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A PENALTY ADMM WITH QUANTIZED
COMMUNICATION FOR DISTRIBUTED OPTIMIZATION
OVER MULTI-AGENT SYSTEMS

Chenyang Liu, Xiaohua Dou, Yuan Fan, and Songsong Cheng

In this paper, we design a distributed penalty ADMM algorithm with quantized communi-
cation to solve distributed convex optimization problems over multi-agent systems. Firstly, we
introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems
without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme
also minimizes the computation burden. Moreover, with the aid of the quantization design,
we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the
proposed algorithm converges to the suboptimal solution with an O( 1

k
) convergence rate for

general convex objective functions, and with an R-linear rate for strongly convex objective
functions.
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1. INTRODUCTION

In recent years, the distributed optimization algorithm has been widely used in various
fields and has performed well, e. g., [24, 31]. Thus it has attracted the attention of
many researchers. There are many excellent algorithms in the distributed optimization
literature, including distributed ADMM [7, 20, 30], gradient tracking[17, 22], primal-
dual [10, 14, 23, 29], and mirror descent [21, 28]. [7] proposed distributed dual consensus
ADMM (DC-ADMM) and the distributed inexact DC-ADMM (IDC-ADMM) to solve
the problem of network resource allocation. In [20], the authors showed the distributed
ADMM algorithm with a linear rate when objective functions are strongly convex. They
also studied the effect of the network topology, the condition number of the objective
function, and the algorithm’s parameters on the algorithm’s convergence rate.

In practical applications, bandwidth limitation is one of the primary and essential
topics of multi-agent systems. For distributed algorithms over multi-agent systems,
many scholars studied quantized communication to overcome the impact of bandwidth
limitation. In [4], the authors proposed a distributed quantized algorithm for seeking
a Nash equilibrium of games. [26] developed a distributed subgradient algorithm with
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dynamic quantization for distributed optimization problems. [9] proposed a quantized
“projected+consensus” for distributedly solving linear algebraic equations with a linear
(sublinear) convergence rate for exact (least squares) solutions. Other related references
about quantized distributed optimization include still [3, 6, 15, 19]. However, all of the
quantized algorithms in [3, 4, 9, 19, 26] need local encoders and decoders, which increase
computation burdens for local agents.

Due to the resources limitation and uncertain environment of practical circumstances,
the decision variables of optimization problems are usually constrained by feasible sets.
In [11], the authors designed a distributed proximal point algorithm (DPPA) for a
smooth constrained optimization problem over an unbalanced time-varying network and
achieved an O(1/

√
k) convergence rate for general objective functions. By utilizing an

exact penalty method and under strongly convex conditions, [13] developed a distributed
projected subgradient algorithm for a nonsmooth optimization problem constrained by a
feasible set and achieved an exponential convergence rate. However, the two results are
developed based on the identical constraint. As discussed in [1, 5], the nonidentical fea-
sible set constraints are more practical, increase challenges and degenerate convergence
performance. In [8], the authors proposed a primal-dual distributed optimization algo-
rithm for nonidentical feasible set constraints and showed an asymptotical convergence
rate for general objective functions. Inspired by the exact penalty idea, [32] proposed a
primal-dual algorithm for nonsmooth constrained optimization problems with an asymp-
totical convergence rate. Combining gradient tracking and projected dynamics, [5] pro-
posed projected gradient tracking and achieved an O(1/k) convergence rate for strongly
convex objective functions. In [27], the authors designed a push-sum-based constrained
optimization algorithm for optimization problems over time-varying directed graphs and
showed O(ln k)/

√
k and O(1/k) convergence rates for general convex and strongly con-

vex objective functions respectively. According to existing results, we wonder that is it
possible to improve the convergence rate by sacrificing little convergence accuracy.

Inspired by the above discussions, we propose a distributed penalty ADMM algorithm
with quantized communication to solve distributed constrained optimization problems
in this paper. The main contributions of this paper are summarized as follows.

1) In comparison with the ADMM algorithms for the unconstraint optimization prob-
lems in [20, 30], we developed a penalty ADMM for distributedly solving dis-
tributed constrained optimization problems.

2) We utilize a novel quantized communication scheme for the distributed algorithms
and remove the local encoders and decoders, which are necessary in [3, 4, 9, 19, 26].

3) Compared with the quantizers with fixed quantization intervals in [15, 26], we
apply the quantizer with dynamic quantization intervals to the penalty ADMM
(P-ADMM), which reduces the quantized error and improves the convergence ac-
curacy.

4) We analyze the convergence performance of the proposed algorithm and show it
sublinearly (linearly) converges to the approximated solution of generally (strongly)
convex optimization problems. Moreover, the convergence rates are faster than
that of [5, 8, 27, 32]
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The rest of our paper is organized as follows. In Section 2, we first explain the
knowledge of graph theory and the meaning of some necessary symbols. Then we briefly
introduce the original algorithm and a quantizer used in our proposed QP-ADMM. We
show the derivation of the proposed QP-ADMM in Subsection 3.1. We analyze the
convergence performance of our algorithm in general convex and strongly convex cases
in Subsection 3.2 and Subsection 3.3, respectively. In Section 4, we demonstrate the
performance of our proposed algorithm through some simulation examples. Section 5
concludes this paper.

2. PRELIMINARIES

2.1. Graph theory

In this paper, we consider distributed optimization problems over multi-agent systems
connected by a graph G = (N , E). For the graph G, N , {1, 2, · · · , n} is the set of
agents and E is composed of a pair of two different agents in N . Ni , {j ∈ N : (i, j) ∈
E or (i, j) ∈ E} ∪ {i} is the set of neighboring agents of i and includes itself.

2.2. Notation

xi ∈ Rm and x ∈ Rn×m are the local variable held by each agent i and the global
variable, respectively, i. e., x , [xT

1 ;xT
2 ; · · · ;xT

n ] ∈ Rn×m. If all local variables satisfy
the following condition, x1 = x2 = · · · = xn, then the global variable x is consensual.
Denote xk and xki as the values of x and xi at the kth iteration, respectively.

For a vector v, ‖v‖1 and ‖v‖ denote its l1 and l2 norms, respectively. For a matrix
B = [bij ] ∈ Rn×m, bij is the element of B at the ith row and jth column and ‖B‖F is the
Frobenius norm of the matrix B. For a symmetric positive semidefinite matrix G � 0,
we denote ‖B‖G ,

√
trace(BTGB) and 〈A,B〉G , 〈A,GB〉 are the induced norm of B

and the inner product of A and B, respectively.

We define µ(·) (σ(·)), µmax(·) (σmax(·)), and µmin(·) (σmin(·)) are the eigenvalue
(singular value), the largest eigenvalue (singular value), and the smallest eigenvalue
(singular value) of a given matrix, respectively. In and 1n×m denote an n-dimensional
identity matrix and n×m all-ones matrix, respectively.

2.3. Problem formulation

In this paper, we introduce a distributed penalty ADMM algorithm (P-ADMM) in [30]
to solve the following distributed convex optimization problem with feasible constraint
sets,

min
xi∈Rm

1
n

∑n
i=1 fi(xi),

s.t. xi ∈ Ki,
(1)

where fi(xi) : Rm → R is a convex and continuously differentiable function which is only
owned by the agent i and Ki ⊆ Rm is a compact and convex constraint that is only held
by the corresponding local variable xi. For (1), we have the following mild assumptions
in the distributed optimization literature.
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Assumption 1. For fi, its gradient ∇fi(x) is Lipschitz continuous; i. e.,

‖∇fi(x)−∇fi(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ Rm,

where Lf > 0 is the Lipschitz constant.

Assumption 2. Each fi is strongly convex; i. e.;

〈x− y,∇fi(x)−∇fi(y)〉 ≥ µf‖x− y‖2, ∀x, y ∈ Rm,

where µf > 0 is the strong convexity constant.

To reformulate (1) into the form with consensual constraint, we introduce a mixing
matrix W ∈ Rn×n, where each element wij in W is a weight between agents i and j.
For the mixing matrix W , the following assumption is adopted.

Assumption 3. The graph G is connected and undirected. The mixing matrix W is
doubly stochastic and symmetric; i. e., W1n×1 = 1n×1 and W = WT. If j /∈ Ni, wij = 0;
otherwise, wij > 0.

Remark 1. Based on the Perron-Frobenius theorem in [18], the eigenvalues of W lie in
(−1, 1] and the multiplicity of the largest eigenvalue is one which implies that span(1n×1)
is the null space of I −W . Therefore the null space of the square root of I −W is the
same as it, i. e., (I −W )

1
2x = 0 if and only if xT

1 = xT
2 = · · · = xT

n .

We rewrite (1) as the following form

x̂∗ ∈ argmin
x

f(x), s.t. (I −W )
1
2x = 0, x ∈ K, (2)

where x̂∗ ∈ Rn×m is the optimal solution, f(x) ,
∑n
i=1 fi(xi), and K =

∏n
i=1 Ki ⊆

Rn×m is the global constraint set which is held by the global variable x.

For the convenience of solving the consensus constrained problem in (2), we transfer
it as the following approximated form

x∗ ∈ argmin
x

f(x) + 1
2ε‖(I −W )

1
2x‖2F, s.t. x ∈ K, (3)

where ε > 0 is the penalty parameter and x∗ is the optimal solution of (3).

Remark 2. It is worth emphasizing that the optimal solutions of (2) x̂∗ and (3) x∗ are
not equal. Moreover, the error between x̂∗ and (3) x∗ is scaled with the parameter ε.
Namely, a smaller ε yields a more accurate solution.

Assumption 4. The set of minimizers of (1) and (3) are nonempty.
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2.4. Quantizer design

Define a quantizer (4) with a fixed number of b bits as follows.

Q(c) =


c̄− l

2 if c ∈ (−∞, c̄− l
2 ),

c̄+ sgn(c− c̄)∆b |c−c̄|∆ c+ ∆
2 if c ∈ [c̄− l

2 , c̄+ l
2 ],

c̄+ l
2 if c ∈ (c̄+ l

2 ,∞),

(4)

where c is a real number and sgn(·) is a sign function. c̄, l, and ∆ = l
2b

are the middle
value, the quantization interval, and the quantization step size of (4), respectively. For
(4), we draw on Figure 1 to better illustrate the principle of the quantizer. Based on
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Fig. 1. The principle of the quantizer.

(4), if the quantized value c lies in the quantization interval c ∈ [c̄− l
2 , c̄+ l

2 ], we bound
the quantized error as follows

|c−Q(c)| ≤ ∆

2
=

l

2b+1
. (5)

In this paper, we denote the quantized value of x and xi as xQ and xQi , ∀i ∈ N ,
respectively. Since the middle value c̄ and the quantization interval l change at each



A penalty ADMM with quantized communication ... over multi-agent systems 397

iteration. Thus at the k-th iteration, we define that the middle value x̄ki is previous

quantized value xQ,k−1
i , i. e.,

x̄ki = xQ,k−1
i ,

and the quantization interval is

lki = Cθk,

where θ ∈ (0, 1) and C is the initial quantization interval l0i . The error generated by the
quantizer (4) is defined as

eki = xQ,ki − xki .

3. ALGORITHM DESIGN AND CONVERGENCE ANALYSIS

In this section, we propose a quantized penalty ADMM algorithm (QP-ADMM) based
on P-ADMM to solve distributed constrained convex optimization problems. Firstly, we
explain how our proposed QP-ADMM is derived from the original algorithm. Next we
analyze the convergence performance of QP-ADMM under general convex and strongly
convex cases, respectively.

3.1. Algorithm design

For (3), we define an auxiliary variable z = (I −W )
1
2x ∈ Rn×m and substitute it into

(3)

min
x,z

f(x) + 1
2ε‖z‖

2
F,

s.t. L
1
2x = z, x ∈ K,

(6)

where L , I −W .

Based on (6), we have the following augmented Lagrangian function

Lα(x, z, λ) , f(x) + 1
2ε‖z‖

2
F + 〈λ, L 1

2x− z〉+ α
2 ‖L

1
2x− z‖2F, (7)

where λ ∈ Rn×m is the Lagrange multiplier and α > 0.

When the proposed algorithm runs, values of x may fall outside feasible constraint
sets. Using these can result in severe calculation errors. Therefore, we project x onto
the constraint set K to avoid it. Based on (7), the updating law is given as follows.

x : xk+1 = ProjK(xk − c[∇f(xk) + αLxk − αz̃k + λ̃k]), (8a)

z̃ : z̃k+1 = 1
α+ 1

ε

[λ̃k + αLxk+1], (8b)

λ̃ : λ̃k+1 = λ̃k + α[Lxk+1 − z̃k+1], (8c)
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where z̃k , L
1
2 zk and λ̃k , L

1
2λk. Then we add the quantizer (4) after the x-update of

(8a),

x : xk+1 = ProjK(xQ,k − c[∇f(xQ,k) + αLxQ,k − αz̃k + λ̃k]), (9a)

xQ : xQ,k+1 = Q(xk+1), (9b)

z̃ : z̃k+1 = 1
α+ 1

ε

[λ̃k + αLxQ,k+1], (9c)

λ̃ : λ̃k+1 = λ̃k + α[LxQ,k+1 − z̃k+1]. (9d)

Assumption 5. The set K is compact and convex. If x ∈ K, the quantized value xQ,k

is bounded as

‖xQ,k − x∗‖F ≤ A,

where A > 0 is a positive constant and x∗ is the optimal solution of (6).

In summary, (9) is the updating law of QP-ADMM. The detailed implementation of
the proposed algorithm is shown in Algorithm 1.

Algorithm 1. Quantized Penalty ADMM

Initialization: Choose the parameters ε, α, and c. Initialize x0
i = 1m×1, z̃0

i =
1m×1, and λ̃0

i = 1m×1.

Update flows: For each i ∈ N ,

for k = 1, 2, . . .do

1 : Compute the projection of local variable xk+1
i by

xk+1
i = ProjKi(x

Q,k
i − c[∇fi(xQ,ki ) + α(xQ,ki −

∑
j∈Ni wijx

Q,k
j − z̃ki ) + λ̃ki ]).

2 : Update the parameters of the quantizer: Qk+1
i : lk+1

i and x̄k+1
i .

3 : Quantize the local variable: xQ,k+1
i = Qk+1

i (xk+1
i ).

4 : Transmit xQ,k+1
i to / receive xQ,k+1

j from neighbors j ∈ Ni.

5 : Update local auxiliary variable z̃k+1
i by

z̃k+1
i = 1

α+ 1
ε

[λ̃ki + α(xQ,k+1
i −

∑
j∈Ni wijx

Q,k+1
j )].

6 : Update local dual variable λ̃k+1
i by

λ̃k+1
i = λ̃ki + α[(xQ,k+1

i −
∑
j∈Ni wijx

Q,k+1
j )− z̃k+1

i ].

end for

Remark 3. To reduce the communication burdens of distributed solving (2), we design
Algorithm 1 with the following two intuitions. Firstly, Algorithm 1 is designed with
a quantized communication scheme, where each agent exchanges information with its
neighbors in limited bandwidth; Secondly, inspired by [20, 30], each agent only exchanges
the primal variables with its neighbors in Algorithm 1, which is more efficient in com-
munication resources saving than the exchanging of both primal and dual counterparts
in [8, 14].
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3.2. Convergence analysis

In this subsection, we analyze the convergence of QP-ADMM under general convexity
and strong convexity.
{z̃k} and {λ̃k} in (9) denote auxiliary variables and dual variables, respectively. To

simplify the notation, we use {zk} and {λk} to replace them. Then (9) becomes

x : xk+1 = ProjK(xQ,k − c[∇f(xQ,k) + αLxQ,k − αL 1
2 zk + L

1
2λk]), (10a)

xQ : xQ,k+1 = Q(xk+1), (10b)

z : zk+1 = 1
α+ 1

ε

[λk + αL
1
2xQ,k+1], (10c)

λ : λk+1 = λk + α[L
1
2xQ,k+1 − zk+1]. (10d)

Rearranging (10d), we have

λk = λk+1 − αL 1
2xQ,k+1 + αzk+1. (11)

Substituting (11) into (10c), we get

(α+ 1
ε )zk+1 = λk+1 + αzk+1,

which implies that

1
ε z
k+1 = λk+1. (12)

As long as initializing with 1
ε z

0 = λ0, then we have 1
ε z
k = λk.

3.2.1. General convex objective functions

We provide detailed proofs and some critical conclusions in this part to establish that
the proposed algorithm converges to the optimal solution under the general convex case.

To simplify notations, we define

uk[Q] , (xQ,k, zk, λk), u∗ , (x∗, z∗, λ∗), G , I − αc(I −W ), H , ( 1
2cG,

α
2 I,

1
2αI),

where uk[Q] is generated by (10) and u∗ is the optimal solution of (6). The square of the

distance from uk[Q] to u∗ is defined as ‖uk[Q] − u
∗‖2H , ‖xQ,k − x∗‖21

2cG
+ ‖zk − z∗‖2α

2 I
+

‖λk − λ∗‖21
2α I

.

Theorem 3.1. Under Assumptions 1, 3, 4, and 5, if the parameters α and c are chosen
such that 1

2cG−
Lf
2 I � 0, then

‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + Λ ≥ τ‖xQ,k − xk+1‖2G + 1

ε ‖z
k − zk+1‖2F

+ 1
2α‖λ

k − λk+1‖2F, (13)

where τ > 0 is a positive constant and Λ is the error term and

Λ ,
1 + 2αε

2ε

npC2

22(b+1)
θ2(k+1) +

√
npAC

2b+1c
θk+1.
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P r o o f . See Appendix 6.1. �

Based on Theorem 3.1, ‖uk[Q]−u
∗‖2H falls fast and tends to 0 when the selected α and

c satisfy the condition 1
2cG −

Lf
2 I � 0. However, Theorem 3.1 alone cannot show that

QP-ADMM converges to the optimal solution of (6) under the case of general convexity.
Thus we provide the following theorem, whose proof is similar to that of Theorem 3.2
in [16].

Theorem 3.2. Under Assumptions 1, 3, 4, and 5, the sequence {xQ,k, zk, λk} produced
by (10) converges to the optimal solutions (x∗, z∗, λ∗) of (6) from any starting point,
when α and c are the same as chosen in Theorem 3.1.

P r o o f . See Appendix 6.2. �

Theorem 3.2 establishes that QP-ADMM converges to the optimal solution u∗ of (6).
Theorem 3.1 and Theorem 3.2 tell us how to choose α and c, i. e., c < 1

Lf+αµmax(L) ,

based on 1
2cG−

Lf
2 I � 0, where µmax(L) is the largest eigenvalue of L.

We have shown that QP-ADMM can converge to the optimal solution u∗ of (6)
under the generally convex case. We propose the following theorem to establish that the
proposed algorithm converges at the rate of O( 1

k ) under general convexity.

We define the formula in (6) as ψ(ν) , f(x) + 1
2ε‖z‖

2
F, where ν = (x, z) is a triple.

Let ν̌k , (x̌k, žk) with x̌k , 1
k

∑k
t=1 x

t and žk , 1
k

∑k
t=1 z

t.

Theorem 3.3. Under Assumptions 1, 3, 4, and 5, if the parameters α and c are chosen
as in Theorem 3.1, it holds for all k ≥ 1 that

max
{
|ψ(ν̌k)− ψ(ν∗)|, ‖λ∗‖F‖L

1
2 x̌k − žk‖F

}
≤ Q1

k
,

where Q1 , 1
2c‖x

∗ − xQ,0‖2G + α
2 ‖z
∗ − z0‖2F + 4

α‖λ
∗‖2F − 1

α‖λ
0‖2F + Λ1 + Λ2 with Λ1 ,

1+2αε
2ε

npC2

22(b+1)
θ2

1−θ2 and Λ2 ,
√
npAC

2b+1c
θ

1−θ .

P r o o f . See Appendix 6.3. �

3.2.2. Strongly convex objective functions

If the function f(x) is strongly convex, QP-ADMM can achieve a linear convergence
rate. The proof of this conclusion is as follows.

Theorem 3.4. Under Assumption 1-5, if the variables are initialized as 1
ε z

0 = λ0 and

δ , 1− L2
f c

µmin(G)µf
> 0, the convergence performance of the sequence {xQ,k, zk} which is

generated by (10) satisfies

c2‖x∗ − xQ,k+1‖2G + ‖z∗ − zk+1‖2F
≤ τk+1

2 (c2‖x∗ − xQ,0‖2G + ‖z∗ − z0‖2F + Λ3 + Λ4), (14)
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where 0 < θ < τ2 < 1 and τ2 , max{ 1
c1c+1 ,

2α2ε2+2
αε+2α2ε2+2} < 1 with c1 ,

µf δ
(1+δ)µmax(G)

and c2 ,
c1+ 1

c
1
2ε+α+ 1

αε2
. Define Λ3 ,

a1
α+ 1

2ε+ 1
αε2

1

1− θ2τ2
with a1 , 1+2αε

ε
npC2θ2

22(b+1) and Λ4 ,

a2
α+ 1

2ε+ 1
αε2

1
1− θ

τ2

with a2 ,
√
npACθ

c2b
, respectively.

P r o o f . See Appendix 6.4. �

Remark 4. Based on Theorem 3.4, the sequence {xQ,k, zk} generated by (10) conver-
gences to the optimal solutions x∗ and z∗ of (6) with R-linear rate under the strongly
convex case.

4. NUMERICAL SIMULATIONS

This section demonstrates the effectiveness of the proposed algorithm with a numerical
example. We utilize QP-ADMM to solve a distributed quadratic programming problem
that satisfies Assumptions 1-5. We set the mixing matrix W based on the Metropolis-
Hasting rule in [2]. The form of the problem is as follows.

min
{xi}

n∑
i=1

xT
i aixi − bTi xi,

s.t. xi ∈ Ki, xi = xj , i, j ∈ N . (15)

In the multi-agent system, the number of agents is n = 4. The network topology
of this multi-agent system is shown in Figure 2. To use QP-ADMM to solve (15), the
parameters ai and bi, i ∈ N are chosen as follows,

a1 =

[
−1.20 0.50
−0.65 0.40

]
, b1 =

[
0.0447
−0.1342

]
,

a2 =

[
−0.40 1.15
−1.00 1.66

]
, b2 =

[
0.7155
−0.9704

]
,

a3 =

[
−0.60 0.80
−2.00 1.00

]
, b3 =

[
1.5205
−0.5366

]
,

a4 =

[
−1.25 −2.47
−1.00 −0.76

]
, b4 =

[
0.3354
−0.4248

]
.

The optimal solution x̂∗ of (15) is

x̂∗ =


0.4472 −0.8944
0.4472 −0.8944
0.4472 −0.8944
0.4472 −0.8944

 .
All local constraint sets Ki, i ∈ N and the global constraint set K are the unit circle.
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Fig. 2. The network topology of the multi-agent system.
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Fig. 3. The convergence performance of the QP-ADMM under

schemes 1 and 2.

We design two schemes to demonstrate the dynamic quantizer scheme we use. One is
QP-ADMM with the dynamic quantizer and the other is QP-ADMM with the traditional
quantizer that uses fixed quantization intervals. We set step sizes α and c are 40 and
0.0093 for the penalty parameter ε = 10−2, respectively. We initialize quantizers with
the following schemes,{

Scheme 1 : l0 = 6, b = 6, ∆0 = l0

2b
= 0.094, lk = l0θk, θ = 0.89;

Scheme 2 : l0 = 6, b = 6, ∆0 = l0

2b
= 0.094, lk = l0.

As shown in Figure 3, there are errors in both schemes. The errors are yielded from
the penalty approximation and the quantized communication. But the final value of
Scheme 1 is more accurate than that of Scheme 2. This accuracy does not sacrifice the
convergence speed.

In Figure 4, all parameters are the same as in Scheme 1 except for the penalty
parameter ε. Figure 4 shows that QP-ADMM can quickly converge to the neighborhood
of the optimal value x̂∗ even when the penalty parameter ε is small, its convergence rate
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Fig. 4. The convergence performance of the QP ADMM with

different ε.

is linear, which is consistent with our previous Theorem 3.4. The excellent convergence
performance of the proposed algorithm does not lead to a decrease in the accuracy of
the multi-agent system.

5. CONCLUSION

In this paper, we proposed a distributed ADMM algorithm over quantized communica-
tion with feasible set constraints called QP-ADMM. We presented a detailed derivation
of the proposed algorithm from the original algorithm. Firstly, we introduced a dynamic
quantizer and applied it to the original algorithm. Then we analyzed our algorithm’s
convergence performance in general convexity and strong convexity and proposed some
critical theorems. Finally, to illustrate the effectiveness of our proposed algorithm, we
provided a numerical example.

6. APPENDIX

6.1. Proof of Theorem 3.1

Based on the property of variational inequalities, we rewrite (10a),

〈x∗ − xk+1, xk+1 − (xQ,k − c[∇f(xQ,k) + αLxQ,k − αL 1
2 zk + L

1
2λk])〉 ≥ 0, (16)

since x∗ ∈ K. Substituting (11) into (16), we have

0 ≤ 〈x∗ − xk+1, 1
c [xk+1 − xQ,k − (αcLxQ,k+1 − αcLxQ,k)] + αL

1
2 zk+1 − αL 1

2 zk

+∇f(xQ,k) + L
1
2λk+1〉.
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Rearranging the above formulation,

0 ≤ 1
c 〈x
∗ − xk+1, G(xQ,k+1 − xQ,k)〉︸ ︷︷ ︸+ 〈x∗ − xk+1,∇f(xQ,k)〉︸ ︷︷ ︸− 1

c 〈x
∗ − xk+1, ek+1〉

(T1) (T2)

+ 〈x∗ − xk+1, L
1
2λk+1〉+ α〈L 1

2 (x∗ − xk+1), zk+1 − zk〉. (17)

For the term (T1) in (17), we rewrite it by the identity (v1 − v2)TG(v3 − v4) = 1
2 (‖v1 −

v4‖2G − ‖v1 − v3‖2G) + 1
2 (‖v2 − v3‖2G − ‖v2 − v4‖2G),

1
c 〈x
∗ − xk+1, G(xQ,k+1 − xQ,k)〉

= 1
2c (‖x

∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + 1
2c (‖e

k+1‖2G − ‖xk+1 − xQ,k‖2G). (18)

Under Assumption 1, we rewrite the term (T2) in (17) as follows

〈x∗ − xk+1,∇f(xQ,k)〉
= 〈x∗ − xQ,k,∇f(xQ,k)〉+ 〈xQ,k − xk+1,∇f(xQ,k)〉

≤ f(x∗)− f(xQ,k) + f(xQ,k)− f(xk+1) +
Lf
2 ‖x

Q,k − xk+1‖2F
= f(x∗)− f(xk+1) +

Lf
2 ‖x

Q,k − xk+1‖2F. (19)

Substituting (18) and (19) into (17), we have

0 ≤ 1
2c (‖x

∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + 1
2c‖e

k+1‖2G + f(x∗)− f(xk+1)

+ α〈L 1
2 (x∗ − xk+1), zk+1 − zk〉︸ ︷︷ ︸− 1

2c‖x
k+1 − xQ,k‖2G +

Lf
2 ‖x

Q,k − xk+1‖2F
(T3)

+ 〈x∗ − xk+1, L
1
2λk+1〉 − 1

c 〈x
∗ − xk+1, ek+1〉. (20)

With the help of another identity (v1 − v2)T(v3 − v4) = 1
2 (‖v1 − v4‖2 − ‖v1 − v3‖2) +

1
2 (‖v2 − v3‖2 − ‖v2 − v4‖2), the term (T3) in (20) becomes

α〈L 1
2 (x∗ − xk+1), zk+1 − zk〉

= α〈L 1
2 (x∗ − xQ,k+1), zk+1 − zk〉+ α〈L 1

2 ek+1, zk+1 − zk〉

= α
2 (‖L 1

2x∗ − zk‖2F − ‖L
1
2x∗ − zk+1‖2F) + α〈L 1

2 ek+1, zk+1 − zk〉

+ α
2 (‖L 1

2xQ,k+1 − zk+1‖2F − ‖L
1
2xQ,k+1 − zk‖2F). (21)

Rearranging (10d),

λk+1 − λk

α
= L

1
2xQ,k+1 − zk+1. (22)
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Substituting the above formula into (21)

α〈L 1
2 (x∗ − xk+1), zk+1 − zk〉

= α
2 (‖L 1

2x∗ − zk‖2F − ‖L
1
2x∗ − zk+1‖2F) + α〈L 1

2 ek+1, zk+1 − zk〉

+ α
2 (‖λ

k+1−λk
α ‖2F − ‖λ

k+1−λk
α + zk+1 − zk‖2F)

= α
2 (‖L 1

2x∗ − zk‖2F − ‖L
1
2x∗ − zk+1‖2F)− 〈λk+1 − λk, zk+1 − zk〉 − α

2 ‖z
k+1 − zk‖2F

+ α〈L 1
2 ek+1, zk+1 − zk〉. (23)

Then, we substitute three equations 1
ε z
k = λk, 1

ε z
k+1 = λk+1 and L

1
2x∗ = z∗ into (23),

α〈L 1
2 (x∗ − xk+1), zk+1 − zk〉 = α

2 (‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F)− (α2 + 1
ε )‖zk+1 − zk‖2F

+ α〈L 1
2 ek+1, zk+1 − zk〉. (24)

Substituting (24) into (20) and rearranging related terms,

f(x∗)− f(xk+1) + 1
2c‖e

k+1‖2G + 1
2c (‖x

∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G)

+ α
2 (‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F) + 〈x∗ − xk+1, L

1
2λk+1

Q 〉 − 1
c 〈x
∗ − xk+1, ek+1〉

≥ 1
2c‖x

k+1 − xQ,k‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + (α2 + 1
ε )‖zk+1 − zk‖2F

− α〈L 1
2 ek+1, zk+1 − zk〉. (25)

Note that

1
2ε‖z

∗ − zk+1‖2F + 〈z∗ − zk+1, 1
ε z
k+1〉 = 1

2ε‖z
∗‖2F − 1

2ε‖z
k+1‖2F. (26)

Combining (12) with (26),

1
2ε‖z

∗ − zk+1‖2F + 〈z∗ − zk+1, λk+1〉 = 1
2ε‖z

∗‖2F − 1
2ε‖z

k+1‖2F. (27)

Substituting (27) into (25),

f(x∗) + 1
2ε‖z

∗‖2F − f(xk+1)− 1
2ε‖z

k+1‖2F︸ ︷︷ ︸+ 〈x∗ − xk+1, L
1
2λk+1〉 − 〈z∗ − zk+1, λk+1〉︸ ︷︷ ︸

(T4) (T5)

+ 1
2c (‖x

∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + α
2 (‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F)

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + (α2 + 1
ε )‖zk+1 − zk‖2F + 1

2ε‖z
∗ − zk+1‖2F

+ 1
c 〈x
∗ − xk+1, ek+1〉+ α〈L 1

2 ek+1, zk − zk+1〉 − 1
2c‖e

k+1‖2G. (28)

We introduce an equation to further simplify (28)

0 =
〈
λ∗ − λk+1, λ

k−λk+1

α

〉
−
〈
λ∗ − λk+1, λ

k−λk+1

α

〉
=
〈
λ∗ − λk+1,−L 1

2xQ,k+1 + zk+1
〉
−
〈
λ∗ − λk+1, λ

k−λk+1

α

〉
= −

〈
λ∗, L

1
2xk+1 − zk+1

〉︸ ︷︷ ︸+
〈
λk+1, L

1
2xk+1 − zk+1

〉︸ ︷︷ ︸−〈λ∗ − λk+1, λ
k−λk+1

α

〉︸ ︷︷ ︸
(T6) (T7) (T8)

−
〈
L

1
2 (λ∗ − λk+1), ek+1

〉
. (29)
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Combining the term (T4) in (28) and the term (T6) in (29), we have

f(x∗) + 1
2ε‖z

∗‖2F − f(xk+1)− 1
2ε‖z

k+1‖2F − 〈λ∗, L
1
2xk+1 − zk+1〉

= L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) ≤ 0. (30)

For the term (T5) in (28), we combine it with the term (T7) in (29) and use L
1
2x∗ = z∗

to further simplify it.

〈x∗ − xk+1, L
1
2λk+1〉 − 〈z∗ − zk+1, λk+1〉+ 〈λk+1, L

1
2xk+1 − zk+1〉

= 〈x∗ − xk+1, L
1
2λk+1〉+ 〈λk+1, L

1
2xk+1 − zk+1 − z∗ + zk+1〉

= 〈x∗ − xk+1, L
1
2λk+1〉+ 〈λk+1, L

1
2xk+1 − L 1

2x∗〉 = 0. (31)

Adding 1
2α‖λ

k+1 − λk‖2F into the term (T8) in (29), we have

1
2α‖λ

k+1 − λk‖2F −
〈
λ∗ − λk+1, λ

k−λk+1

α

〉
= 1

2α‖λ
∗ − λk‖2F − 1

2α‖λ
∗ − λk+1‖2F. (32)

Substituting (30), (31), and (32) into (28) and rearranging it then yields

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + 1
2c‖x

∗ − xQ,k‖2G − 1
2c‖x

∗ − xQ,k+1‖2G
+ α

2 ‖z
∗ − zk‖2F − α

2 ‖z
∗ − zk+1‖2F + 1

2α‖λ
∗ − λk‖2F − 1

2α‖λ
∗ − λk+1‖2F

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + (α2 + 1
ε )‖zk+1 − zk‖2F + 1

2ε‖z
∗ − zk+1‖2F

+ 1
2α‖λ

k − λk+1‖2F + 1
c 〈x
∗ − xk+1, ek+1〉+ α〈L 1

2 ek+1, zk − zk+1〉 − 1
2c‖e

k+1‖2G
+ 〈L 1

2 (λ∗ − λk+1), ek+1〉. (33)

Based on ‖uk[Q] − u
∗‖2H = ‖xQ,k − x∗‖21

2cG
+ ‖zk − z∗‖2α

2 I
+ ‖λk − λ∗‖21

2α I
, we further

simplify (33),

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + ‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + 1

2c‖e
k+1‖2G

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + (α2 + 1
ε )‖zk − zk+1‖2F + 1

2α‖λ
k − λk+1‖2F

+ 1
2ε‖z

∗ − zk+1‖2F + 1
c 〈x
∗ − xk+1, ek+1〉+ α〈L 1

2 (zk − zk+1), ek+1〉

+ 〈λ∗ − λk+1, L
1
2 ek+1〉︸ ︷︷ ︸ . (34)

(T9)

Because 1
ε z
∗ = λ∗ and 1

ε z
k+1 = λk+1, we substitute them into the term (T9) in (34),

〈λ∗ − λk+1, L
1
2 ek+1〉 = 1

ε 〈z
∗ − zk+1, L

1
2 ek+1〉. (35)

According to (34) and (35), we get

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + ‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + 1

2c‖e
k+1‖2G

+ 1
c 〈x

k+1 − x∗, ek+1〉

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + (α2 + 1
ε )‖zk − zk+1‖2F + 1

2α‖λ
k − λk+1‖2F

+ 1
2ε‖z

∗ − zk+1‖2F + α〈zk − zk+1, L
1
2 ek+1〉+ 1

ε 〈z
∗ − zk+1, L

1
2 ek+1〉. (36)
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Note that

〈z∗ − zk+1, L
1
2 ek+1〉 ≥ − 1

4‖z
∗ − zk+1‖2F − 1

4‖L
1
2 ek+1‖2F

≥− 1
4‖z
∗ − zk+1‖2F −

σ2
max(L

1
2 )

4 ‖ek+1‖2F, (37)

and

〈zk − zk+1, L
1
2 ek+1〉 ≥ − 1

2‖z
k − zk+1‖2F − 1

2‖L
1
2 ek+1‖2F

≥− 1
2‖z

k − zk+1‖2F −
σ2
max(L

1
2 )

2 ‖ek+1‖2F, (38)

where σmax(L
1
2 ) is the largest singular value of L

1
2 . Next, substituting (37) and (38)

into (36), we obtain

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + ‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + 1

2c‖e
k+1‖2G

+ 1
c 〈x

k+1 − x∗, ek+1〉

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + 1
ε ‖z

k − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F

+ 1
4ε‖z

∗ − zk+1‖2F −
(1+2αε)σ2

max(L
1
2 )

4ε ‖ek+1‖2F. (39)

For the term ‖ek+1‖2G in (39), we have the following inequality,

‖ek+1‖2G ≤ µmax(G)‖ek+1‖2F, (40)

where µmax(G) is the largest eigenvalue of G.
Combining (39) with (40), we get

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + ‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H

+ (µmax(G)
2c +

(1+2αε)σ2
max(L

1
2 )

4ε − 1
c )‖ek+1‖2F + 1

c 〈x
Q,k+1 − x∗, ek+1〉

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + 1
ε ‖z

k − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F
+ 1

4ε‖z
∗ − zk+1‖2F. (41)

Based on Cauchy–Schwarz inequality, we rewrite the term 1
c 〈x

Q,k+1−x∗, ek+1〉 under
Assumption 5,

1
c 〈x

Q,k+1 − x∗, ek+1〉 ≤ 1
c‖x

Q,k+1 − x∗‖F‖ek+1‖F ≤ A
c ‖e

k+1‖F. (42)

Then substituting (42) into (41),

‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + A

c ‖e
k+1‖F

+ (µmax(G)
2c +

(1+2αε)σ2
max(L

1
2 )

4ε − 1
c )‖ek+1‖2F

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + 1
ε ‖z

k − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F
+ 1

4ε‖z
∗ − zk+1‖2F. (43)
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For the error term in (43), based on ek+1 ≤ ∆
2 = l

2b+1 , we have

[µmax(G)

2c
+

(1 + 2αε)σ2
max(L

1
2 )

4ε
− 1

c

]∥∥∥ek+1
∥∥∥2

F
+
A

c

∥∥∥ek+1
∥∥∥

F

≤
[µmax(G)

2c
+

(1 + 2αε)σ2
max(L

1
2 )

4ε
− 1

c

]
np
( l

2b+1

)2

+
A

c

√
np
( l

2b+1

)
=
[µmax(G)

2c
+

(1 + 2αε)σ2
max(L

1
2 )

4ε
− 1

c

]
np
(Cθk+1

2b+1

)2

+
A

c

√
np
(Cθk+1

2b+1

)
=
[µmax(G)

2c
+

(1 + 2αε)σ2
max(L

1
2 )

4ε
− 1

c

]
np
C2θ2(k+1)

22(b+1)
+
A

c

√
np
Cθk+1

2b+1
. (44)

Because the eigenvalues of the matrix G lie in (1− 2αc, 1] and the singular values of L
1
2

lie in (0,
√

2), we further simplify (44)[µmax(G)

2c
+

(1 + 2αε)σ2
max(L

1
2 )

4ε
− 1

c

]
np
C2θ2(k+1)

22(b+1)
+
A

c

√
np
Cθk+1

2b+1

<
(1 + 2αε

2ε
− 1

2c

)
np
C2θ2(k+1)

22(b+1)
+
A

c

√
np
Cθk+1

2b+1

<
1 + 2αε

2ε

npC2

22(b+1)
θ2(k+1) +

√
npAC

2b+1c
θk+1 , Λ. (45)

Substituting (45) into (43),

L(x∗, z∗, λ∗)− L(xk+1, zk+1, λ∗) + ‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + Λ

≥ 1
2c‖x

Q,k − xk+1‖2G −
Lf
2 ‖x

Q,k − xk+1‖2F + 1
ε ‖z

k − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F
+ 1

4ε‖z
∗ − zk+1‖2F. (46)

Choosing 1
2cG−

Lf
2 I � 0, we can find τ > 0 such that 1

2cG−
Lf
2 I � τI, and it holds

for all k ≥ 1 that

‖uk[Q] − u
∗‖2H − ‖uk+1

[Q] − u
∗‖2H + Λ

≥ τ‖xQ,k − xk+1‖2G + 1
ε ‖z

k − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F, (47)

which completes the proof. �

6.2. Proof of Theorem 3.2

Based on Theorem 3.1, the terms of the right side of (13) all tend to 0, which implies
that  xQ,k − xk+1 → 0,

zk − zk+1 → 0,
λk − λk+1 → 0.

(48)

Further, we obtain

L
1
2xQ,k − zk → 0. (49)
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Because the sequences {uk[Q]} lies in a compact region, we set a subsequence {ukj[Q]}
of {uk[Q]} which convergences to ŭ = (x̆, z̆, λ̆), where ŭ is a limit point of {uk[Q]} and

L
1
2 x̆− z̆ = 0. And ‖uk[Q] − u

∗‖2H is monotonically non-increasing and thus converges.

Note that (10a) implies that

∇f(x̆) + L
1
2 λ̆ = 0. (50)

Note also that (12) implies that

1
ε z̆ = λ̆. (51)

Next, taking k → +∞ in (10) yields the KKT conditions of (6),

∇f(x∗) + L
1
2λ∗ = 0,

1
ε z
∗ = λ∗,

L
1
2x∗ = z∗,

x∗ ∈ K. (52)

Because x̆ ∈ K and L
1
2 x̆ = z̆, thus (x̆, z̆, λ̆) satisfies the KKT conditions and is

an optimal solution of (6). Therefore, any limit point of {xQ,k, zk, λk} is an optimal
solution.

After completing the above proof, we still need to show that {xQ,k, zk, λk} has a

unique limit point. We set (x̆1, z̆1, λ̆1) and (x̆2, z̆2, λ̆2) are any two limit points of
{xQ,k, zk, λk}. In other words, they are optimal solutions of (6).

Replacing u∗ in (47) with ŭ1 , (x̆1, z̆1, λ̆1) and ŭ2 , (x̆2, z̆2, λ̆2), we obtain

‖uk+1
[Q] − ŭi‖

2
H ≤ ‖uk[Q] − ŭi‖

2
H + Λ, i = 1, 2. (53)

For the right-hand side of (53),

lim
k→+∞

(‖uk[Q] − ŭi‖H + Λ) = lim
k→+∞

‖uk[Q] − ŭi‖H + lim
k→+∞

Λ, i = 1, 2.

Because of θ ∈ (0, 1),

lim
k→+∞

Λ = 0.

Therefore,

lim
k→+∞

(‖uk[Q] − ŭi‖H + Λ) = lim
k→+∞

‖uk[Q] − ŭi‖H , ρi < +∞, i = 1, 2. (54)

With the identity

‖uk[Q] − ŭ1‖2H − ‖uk[Q] − ŭ2‖2H = ‖ŭ1‖2H − ‖ŭ2‖2H − 2〈uk[Q], ŭ1 − ŭ2〉H . (55)

Calculating the limits of (55) then yields

ρ2
1 − ρ2

2 = −2〈ŭ1, ŭ1 − ŭ2〉H + ‖ŭ1‖2H − ‖ŭ2‖2H = −‖ŭ1 − ŭ2‖2H (56)
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and

ρ2
1 − ρ2

2 = −2〈ŭ2, ŭ1 − ŭ2〉H + ‖ŭ1‖2H − ‖ŭ2‖2H = ‖ŭ1 − ŭ2‖2H . (57)

Obviously, to want (56) = (57) if and only if ‖ŭ1 − ŭ2‖2H = 0. Thus the limit point of
{xQ,k, zk, λk} is unique. This completes the proof. �

6.3. Proof of Theorem 3.3

Based on the definition of the convex function, we have

ψ
(ν1 + · · ·+ νk

k

)
≤ ψ(ν1) + · · ·+ ψ(νk)

k
. (58)

Then,

ψ(ν̌k)− ψ(ν∗) + 〈λ, L 1
2 x̌k − žk〉

≤ ψ(ν1) + · · ·+ ψ(νk)

k
− ψ(ν∗) + 〈λ, L 1

2 x̌k − žk〉

=
1

k

k−1∑
t=0

[
ψ(νt+1)− ψ(ν∗) +

〈
λ, L

1
2xt+1 − zk+1

〉]
, ∀λ. (59)

Rewriting (46) then yields

1
2c‖x

∗ − xQ,k‖2G − 1
2c‖x

∗ − xQ,k+1‖2G + α
2 ‖z
∗ − zk‖2F − α

2 ‖z
∗ − zk+1‖2F

+ 1
2α‖λ− λ

k‖2F − 1
2α‖λ− λ

k+1‖2F + Λ

≥ L(xk+1, zk+1, λ)− L(x∗, z∗, λ) = ψ(νk+1)− ψ(ν∗) +
〈
λ, L

1
2xk+1 − zk+1

〉
, ∀λ. (60)

Combining (59) and (60), we obtain

ψ(ν̌k)− ψ(ν∗) + 〈λ, L 1
2 x̌k − žk〉

≤ 1

k

k−1∑
t=0

[
1
2c‖x

∗ − xQ,k‖2G − 1
2c‖x

∗ − xQ,k+1‖2G + α
2 ‖z
∗ − zk‖2F − α

2 ‖z
∗ − zk+1‖2F

+ 1
2α‖λ− λ

k‖2F − 1
2α‖λ− λ

k+1‖2F + Λ
]

=
1

k

[
1
2c‖x

∗ − xQ,0‖2G − 1
2c‖x

∗ − xQ,k‖2G + α
2 ‖z
∗ − z0‖2F − α

2 ‖z
∗ − zk‖2F

+ 1
2α‖λ− λ

0‖2F − 1
2α‖λ− λ

k‖2F
]

+
1

k

k−1∑
t=0

Λ

=
1

k

[
1
2c‖x

∗ − xQ,0‖2G + α
2 ‖z
∗ − z0‖2F + 1

2α‖λ− λ
0‖2F
]

+
1

k

k−1∑
t=0

Λ, ∀λ. (61)
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For the term 1
k

∑k−1
t=0 Λ in (61), we have

1

k

k−1∑
t=0

Λ =
1

k

k−1∑
t=0

[1 + 2αε

2ε

npC2

22(b+1)
θ2(k+1) +

√
npAC

2b+1c
θk+1

]
=

1

k

(1 + 2αε

2ε

npC2

22(b+1)

) k−1∑
t=0

θ2(k+1) +
1

k

(√npAC
2b+1c

) k−1∑
t=0

θk+1

≤ 1

k

(1 + 2αε

2ε

npC2

22(b+1)

) θ2

1− θ2
+

1

k

(√npAC
2b+1c

) θ

1− θ
,

1

k
Λ1 +

1

k
Λ2. (62)

Based on (62), (61) is modified to

ψ(ν̌k)− ψ(ν∗) + 〈λ, L 1
2 x̌k − žk〉

≤ 1

k

[
1
2c‖x

∗ − xQ,0‖2G + α
2 ‖z
∗ − z0‖2F + 1

2α‖λ− λ
0‖2F
]

+
1

k
Λ1 +

1

k
Λ2, ∀λ. (63)

Setting

λ =
2‖λ∗‖F

(
L

1
2 x̌k − žk

)
‖L 1

2 x̌k − žk‖F
, (64)

and substituting it into the left-hand side of (63), we get

ψ(ν̌k)− ψ(ν∗) + 〈λ, L 1
2 x̌k − žk〉

= ψ(ν̌k)− ψ(ν∗) + 2‖λ∗‖F‖L
1
2 x̌k − žk‖F. (65)

For the right hand side of (63), let ‖λ‖F = 2‖λ∗‖F and we use the triangle inequality
to rewrite the term ‖λ− λ0‖2F

‖λ− λ0‖2F ≤ 8‖λ∗‖2F + 2‖λ0‖2F. (66)

Based on (63), (65), and (66), we get

ψ(ν̌k)− ψ(ν∗) ≤ 1

k

[
1
2c‖x

∗ − xQ,0‖2G + α
2 ‖z
∗ − z0‖2F + 4

α‖λ
∗‖2F − 1

α‖λ
0‖2F + Λ1 + Λ2

]
− 2‖λ∗‖F‖L

1
2 x̌k − žk‖F

,
Q1

k
− 2‖λ∗‖F‖L

1
2 x̌k − žk‖F. (67)

For all ν, L(ν, λ∗) ≥ L(ν∗, λ∗), thus

ψ(ν̌k)− ψ(ν∗) ≥ −‖λ∗‖F‖L
1
2 x̌k − žk‖F. (68)

Combining (67) and (68), we obtain

max
{
|ψ(ν̌k)− ψ(ν∗)|, ‖λ∗‖F‖L

1
2 x̌k − žk‖F

}
≤ Q1

k
. (69)

Thus we completed the proof. �
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6.4. Proof of Theorem 3.4

Under Assumption 4, we rewrite (19) in the proof of Theorem 3.1 as follows,

〈x∗ − xk+1,∇f(xQ,k)〉
= 〈x∗ − xk+1,∇f(xk+1)〉+ 〈x∗ − xk+1,∇f(xQ,k)−∇f(xk+1)〉

≤ f(x∗)− f(xk+1)− µf
2
‖x∗ − xk+1‖2F + 〈x∗ − xk+1,∇f(xQ,k)−∇f(xk+1)〉. (70)

Then the following operations are the same as that of Theorem 3.1. Furthermore
(46) becomes

1
2c‖x

∗ − xQ,k‖2G − 1
2c‖x

∗ − xQ,k+1‖2G + α
2 ‖z
∗ − zk‖2F − α

2 ‖z
∗ − zk+1‖2F

+ 1
2α‖λ

∗ − λk‖2F − 1
2α‖λ

∗ − λk+1‖2F + Λ

≥ 1
2c‖x

Q,k − xk+1‖2G + 1
ε ‖z

k − zk+1‖2F + 1
4ε‖z

∗ − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F
+

µf
2 ‖x

∗ − xk+1‖2F − 〈x∗ − xk+1,∇f(xQ,k)−∇f(xk+1)〉︸ ︷︷ ︸ . (71)

(T10)

For the term (T10) in (71), we have

−〈x∗ − xk+1,∇f(xQ,k)−∇f(xk+1)〉 ≥ − τ12 ‖x
∗ − xk+1‖2F −

L2
f

2τ1
‖xQ,k − xk+1‖2F, (72)

where τ1 > 0 is any constant. Substituting (72) into (71), we get

1
2c‖x

∗ − xQ,k‖2G − 1
2c‖x

∗ − xQ,k+1‖2G + α
2 ‖z
∗ − zk‖2F − α

2 ‖z
∗ − zk+1‖2F

+ 1
2α‖λ

∗ − λk‖2F − 1
2α‖λ

∗ − λk+1‖2F + Λ

≥ 1
2c‖x

Q,k − xk+1‖2G + 1
ε ‖z

k − zk+1‖2F + 1
4ε‖z

∗ − zk+1‖2F + 1
2α‖λ

k − λk+1‖2F

+
µf−τ1

2 ‖x∗ − xk+1‖2F −
L2
f

2τ1
‖xQ,k − xk+1‖2F. (73)

We utilize 1
ε z
k = λk to further simplify (73),

1
c (‖x∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + (α+ 1

αε2 )(‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F) + 2Λ

≥ 1
c‖x

Q,k − xk+1‖2G −
L2
f

τ1
‖xQ,k − xk+1‖2F + ( 2

ε + 1
αε2 )‖zk − zk+1‖2F + 1

2ε‖z
∗ − zk+1‖2F

+ (µf − τ1)‖x∗ − xk+1‖2F. (74)

For the term (τ1 − µf )‖x∗ − xk+1‖2F in (74), we deal with it as follows.

(τ1 − µf )‖x∗ − xk+1‖2F
= (τ1 − µf )‖x∗ − xk+1 − ek+1 + ek+1‖2F
= (τ1 − µf )(‖x∗ − xQ,k+1‖2F + 2〈x∗ − xQ,k+1, ek+1〉+ ‖ek+1‖2F)

≤ (τ1 − µf )(‖x∗ − xQ,k+1‖2F + 2‖x∗ − xQ,k+1‖F ‖ek+1‖F + ‖ek+1‖2F)

≤ (τ1 − µf )(‖x∗ − xQ,k+1‖2F + 2A‖ek+1‖F + ‖ek+1‖2F), (75)
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where 2A‖ek+1‖F in the second inequality follows from Assumption 5.
Combining (75) with (74) yields

1
c (‖x∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + (α+ 1

αε2 )(‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F) + 2Λ

≥ 1
c‖x

Q,k − xk+1‖2G −
L2
f

τ1
‖xQ,k − xk+1‖2F + ( 2

ε + 1
αε2 )‖zk − zk+1‖2F + 1

2ε‖z
∗ − zk+1‖2F

+ (µf − τ1)‖x∗ − xQ,k+1‖2F + (µf − τ1)(2A‖ek+1‖F + ‖ek+1‖2F)

≥ (µmin(G)
c − L2

f

τ1
)‖xQ,k − xk+1‖2F + ( 2

ε + 1
αε2 )‖zk − zk+1‖2F + 1

2ε‖z
∗ − zk+1‖2F

+ (µf − τ1)‖x∗ − xQ,k+1‖2F + (µf − τ1)(2A‖ek+1‖F + ‖ek+1‖2F). (76)

To complete the proof, we need µmin(G)
c − L2

f

τ1
and µf − τ1 to satisfy the following

conditions, {
µmin(G)

c − L2
f

τ1
> 0,

µf − τ1 > 0.
(77)

Therefore, let δ > 0 to make (77) true, where we define δ as

δ , 1−
L2
fc

µmin(G)µf
> 0. (78)

Choosing τ1 =
µf

1+δ and substituting it and (78) into (76) then yields

1
c (‖x∗ − xQ,k‖2G − ‖x∗ − xQ,k+1‖2G) + (α+ 1

αε2 )(‖z∗ − zk‖2F − ‖z∗ − zk+1‖2F) + 2Λ

≥ µmin(G)
c δ2‖xQ,k − xk+1‖2F + ( 2

ε + 1
αε2 )‖zk − zk+1‖2F + 1

2ε‖z
∗ − zk+1‖2F

+
µf

1+δ‖x
∗ − xQ,k+1‖2F +

µf
1+δ (2A‖ek+1‖F + ‖ek+1‖2F)

≥ µf
1+δ‖x

∗ − xQ,k+1‖2F + 1
2ε‖z

∗ − zk+1‖2F. (79)

We can find a parameter c1 > 0 such that

µf
1+δ‖x

∗ − xQ,k+1‖2F ≥ c1‖x∗ − xQ,k+1‖2G, (80)

as long as c1 is sufficiently small. In this paper, let c1 =
µfδ

(1+δ)µmax(G) . Substituting c1
into (79) and rearranging it, we obtain

1
c‖x
∗ − xQ,k‖2G + (α+ 1

αε2 )‖z∗ − zk‖2F + 2Λ

≥ (c1 + 1
c )‖x∗ − xQ,k+1‖2G + (α+ 1

2ε + 1
αε2 )‖z∗ − zk+1‖2F. (81)

Rearranging (81), then it becomes

c2‖x∗ − xQ,k+1‖2G + ‖z∗ − zk+1‖2F

≤ τ2(c2‖x∗ − xQ,k‖2G + ‖z∗ − zk‖2F) + τ2
1

α+ 1
2ε + 1

αε2

2Λ, (82)
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where τ2 , max{ 1
c1c+1 ,

2α2ε2+2
αε+2α2ε2+2} < 1 and c2 =

c1+ 1
c

1
2ε+α+ 1

αε2
. Based on (45), we rear-

range 2Λ.

2Λ =
(1 + 2αε

ε

)
np
C2θ2(k+1)

22(b+1)
+
A

c

√
np
Cθk+1

2

=
(1 + 2αε

ε

)npC2θ2

22(b+1)︸ ︷︷ ︸ θ2k +

√
npACθ

c2b︸ ︷︷ ︸ θk. (83)

, a1 , a2

.
Substituting (83) into (82), we get

c2‖x∗ − xQ,k+1‖2G + ‖z∗ − zk+1‖2F
≤ τ2(c2‖x∗ − xQ,k‖2G + ‖z∗ − zk‖2F) + τ2

a1
α+ 1

2ε+ 1
αε2

θ2k + τ2
a2

α+ 1
2ε+ 1

αε2
θk

≤ τ2
2 (c2‖x∗ − xQ,k−1‖2G + ‖z∗ − zk−1‖2F) + τ2

2
a1

α+ 1
2ε+ 1

αε2
θ2(k−1) + τ2

a1
α+ 1

2ε+ 1
αε2

θ2k

+ τ2
2

a2
α+ 1

2ε+ 1
αε2

θk−1 + τ2
a2

α+ 1
2ε+ 1

αε2
θk

≤ τk+1
2

[
(c2‖x∗ − xQ,0‖2G + ‖z∗ − z0‖2F) + a1

α+ 1
2ε+ 1

αε2

k∑
j=0

(θ2

τ2

)j
+ a2

α+ 1
2ε+ 1

αε2

k∑
j=0

( θ
τ2

)j]
≤ τk+1

2 (c2‖x∗ − xQ,0‖2G + ‖z∗ − z0‖2F + Λ3 + Λ4), (84)

where 0 < θ < τ2 < 1, Λ3 ,
a1

α+ 1
2ε+ 1

αε2

1

1− θ2τ2
, and Λ4 ,

a2
α+ 1

2ε+ 1
αε2

1
1− θ

τ2

.

The proof is completed. �
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