t, z, ż) = V̇1(t,x,y) + V̇2(t,x, ẋ) + V̇3(t, µ, µ̇) + V̇4(t,y, ẏ) + V̇5(t, λ, λ̇), (15)
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where

V̇1 = t[S(x, µ,y∗, λ∗)− S(x∗, µ∗,y, λ)] +
1

2
t2[fx +H>y∗ + L1λ

∗ + L1x]>ẋ

+
1

2
t2[gy −Hx∗ + L2µ

∗ + L2y]>ẏ, (16)

V̇2 = 2(x +
1

2
tẋ− x∗)>(3ẋ + tẍ) + 2(α− 3)(x− x∗)>ẋ, (17)

V̇3 = 2(µ+
1

2
tµ̇− µ∗)>(3µ̇+ tµ̈) + 2(α− 3)(µ− µ∗)>µ̇, (18)

V̇4 = 2(y +
1

2
tẏ − y∗)>(3ẏ + tÿ) + 2(α− 3)(y − y∗)>ẏ, (19)

V̇5 = 2(λ+
1

2
tλ̇− λ∗)>(3λ̇+ tλ̈) + 2(α− 3)(λ− λ∗)>λ̇. (20)

Plugging (9c) and (9d) in (16) gives

V̇1 = t[S(x, µ,y∗, λ∗)− S(x∗, µ∗,y, λ)] +
1

2
t2[fx − fx∗ + L1x]>ẋ

+
1

2
t2[gy − gy∗ + L2y]>ẏ. (21)

It follows from (9), (14), and mathematical derivations that

V̇2 = (x− x∗)>(D1ẋ + tẍ) + 0.5t2ẋ>(3ẋ + ẍ)

= −t(x− x∗)>
(
fx +H>y + L1λ+ L1x

)
− t2

2
(x− x∗)>(H>ẏ + L1λ̇)

−0.5tẋ>(D1 − 3Ipn1
)ẋ− 1

2
t2ẋ>

(
fx +H>y + L1λ+ L1x

)
−0.25t3ẋ>(H>ẏ + L1λ̇)

= −t(x− x∗)>(fx − fx∗)− t(x− x∗)>H>(y − y∗)− tx>L1(λ− λ∗)
−tx>L1x− 0.5t2(x− x∗)>(H>ẏ + L1λ̇)− 0.5tẋ>(D1 − 3Ipn1)ẋ

−0.25t3ẋ>(H>ẏ + L1λ̇)− 0.5t2ẋ>L1x− 0.5t2ẋ>(fx − fx∗)

−0.5t2ẋ>H>(y − y∗)− 0.5t2ẋ>L1(λ− λ∗), (22)

V̇3 = t(µ− µ∗)>L2y +
1

2
t2(µ− µ∗)>L2ẏ + 0.5t2µ̇>L2y

+0.5tµ̇>(3Iqn2 −D2)µ̇+ 0.25t3µ̇>L2ẏ, (23)
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V̇4 = (y − y∗)>
(
− tgy + tH(x− a)− tL2µ− tL2y

)
+
t2

2
(y − y∗)>(Hẋ− L2µ̇)− 0.5tẏ>(D2 − 3Iqn2)ẏ

+0.25t3ẏ>(Hẋ− L2µ̇) + 0.5t2ẏ>
(
− gy +H(x− a)− L2µ− L2y

)
= −t(y − y∗)>(gy − gy∗) + t(y − y∗)>H(x− x∗)− ty>L2(µ− µ∗)
−ty>L2y + 0.5t2(y − y∗)>(Hẋ− L2µ̇)− 0.5tẏ>(D2 − 3I)ẏ

+0.25t3ẏ>(Hẋ− L2µ̇)− 0.5t2ẏ>(gy − gy∗) + 0.5t2ẏ>H(x− x∗)

−0.5t2ẏ>L2(µ− µ∗)− 0.5t2ẏ>L2y, (24)

V̇5 = t(λ− λ∗)>L1x+
1

2
t2(λ− λ∗)>L1ẋ + 0.25t3λ̇>L1ẋ

−0.5tλ̇>(D1 − 3Ipn1
)λ̇+ 0.5t2λ̇>L1x. (25)

By summing up (21) – (25) and simplifying items, we have

V̇ = t[S(x, µ,y∗, λ∗)− S(x∗, µ∗,y, λ)]− t(x− x∗)>(fx − fx∗)

−tx>L1x− t(y − y∗)>(gy − gy∗)− ty>L2y − 0.5tẋ>(D1 − 3Ipn1)ẋ

−0.5tẏ>(D2 − 3Iqn2
)ẏ − 0.5tλ̇>(D1 − 3Ipn1

)λ̇− 0.5tµ̇>(D2 − 3Iqn2
)µ̇

= tA− 0.5tB, (26)

where

A = f̃(x)− f̃(x∗) + g̃(y)− g̃(y∗) + y∗>Hx− y>Hx∗ + λ∗>L1x + µ∗>L2y

−1

2
x>L1x−

1

2
y>L2y − (x− x∗)>(fx − fx∗)− (y − y∗)>(gy − gy∗),

B = ẋ>(D1 − 3Ipn1)ẋ + ẏ>(D2 − 3Iqn2)ẏ + λ̇>(D1 − 3Ipn1)λ̇µ

+µ̇>(D2 − 3Iqn2)≥̇0. (27)

By (9c) and (9d), A can be rewritten as

A = f̃(x)− f̃(x∗)− (x− x∗)>fx −
1

2
x>L1x + g̃(y)− g̃(y∗)

−(y − y∗)>gy −
1

2
y>L2y,

where fx ∈ ∂f̃(x) and gy ∈ ∂g̃(y). Because f̃ and g̃ are convex, it is clear that f̃(x) −
f̃(x∗) − (x − x∗)>fx ≤ 0 and g̃(y) − g̃(y∗) − (y − y∗)>gy ≤ 0. Note that L1 ≥ 0 and
L2 ≥ 0. It follows that

A ≤ −1

2
x>L1x−

1

2
y>L2y ≤ 0. (28)

Then, combining (26) – (28) proves the conclusion of the lemma.
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