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FURTHER RESULTS ON LAWS OF LARGE NUMBERS
FOR UNCERTAIN RANDOM VARIABLES

Feng Hu, Xiaoting Fu, Ziyi Qu and Zhaojun Zong

The uncertainty theory was founded by Baoding Liu to characterize uncertainty information
represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to de-
scribe the complex phenomenon, in which human uncertainty and random phenomenon coexist.
In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random
variables. The first theorem proved the Etemadi type LLN for uncertain random variables being
functions of pairwise independent and identically distributed random variables and uncertain
variables without satisfying the conditions of regular, independent and identically distributed
(IID). Two kinds of Marcinkiewicz–Zygmund type LLNs for uncertain random variables were
established in the case of p ∈ (0, 1) by the second theorem, and in the case of p > 1 by the
third theorem, respectively. For better illustrating of LLNs for uncertain random variables,
some examples were stated and explained. Compared with the existed theorems of LLNs for
uncertain random variables, our theorems are the generalised results.
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1. INTRODUCTION

In classical probability theory, Cardano first proposed a limit theorem in the sixteenth
century, which later became known as the “law of large numbers” (LLN for short).
Subsequently, LLN has been studied by a lot of mathematicians, including Bernoulli,
Poisson, Chebyshev, Markov, Borel, Cantelli, Kolmogorov and Khinchine. After a long
period of research and development, LLN has formed quite perfect theoretical system
and been widely used in real life. In the 21st century, one important development in
this field is LLN for random walks in random environments, which has attracted the
attention of many researchers. Interested readers may refer to Komorowski and Krupa
[21], Comets and Zeitouni [5], Avena et al. [2], Hollander et al. [6].

Fuzzy phenomenon is an extremely important feature of the real world. In order to
model fuzzy phenomena, a concept of fuzzy set was proposed by Zadeh [48] in 1965 and
possibility theory related to the theory of fuzzy set was founded by Zadeh [49]. After
that, fuzzy measure, Choquet integral and Sugeno integral, were further studied in [4,
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42, 43, 44]. Valás̆ková and Struk [43, 44] classified the fuzzy measures into eight classes:
submeasure, supermeasure, submodular, supermodular, belief, plausibility, possibility
and necessity, which are closed under the operations of distortion functions. The LLN
of fuzzy sets was first proposed by Fullér [8] and further generalized by Hong and Ro
[14]. Kwakernaak [23, 24] proposed a concept of fuzzy random variable to model complex
phenomena with both randomness and fuzziness. Some LLNs for fuzzy random variables
were proposed by Kruse [22] and Miyakoshi and Shimbo [38]. The readers can refer to
[16, 17, 20] for more results on LLNs for fuzzy random variables.

A lot of surveys showed that human uncertainty does not behave like fuzziness. The
debate focus is that the measure of union of events is not necessarily the maximum of
measures of individual events (Baoding Liu [30]). In order to overcome this disadvantage,
uncertainty theory was created by Baoding Liu [25] in 2007 and developed by Baoding
Liu [27] in 2009, which is based on an uncertain measure satisfying normality, duality,
subadditivity and product axioms. Within uncertainty theory, the uncertain measure
of an event indicates the belief degree that the event will occur. Moreover, this theory
provides the notion of uncertain variable to model the quantities under uncertain status.
Nowadays, uncertainty theory has been successfully applied in various fields, such as
uncertain differential equation (see, e. g., Baoding Liu [26], Yao and Chen [46]), uncertain
programming (see, e. g., Baoding Liu [28], Liu and Chen [32]), uncertain calculus (see,
e. g., Baoding Liu [27]) , uncertain control (see, e. g., Baoding Liu [29], Gao [9]), etc.

Sometimes, human uncertainties and random factors exist simultaneously in complex
systems. In order to study this type of complex systems, chance theory was proposed
by Yuhan Liu in [33], which introduced the concept of chance measure, integrated both
probability measure and uncertain measure, and proposed the concept of uncertain ran-
dom variable to model the quantities under uncertain and random conditions. These
concepts are mathematical descriptions for uncertain random phenomena (i. e., mix-
tures of human uncertainties and randomness) and are defined on the basis of probabil-
ity theory and uncertainty theory. In 2013,Yuhan Liu [34] proposed uncertain random
programming as a spectrum of mathematical programming involving uncertain random
variables. Then Zhou et al. [50], Qin [40], and Ke et al. [18, 19] developed uncer-
tain random multi-objective programming, uncertain random goal programming and
uncertain random multi-level programming, respectively. Besides, chance theory has
successfully been applied to risk analysis (see, e. g., Liu and Ralescu [35]), graph and
network (see, e. g., Baoding Liu [31]), propositional logic (see, e. g., Liu and Yao [36]) as
well as uncertain random process (see, e. g., Gao and Yao [10]).

Meanwhile, LLNs have had some good research results in chance space. In Yao
and Gao [47], LLN under chance measure was first proved, which shows the average
of uncertain random variables being functions converges in distribution to an uncertain
variable under the assumptions for independent, identically distributed (IID for short)
random variables and IID regular uncertain variables. After that, LLNs under chance
measures were developed by Gao and Sheng [12], Gao and Ralescu [13], Sheng et al.
[41]. Recently, Nowak and Hryniewicz [39] generalized LLN under chance measure in
[47], by weakening the case of independence of random variables to that of pairwise
independence of random variables, but the conditions of uncertain variables that are
also IID and regular.
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In this paper, our aim is to derive some LLNs for uncertain random variables. Three
kinds of LLNs under chance measures were obtained under some conditions of uncertain
random variables. The first theorem proved the Etemadi type LLN for uncertain random
variables being functions of pairwise independent and identically distributed random
variables and uncertain variables without satisfying the conditions of regular and IID.
Two kinds of Marcinkiewicz–Zygmund type LLNs for uncertain random variables that
satisfied the conditions of the first theorem were established in the case of p ∈ (0, 1)
by the second theorem, and in the case of p > 1 by the third theorem, respectively.
The proofs of these theorems in this paper are modifications of the corresponding proofs
in Nowak and Hryniewicz [39]. For better illustrating of LLNs for uncertain random
variables, some examples were stated and explained. Our LLNs for uncertain random
variables generalise the related results, such as Yao and Gao [47], Nowak and Hryniewicz
[39].

The rest of this paper is organized as follows. In Section 2, we give some basic
definitions concerning uncertainty and chance theory, including the notions of uncertain
variable and uncertain random variable. In Section 3, we give our mean results: three
kinds of LLNs for uncertain random variables under chance measures. In Section 4, two
examples are stated and explained. Finally, a short conclusion is presented in Section 5.

2. PRELIMINARIES

In this section, we give some basic definitions and propositions concerning uncertainty
and chance theory.

2.1. Uncertainty Space and Uncertain Variable

Let R be the set of real numbers and let B(R) be the σ- algebra of subsets of R.

Definition 2.1. (Liu [25]) Let L be a σ-algebra on a non-empty set Γ. A set function
M is called an uncertain measure if it satisfies the following axioms:

Axioms 1 (Normality Axiom): M{Γ} = 1 for the universal set Γ;

Axioms 2 (Duality Axiom): M{Λ}+M{Λc} = 1 for any Λ ∈ L;

Axioms 3 (Subadditivity Axiom): For every countable sequence of {Λj} ⊂ L, we have

M


∞⋃
j=1

Λj

 ≤
∞∑
j=1

M{Λj} .

The triplet (Γ,L,M) is called an uncertainty space, and each element Λ in L is
called an event. In order to obtain an uncertain measure of compound event, a product
uncertain measure is defined by Liu [27] as follows:

Axioms 4 (Product Axiom): Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . .
The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk} ,
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where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . , respectively.

Definition 2.2. (Liu [25]) An uncertain variable τ is a measurable function from an
uncertainty space (Γ,L,M) to the set of real numbers, i. e., for any B ∈ B(R), the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

Definition 2.3. (Liu [25]) The uncertainty distribution Ψ of an uncertain variable τ is
defined by

Ψ(x) =M{τ ≤ x} ,∀x ∈ R.

Definition 2.4. (Liu [25]) Uncertain variables are said to be identically distributed if
they have the same uncertainty distribution.

Definition 2.5. A sequence of uncertain variables {τi}∞i=1 on an uncertainty space
(Γ,L,M) is said to be independent if

M

{ ∞⋂
i=1

{τi ∈ Bi}

}
=

∞∧
i=1

M{τi ∈ Bi}

for arbitrary Bi ∈ B(R), i = 1, 2, . . . , n, . . . .

Remark 2.6. Suppose that {τi}∞i=1 is a sequence of independent uncertain variables.
Then for any n ∈ N, τk1 , τk2 , . . . , τkn are independent, where k1 < k2 < . . . < kn.

P r o o f . Without loss of generality, we only prove that the first n uncertain variables
τ1, τ2, . . . , τn are independent. Let Bi+1 = (−∞,∞), i ≥ n. By the independence of
{τi}∞i=1, we get

M

{ ∞⋂
i=1

{τi ∈ Bi}

}

=M

{
n⋂
i=1

{τi ∈ Bi}
⋂
{τn+1 ∈ (−∞,∞)}

⋂
{τn+2 ∈ (−∞,∞)}

⋂
. . .

}

=

{
n∧
i=1

M{τi ∈ Bi}

}∧
1 =

n∧
i=1

M{τi ∈ Bi}.

On the other hand,

M

{
n⋂
i=1

{τi ∈ Bi}
⋂
{τn+1 ∈ (−∞,∞)}

⋂
{τn+2 ∈ (−∞,∞)}

⋂
. . .

}

=M

{
n⋂
i=1

{τi ∈ Bi}

}
.
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Thus,

M

{
n⋂
i=1

{τi ∈ Bi}

}
=

n∧
i=1

M{τi ∈ Bi}.

�

Proposition 2.7. {τi}∞i=1 is a sequence of independent uncertain variables if and only
if

M

{ ∞⋃
i=1

{τi ∈ Bi}

}
=

∞∨
i=1

M{τi ∈ Bi}

for arbitrary Bi ∈ B(R), i = 1, 2, . . . , n, . . . .

P r o o f . It follows from the duality of uncertain measure that τ1, τ2, . . . are independent
if and only if

M

{ ∞⋃
i=1

{τi ∈ Bi}

}
= 1−M

{ ∞⋂
i=1

{τi ∈ Bic}

}

= 1−
∞∧
i=1

M{τi ∈ Bic} =

∞∨
i=1

M{τi ∈ Bi}.

Thus, the proof is completed. �

2.2. Chance Space and Uncertain Random Variable

Definition 2.8. (Liu [33]) Let (Γ,L,M) be an uncertainty space and (Ω,A,P) be a
probability space. Then the product (Γ,L,M) × (Ω,A,P) is called a chance space.
Essentially, it is another triplet,

(Γ× Ω,L ×A,M× P)

where Γ × Ω is the universal set, L × A is the producet σ− algebra, and M× P is the
product measure.

Definition 2.9. (Liu [33]) Let (Γ,L,M)×(Ω,A,P) be a chance space, and let Θ ∈ L×A
be an uncertain random event. Then the chance measure of Θ is defined as

Ch{Θ} =

∫ 1

0

P{ω ∈ Ω | M{γ ∈ Γ | (γ, ω) ∈ Θ} ≥ r} dr. (1)

Liu [33] proved that a chance measure satisfies normality, duality, and monotonicity
properties, that is

(i) Ch{Γ× Ω} = 1 for the universal set Γ× Ω;

(ii) Ch{Θ}+ Ch{Θc} = 1 for any event Θ;

(iii) Ch{Θ1} ≤ Ch{Θ2} for any events Θ1 and Θ2 with Θ1 ⊆ Θ2.

Moreover, Hou [15] proved the subadditivity of chance measure, that is

Ch

{
n⋃
i=1

Θi

}
≤

n∑
i=1

Ch {Θi} , where Θi ∈ L ×A, i = 1, . . . , n, and n ∈ N.
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Definition 2.10. (Liu [33]) An uncertain random variable is a measurable function ξ
from a chance space (Γ,L,M)× (Ω,A,P) to R, i. e., for any B ∈ B(R), the set

{ξ ∈ B} = {(γ, ω)|ξ(γ, ω) ∈ B}

is an event.

Definition 2.11. (Liu [33]) Let ξ be an uncertain random variable. Then its chance
distribution is defined by

Ξ(x) = Ch{ξ ≤ x}, x ∈ R.

Definition 2.12. (Ahmadzade et al. [1]) An uncertain random sequence {ξn}∞n=1 is
said to be convergent in measure to an uncertain random variable ξ if

lim
n→∞

Ch{(γ, ω)||ξn(γ, ω)− ξ(γ, ω)| ≥ ε} = 0

for any ε > 0.

Definition 2.13. (Gao and Ahmadzade [11]) Let Ξ,Ξ1,Ξ2, . . . , be the chance distribu-
tions of uncertain random varoables ξ, ξ1, ξ2, . . . , respectively. Then uncertain random
sequence {ξn}∞n=1 is said to be convergent in distribution to the uncertain random vari-
able ξ, if

lim
n→∞

Ξn(x) = Ξ(x),

for all x ∈ R at which Ξ(x) is continuous.

Here and in the sequel, uncertain random variables are based on the chance space
(Γ,L,M)× (Ω,A,P).

3. MAIN RESULTS

In this section, under the chance space, we give three kinds of LLNs for uncertain random
variables. In Section 3.1, we get the convergence of the sequence Sn

n as n → ∞ in the
first theorem. In Section 3.2, we consider the problem of convergence of the sequence
Sn−nc
n1/q as n → ∞. We will give two kinds of Marcinkiewicz–Zygmund Type LLNs for

uncertain random variables in the case of q ∈ (0, 1), c = 0 by the second theorem, and
in the case of q > 1, c ∈ R by the third theorem.

Before we give these LLNs, we first need some basic notations and assumptions.
Let {ηi}∞i=1 be a sequence of pairwise independent and identically distributed random

variables and {τi}∞i=1 be a sequence of uncertain variables. We denote by CI the class of
continuous functions f : R×R 7→ R such that f(x, y) is increasing (not necessary strictly
increasing) with respect to y for each x ∈ R, by CD the class of continuous functions
f : R × R 7→ R such that f(x, y) is decreasing (not necessary strictly decreasing) with
respect to y for each x ∈ R, by C̄I the class of continuous function g : R 7→ R increasing
(not necessary strictly increasing), and by C̄D the class of continuous function g : R 7→ R
decreasing (not necessary strictly decreasing).
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Let

Sn =

n∑
i=1

f(ηi, τi), n ∈ N, f ∈ CI ∪ CD,

Sn(y) =

n∑
i=1

f(ηi, y), y ∈ R, n ∈ N, f ∈ CI ∪ CD,

S̄n =

n∑
i=1

g(τi), n ∈ N, g ∈ C̄I ∪ C̄D,

and

h(y) = E[f(η1, y)], y ∈ R, f ∈ CI ∪ CD,

where we use the symbol E to denote the expected value with respect to probability
measure P.

Remark 3.1. Let η1 be a random variable with a distribution function F . Assume
that f ∈ CI and

∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R, then h(y) = E[f(η1, y)] =∫∞

−∞ f(x, y)dF (x) is continuous and increasing with respect to y. Similarly, assume

that f ∈ CD and
∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R, then h(y) = E[f(η1, y)] =∫∞

−∞ f(x, y)dF (x) is continuous and decreasing with respect to y.

Definition 3.2. (Liu [7]) a sequence of random variables {ηi}∞i=1 is said to be pairwise
independent if for each i, j ∈ N, i 6= j, the random variables ηi and ηj are independent.

Remark 3.3. Clearly, independence of random variables implies their pairwise inde-
pendence.

The following lemma is Etemadi strong law of large numbers (SLLN for short), which
is very useful in this paper and can be seen in [7, 37].

Lemma 3.4. (Etemadi SLLN) If a sequence of random variables {ηi}∞i=1 is pairwise
independent, identically distributed and E[|η1|] <∞, then

P
{
ω : lim

n→∞

∑n
i=1 ηi
n

= E[η1]

}
= 1.

Remark 3.5. From Lemma 3.4, it is easy to prove that: If a sequence of random
variables {ηi}∞i=1 is pairwise independent, identically distributed and E[|η1|] <∞, then
for any q ∈ (0, 1),

P
{
ω : lim

n→∞

∑n
i=1 ηi
n1/q

= 0

}
= 1.
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3.1. The Etemadi Type LLN for Uncertain Random Variables

We first give the Etemadi type LLN for uncertain random variables being functions of
pairwise independent, identically distributed random variables and uncertain variables.

Theorem 3.6. (The Etemadi Type LLN for Uncertain Random Variables) Let {ηi}∞i=1

be a sequence of pairwise independent random variables with a cumulative distribution
function F and {τi}∞i=1 be a sequence of uncertain variables. Suppose f ∈ CI ∪CD, and∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R. Set h(τk) =

∫∞
−∞ f(x, τk)dF (x), k ≥ 1. Denote

the uncertainty distributions of uncertain variables supk≥1 h(τk) and infk≥1 h(τk) by Φ
and Ψ, respectively. Then for any z ∈ (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}) at which
Φ(z) and Ψ(z) are both continuous,

Φ(z) ≤ lim inf
n→∞

Ch

{
Sn
n
≤ z
}
≤ lim sup

n→∞
Ch

{
Sn
n
≤ z
}
≤ Ψ(z). (2)

Furthermore, if supk≥1 h(τk) and infk≥1 h(τk) have the same uncertainty distribution
on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}), then

lim
n→∞

Sn
n

= inf
k≥1

h(τk) = inf
k≥1

(∫ ∞
−∞

f(x, τk)dF (x)

)
(3)

in the sense of convergence in distribution, i. e., for any z ∈ (inf{h(y)|y ∈ R}, suph(y)|y ∈
R}) at which Ψ(z) is continuous,

lim
n→∞

Ch

{
Sn
n
≤ z
}

= Ψ(z).

P r o o f . The proof can be completed by considering the cases f ∈ CI and f ∈
CD, respectively. For any u ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}), define y0(u) =
max{y|h(y) = u}.

Case 1: Assume that f ∈ CI .
For any fixed z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}) at which Φ(z) is continuous,

and ε > 0 satisfying that z − ε ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}). By Lemma 3.4,
there exists N1 ∈ N such that for each n ≥ N1,

P
{
Sn(y0(z − ε))

n
≤ z
}
≥ 1− ε. (4)

If n ≥ N1,

Ch

{
Sn
n
≤ z
}

=

∫ 1

0

P
{
M
{
Sn
n
≤ z
}
≥ r
}

dr

≥
∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}⋂{

M
{
Sn
n
≤ z
}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}⋂{

M
{
Sn
n
≤ Sn(y0(z − ε))

n

}
≥ r
}}

dr
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=

∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}

⋂{
M
{ n∑
k=1

f(ηk, τk) ≤
n∑
k=1

f(ηk, y0(z − ε))
}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}

⋂{
M
{ n⋂

k=1

{
f(ηk, τk) ≤ f(ηk, y0(z − ε))

}}
≥ r
}}

dr.

Note that f(x, y) is a increasing function of y for each x. By (4) and y0(z − ε) =
max{y|h(y) = z − ε}, it follows that

Ch

{
Sn
n
≤ z
}
≥
∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}

⋂{
M
{ n⋂

k=1

{
τk ≤ y0(z − ε)

}}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}⋂{

M
{ n⋂

k=1

{
h(τk) ≤ z − ε

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}⋂{

M
{ ∞⋂

k=1

{
h(τk) ≤ z − ε

}}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(z − ε))
n

≤ z
}⋂{

M
{

sup
k≥1

h(τk) ≤ z − ε
}
≥ r
}}

dr

≥ (1− ε)Φ(z − ε). (5)

Since Φ is continuous at z, by the above arguments and letting ε→ 0, we get

lim inf
n→∞

Ch

{
Sn
n
≤ z
}
≥ Φ(z). (6)

On the other hand, fix z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}) at which Ψ(z) is
continuous, and let ε > 0 satisfying that z + ε ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}).
By Lemma 3.4, there exists N2 ∈ N such that for each n ≥ N2,

P
{
Sn(y0(z + ε))

n
> z

}
≥ 1− ε. (7)

If n ≥ N2,

Ch

{
Sn
n
> z

}
=

∫ 1

0

P
{
M
{
Sn
n
> z

}
≥ r
}

dr

≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
M
{
Sn
n
> z

}
≥ r
}}

dr
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≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
M
{
Sn
n
>
Sn(y0(z + ε))

n

}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}
⋂{

M
{ n∑
k=1

f(ηk, τk) >

n∑
k=1

f(ηk, y0(z + ε))

}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}
⋂{

M
{ n⋂

k=1

{
f(ηk, τk) > f(ηk, y0(z + ε))

}}
≥ r
}}

dr.

Note that f(x, y) is a increasing function of y for each x. By (7) and y0(z + ε) =
max{y|h(y) = z + ε}, it follows that

Ch

{
Sn
n
> z

}
≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}
⋂{

M
{ n⋂

k=1

{
τk > y0(z + ε)

}}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
M
{ n⋂

k=1

{
h(τk) > z + ε

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
M
{ ∞⋂

k=1

{
h(τk) > z + ε

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
M
{

inf
k≥1

h(τk) > z + ε

}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(z + ε))

n
> z

}⋂{
1−M

{
inf
k≥1

h(τk) ≤ z + ε

}
≥ r
}}

dr

≥ (1− ε)(1−Ψ(z + ε)). (8)

Applying the duality property of Ch, it yields

Ch

{
Sn
n
≤ z
}
≤ 1− (1− ε)(1−Ψ(z + ε)).

Since Ψ is continuous at z, letting ε→ 0, we get

lim sup
n→∞

Ch

{
Sn
n
≤ z
}
≤ Ψ(z). (9)

Then for any z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}) at which Φ(z) and Ψ(z) are both
continuous, (2) follows, combining (6) and (9).
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Case 2: Assume that f ∈ CD, then −f ∈ CI . By considering −f and −z instead of
f and z in (2), we get

M
{

sup
k≥1

(−h(τk)) < −z
}
≤ lim inf

n→∞
Ch

{
−Sn
n

< −z
}

≤ lim sup
n→∞

Ch

{
−Sn
n

< −z
}
≤M

{
inf
k≥1

(−h(τk)) < −z
}
.

Then we obtain

M
{

sup
k≥1

h(τk) ≤ z
}
≤ lim inf

n→∞
Ch

{
Sn
n
≤ z
}

≤ lim sup
n→∞

Ch

{
Sn
n
≤ z
}
≤M

{
inf
k≥1

h(τk) ≤ z
}
,

by the duality properties ofM and Ch. Then for any z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈
R}) at which Φ(z) and Ψ(z) are both continuous, (2) follows.

Furthermore, if supk≥1 h(τk) and infk≥1 h(τk) have the same uncertainty distribution
on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}), (3) holds by (2). Thus, the proof of Theorem
3.6 is completed. �

Remark 3.7. Let F be a distribution function and {τi}∞i=1 be a sequence of IID un-
certain variables with continuous uncertainty distributions. Suppose f ∈ CI ∪ CD, and∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R. Set h(τk) =

∫∞
−∞ f(x, τk)dF (x), k ≥ 1. Then

the uncertainty distributions of supk≥1 h(τk) and infk≥1 h(τk) are as the same as that
of h(τ1) on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}).

P r o o f . First, we show that {h(τk)}∞k=1 is a sequence of uncertain variables with
the same distribution on (inf{h(y)| y ∈ R}, suph(y)| y ∈ R}). The proof can
be completed by considering the cases f ∈ CI and f ∈ CD, respectively. For any
u ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}), we define y0(u) = max{y|h(y) = u} and
y1(u) = min{y|h(y) = u}. Assume that f ∈ CI , then h(y) is increasing. For any
z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y
∈ R}), it follows from Definition 2.4 that

M{τk ≤ y0(z)} =M{τ1 ≤ y0(z)}, k ≥ 1.

Hence, M{h(τk) ≤ z} =M{h(τ1) ≤ z}, k ≥ 1.
Assume that f ∈ CD, then h(y) is decreasing. Note that {τk}∞k=1 is a sequence

of identically distributed uncertain variables with continuous uncertainty distributions.
For any z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}), we have

M{τk ≤ y1(z)} =M{τ1 ≤ y1(z)}, k ≥ 1.

By the continuity of the uncertainty distributions of {τk}∞k=1 , we get

M{τk < y1(z)} =M{τ1 < y1(z)}, k ≥ 1,
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i. e.,
M{τk ≥ y1(z)} =M{τ1 ≥ y1(z)}, k ≥ 1.

It follows thatM{h(τk) ≤ z} =M{h(τ1) ≤ z} , k ≥ 1. Thus, {h(τk)}∞k=1 is a sequence
of uncertain variables with the same distribution on (inf{h(y) | y ∈ R}, suph(y) | y ∈
R}).

From Theorem 1.7 (b) in [45] and the fact in Remark 3.1that h (y) is a continuous
function, we know that h (τi) is a measurable function, i. e., for any Bi ∈ B(R), the set
{h (τi) ∈ Bi} = {γ ∈ Γ | h (τi(γ)) ∈ Bi} ∈ L. Next, applying Proposition 2.7, we can get

M

{ ∞⋂
i=1

{h (τi) ∈ Bi}

}
=M

{ ∞⋂
i=1

{
τi ∈ h−1 (Bi)

}}

=

∞∧
i=1

M
{
τi ∈ h−1 (Bi)

}
=

∞∧
i=1

M{h (τi) ∈ Bi} , (10)

where h−1 (Bi) =: {x ∈ R : h(x) ∈ Bi} ∈ B(R). Hence, {h(τk)}∞k=1 is a sequence of inde-
pendent uncertain variables with the same distribution on (inf{h(y) | y ∈ R}, suph(y) |
y ∈ R}).

At last, we show that the distributions of supk≥1 h(τk) and infk≥1 h(τk) are as
the same as that of h(τ1) on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}). From the
fact that {h(τk)}∞k=1 is a sequence of IID uncertain variables with continuous uncer-
tainty distributions on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}), we have: for any
z ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}),

M
{

sup
k≥1

h(τk) ≤ z
}

=M

{ ∞⋂
k=1

{h(τk) ≤ z}

}

=

∞∧
k=1

M{h(τk) ≤ z} =M{h(τ1) ≤ z} , (11)

and

M
{

inf
k≥1

h(τk) < z

}
=M

{ ∞⋃
k=1

{h(τk) < z}

}

=

∞∨
k=1

M{h(τk) < z} =M{h(τ1) < z} . (12)

Thus, the proof is completed. �

Applying Theorem 3.6 and Remark 3.7, we can immediately obtain:

Corollary 3.8. Let {ηi}∞i=1 be a sequence of pairwise independent random variables
with a cumulative distribution function F and {τi}∞i=1 be a sequence of IID uncer-
tain variables with continuous uncertainty distributions. Suppose f ∈ CI ∪ CD, and∫∞
−∞ |f(x, y)|dF (x) <∞ for any y ∈ R. Set h(τk) =

∫∞
−∞ f(x, τk)dF (x), k ≥ 1. Then

lim
n→∞

Sn
n

= h(τ1) =

∫ ∞
−∞

f(x, τ1)dF (x) (13)
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in the sense of convergence in distribution, i. e., for any z ∈ (inf{h(y)|y ∈ R}, suph(y)|y ∈
R}) at which M{h(τ1) ≤ z} is continuous,

lim
n→∞

Ch

{
Sn
n
≤ z
}

=M{h(τ1) ≤ z} .

The following Corollary 3.9 is a direct consequence of Theorem 3.6 in a degenerate
situation for IID uncertain variables with f(x, y) = g(y), x, y ∈ R.

Corollary 3.9. Let {τi}∞i=1 be a sequence of IID uncertain variables with continuous
uncertainty distributions. Suppose g ∈ C̄I ∪ C̄D. Then

lim
n→∞

S̄n
n

= g(τ1) (14)

in the sense of convergence in distribution, i. e., for any z ∈ (inf{g(y)|y ∈ R}, sup g(y)|y ∈
R}) at which M{g(τ1) ≤ z} is continuous,

lim
n→∞

Ch

{
S̄n
n
≤ z
}

=M{g(τ1) ≤ z} .

3.2. The Marcinkiewicz–Zygmund type LLNs for uncertain random
variables

In this subsection, we give two types of Marcinkiewicz–Zygmund LLNs for uncertain
random variables being functions of pairwise independent, identically distributed random
variables and uncertain variables.

Theorem 3.10. (The Type I of Marcinkiewicz–Zygmund LLN for Uncertain Random
Variables) Let {ηi}∞i=1 be a sequence of pairwise independent random variables with a
cumulative distribution function F and {τi}∞i=1 be a sequence of uncertain variables.
Suppose f ∈ CI ∪ CD, and

∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R. Set h(τk) =∫∞

−∞ f(x, τk)dF (x), k ≥ 1. And suppose that the uncertainty distributions of uncertain
variables supk≥1 h(τk) and infk≥1 h(τk), denoted by Φ and Ψ, respectively satisfy

lim
y→∞

Φ(y) = 1, lim
y→−∞

Ψ(y) = 0. (15)

Then for any q ∈ (0, 1), lim
n→∞

Sn

n1/q = 0 in the sense of convergence in measure, i. e., for

any ε > 0,

lim
n→∞

Ch

{∣∣∣∣ Snn1/q

∣∣∣∣ ≥ ε} = 0. (16)

P r o o f . For any u ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}), define y0(u) = max{y|h(y) =
u}. Fix ε > 0. Let 0 < ε1, ε2 < 1. By Remark 3.5, there exist N3, N4 ∈ N, such that

P
{
Sn(y0(u))

n1/q
< ε

}
> 1− ε1, n ≥ N3, (17)
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and

P
{
Sn(y0(u))

n1/q
> −ε

}
> 1− ε2, n ≥ N4. (18)

If f ∈ CI , letting n ≥ N3, we have

Ch

{
Sn
n1/q

< ε

}
=

∫ 1

0

P
{
M
{
Sn
n1/q

< ε

}
≥ r
}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{
Sn
n1/q

< ε

}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{
Sn
n1/q

≤ Sn(y0(u))

n1/q

}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{ n∑
k=1

f(ηk, τk) ≤
n∑
k=1

f(ηk, y0(u))

}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{ n⋂
k=1

{
f(ηk, τk) ≤ f(ηk, y0(u))

}}
≥ r
}}

dr.

Since f(x, y) is an increasing function of y for each x, by (17), we get

Ch

{
Sn
n1/q

< ε

}
≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{ n⋂
k=1

{
τk ≤ y0(u)

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{ ∞⋂
k=1

{
h(τk) ≤ u

}}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
M
{

sup
k≥1

h(τk) ≤ u
}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(u))

n1/q
< ε

}⋂{
Φ(u) ≥ r

}}
dr

> (1− ε1)Φ(u). (19)

Let ε1 → 0 and u→∞, then limn→∞ Ch
{
Sn

n1/q < ε
}

= 1. Hence, by the duality property
of Ch,

lim
n→∞

Ch

{
Sn
n1/q

≥ ε
}

= 0. (20)
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On the other hand, for n ≥ N4,

Ch

{
Sn
n1/q

> −ε
}

=

∫ 1

0

P
{
M
{
Sn
n1/q

> −ε
}
≥ r
}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{
Sn
n1/q

> −ε
}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{
Sn
n1/q

>
Sn(y0(u))

n1/q

}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{ n∑
k=1

f(ηk, τk) >

n∑
k=1

f(ηk, y0(u))

}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{ n⋂
k=1

{
f(ηk, τk) > f(ηk, y0(u))

}}
≥ r
}}

dr.

Since f(x, y) is a increasing function of y for each x, by (18), we get

Ch

{
Sn
n1/q

> −ε
}
≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{ n⋂
k=1

{
τk > y0(u)

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{ ∞⋂
k=1

{
h(τk) > u

}}
≥ r
}}

dr

≥
∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
M
{

inf
k≥1

h(τk) > u

}
≥ r
}}

dr

=

∫ 1

0

P
{{

Sn(y0(u))

n1/q
> −ε

}⋂{
(1−Ψ(u)) ≥ r

}}
dr

> (1− ε2)(1−Ψ(u)). (21)

Letting ε2 → 0 and u → −∞, we have limn→∞ Ch
{
Sn

n1/q > −ε
}

= 1. Hence, by the
duality property of Ch,

lim
n→∞

Ch

{
Sn
n1/q

≤ −ε
}

= 0. (22)

From (20), (22) and the subadditive property of Ch, it follows that

lim
n→∞

Ch

{∣∣∣∣ Snn1/q

∣∣∣∣ ≥ ε} = lim
n→∞

Ch

{{
Sn
n1/q

≤ −ε
}⋃{

Sn
n1/q

≥ ε
}}

≤ lim
n→∞

Ch

{
Sn
n1/q

≤ −ε
}

+ lim
n→∞

Ch

{
Sn
n1/q

≥ ε
}

= 0. (23)

If f ∈ CD, then −f ∈ CI . By considering −f instead of f in (23), we get

lim
n→∞

Ch

{∣∣∣∣∑n
k=1(−f(ηk, τk))

n1/q

∣∣∣∣ ≥ ε} = lim
n→∞

Ch

{∣∣∣∣∑n
k=1 f(ηk, τk)

n1/q

∣∣∣∣ ≥ ε} = 0. (24)

The proof of Theorem 3.10 is completed. �

Applying Theorem 3.10 and Remark 3.7, we can immediately obtain:
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Corollary 3.11. Let {ηi}∞i=1 be a sequence of pairwise independent random variables
with a cumulative distribution function F and {τi}∞i=1 be a sequence of IID uncertain
variables with continuous uncertainty distributions, which satisfy

lim
y→∞

M{τ1 ≤ y} = 1, lim
y→−∞

M{τ1 ≤ y} = 0. (25)

Suppose f ∈ CI ∪ CD, and
∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R. Then for any

q ∈ (0, 1), lim
n→∞

Sn

n1/q = 0 in the sense of convergence in measure, i. e., for any ε > 0,

lim
n→∞

Ch

{∣∣∣∣ Snn1/q

∣∣∣∣ ≥ ε} = 0.

The following Corollary 3.12 is a direct consequence of Theorem 3.10 in a degenerate
situation for IID uncertain variables with f(x, y) = g(y), x, y ∈ R.

Corollary 3.12. Let {τi}∞i=1 be a sequence of IID uncertain variables with continuous
uncertainty distributions, satisfying (25). Suppose g ∈ C̄I∪C̄D. Then for any q ∈ (0, 1),

lim
n→∞

S̄n

n1/q = 0 in the sense of convergence in measure, i. e., for any ε > 0,

lim
n→∞

Ch

{∣∣∣∣ S̄nn1/q

∣∣∣∣ ≥ ε} = lim
n→∞

M
{∣∣∣∣ S̄nn1/q

∣∣∣∣ ≥ ε} = 0.

Theorem 3.13. (The Type II of Marcinkiewicz–Zygmund LLN for Uncertain Random
Variables) Let {ηi}∞i=1 be a sequence of pairwise independent random variables with a
cumulative distribution function F and {τi}∞i=1 be a sequence of uncertain variables.
Suppose f ∈ CI ∪ CD, and

∫∞
−∞ |f(x, y)|dF (x) < ∞ for any y ∈ R. Set h(τk) =∫∞

−∞ f(x, τk)dF (x), k ≥ 1. Denote the uncertainty distributions of uncertain variables
supk≥1 h(τk) and infk≥1 h(τk) by Φ and Ψ, respectively. Then for any q > 1, c ∈
(inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}) at which Φ(c) and Ψ(c) are both continuous, and
z ∈ R,

Φ(c) ≤ lim inf
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}
≤ lim sup

n→∞
Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ψ(c). (26)

Furthermore, if supk≥1 h(τk) and infk≥1 h(τk) have the same uncertainty distribu-
tion on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}), then for any q > 1, c ∈ (inf{h(y)|y ∈
R}, sup{h(y)|y ∈ R}) at which Ψ(c) is continuous, lim

n→∞
Sn−nc
n1/q = mf,c in the sense of

convergence in distribution, where mf,c is an uncertain variable with constant uncer-
tainty distribution equal to Ψ(c), i. e., for any z ∈ R,

lim
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}

= Ψ(c). (27)

P r o o f . Fix z ∈ R and c ∈ (inf{h(y|y ∈ R}, sup{h(y)|y ∈ R}) at which Φ(c) and
Ψ(c) are both continuous. For each small enough δ > 0, there exists N ∈ N such that
|z|

n1−1/q < δ, n ≥ N, q > 1 and c+ δ, c− δ ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}).
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If z ≥ 0 and n ≥ N , we get

Ch

{
Sn
n
≤ c
}
≤ Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ch

{
Sn
n
≤ c+ δ

}
. (28)

By Theorem 3.6, we have

Φ(c) ≤ lim inf
n→∞

Ch

{
Sn
n
≤ c
}
, (29)

lim sup
n→∞

Ch

{
Sn
n
≤ c+ δ

}
≤ Ψ(c+ δ). (30)

From (28), (29) and (30), it follows that

Φ(c) ≤ lim inf
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}

≤ lim sup
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ψ(c+ δ). (31)

Since Ψ is continuous at c and δ > 0 is arbitrary, letting δ → 0 in (31), we get

Φ(c) ≤ lim inf
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}
≤ lim sup

n→∞
Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ψ(c). (32)

If z < 0 and n ≥ N , we get

Ch

{
Sn
n
≤ c− δ

}
≤ Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ch

{
Sn
n
≤ c
}
. (33)

By Theorem 3.6, we have

Φ(c− δ) ≤ lim inf
n→∞

Ch

{
Sn
n
≤ c− δ

}
, (34)

lim sup
n→∞

Ch

{
Sn
n
≤ c
}
≤ Ψ(c). (35)

From (33), (34) and (35), it follows that

Φ(c− δ) ≤ lim inf
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}

≤ lim sup
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ψ(c). (36)

Since Φ is continuous at c and δ > 0 is arbitrary, letting δ → 0 in (36), we get

Φ(c) ≤ lim inf
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}
≤ lim sup

n→∞
Ch

{
Sn − nc
n1/q

≤ z
}
≤ Ψ(c). (37)
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Thus, (26) is proved.
Furthermore, if supk≥1 h(τk) and infk≥1 h(τk) have the same uncertainty distribution

on (inf{h(y) | y ∈ R}, suph(y) | y ∈ R}), (27) holds by (26). The proof of Theorem 3.13
is completed. �

Applying Theorem 3.13 and Remark 3.7, we can immediately obtain:

Corollary 3.14. Let {ηi}∞i=1 be a sequence of pairwise independent random variables
with a cumulative distribution function F and {τi}∞i=1 be a sequence of IID uncer-
tain variables with continuous uncertainty distributions. Suppose f ∈ CI ∪ CD, and∫∞
−∞ |f(x, y)|dF (x) <∞ for any y ∈ R. Set h(τk) =

∫∞
−∞ f(x, τk)dF (x), k ≥ 1. then for

any q > 1, c ∈ (inf{h(y)|y ∈ R}, sup{h(y)|y ∈ R}) at which M{h(τ1) ≤ c} is contin-
uous, lim

n→∞
Sn−nc
n1/q = mf,c in the sense of convergence in distribution, where mf,c is an

uncertain variable with constant uncertainty distribution equal to M{h(τ1) ≤ c}, i. e.,
for any z ∈ R,

lim
n→∞

Ch

{
Sn − nc
n1/q

≤ z
}

=M{h(τ1) ≤ c} . (38)

The following Corollary 3.15 is a direct consequence of Theorem 3.13 in a degenerate
situation for IID uncertain variables with f(x, y) = g(y), x, y ∈ R.

Corollary 3.15. Let {τi}∞i=1 be a sequence of IID uncertain variables with continuous
uncertainty distributions. Suppose g ∈ C̄I ∪ C̄D. Then for any q > 1, c ∈ (inf{g(y)|y ∈
R}, sup{g(y)|y ∈ R}) at which M{g(τ1) ≤ c} is continuous, lim

n→∞
S̄n−nc
n1/q = mg,c in the

sense of convergence in distribution, where mg,c is an uncertain variable with constant
uncertainty distribution equal to M{g(τ1) ≤ c}, i. e., for any z ∈ R,

lim
n→∞

Ch

{
S̄n − nc
n1/q

≤ z
}

= lim
n→∞

M
{
S̄n − nc
n1/q

≤ z
}

=M{g(τ1) ≤ c}. (39)

4. EXAMPLES

The following two examples are the applications of Theorem 3.6 and Theorem 3.13, but
they are not obtained by the existed results of LLNs for uncertain random variables,
such as in Yao and Gao [47], Nowak and Hryniewicz [39].

Example 4.1. Let {ηi}∞i=1 be a sequence of independent random variables with a cu-
mulative distribution

P{η1 = x} = px(1− p)1−x, x = 0, 1, 0 < p < 1,

and {τi}∞i=1 be a sequence of independent, normally distributed uncertain variables with
uncertainty distribution

ψ(x) =

(
1 + exp

(
−πx√

3

))−1

, x ∈ R.
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Let f1(x, y) = x + g(y), f2(x, y) = x − g(y), g(y) = 0I{y≤0} + yI{0<y<1} + 1I{y≥1}, for
any x, y ∈ R. Obviously, f1 ∈ CI , f2 ∈ CD, but g(y) is not strictly increasing with
respect to y, and E[f1(η1, y)] = p+ g(y), E[f2(η1, y)] = p− g(y). Then, by Theorem 3.6
and Theorem 3.13, we have:
(I)

lim
n→∞

∑n
k=1(ηk + g(τk))

n
= p+ g(τ1)

in the sense of convergence in distribution, i. e., for any z ∈ (p, p+ 1),

lim
n→∞

Ch

{∑n
k=1(ηk + g(τk))

n
≤ z
}

= ψ(z − p),

and

lim
n→∞

∑n
k=1(ηk − g(τk))

n
= p− g(τ1)

in the sense of convergence in distribution, i. e., for any z ∈ (p− 1, p),

lim
n→∞

Ch

{∑n
k=1(ηk − g(τk))

n
≤ z
}

= 1− ψ(p− z).

(II)

lim
n→∞

∑n
k=1 g(τk)

n
= g(τ1)

in the sense of convergence in distribution, i. e., for any z ∈ (0, 1),

lim
n→∞

Ch

{∑n
k=1 g(τk)

n
≤ z
}

= ψ(z),

and

lim
n→∞

∑n
k=1(−g(τk))

n
= −g(τ1)

in the sense of convergence in distribution, i. e., for any z ∈ (−1, 0),

lim
n→∞

Ch

{∑n
k=1(−g(τk))

n
≤ z
}

= 1− ψ(−z).

(III) For any q > 1, c ∈ (p, p+ 1), lim
n→∞

∑n
k=1(ηk+g(τk))−nc

n1/q = mf1,c in the sense of con-

vergence in distribution, where mf1,c is an uncertain variable with constant uncertainty
distribution equal to ψ(c− p), i. e., for any z ∈ R,

lim
n→∞

Ch

{∑n
k=1(ηk + g(τk))− nc

n1/q
≤ z
}

= ψ(c− p),

and for any q > 1, c ∈ (p − 1, p), lim
n→∞

∑n
k=1(ηk−g(τk))−nc

n1/q = mf2,c in the sense of con-

vergence in distribution, where mf2,c is an uncertain variable with constant uncertainty
distribution equal to 1− ψ(p− c), i. e., for any z ∈ R,

lim
n→∞

Ch

{∑n
k=1(ηk − g(τk))− nc

n1/q
≤ z
}

= 1− ψ(p− c).
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(IV ) For any q > 1, c ∈ (0, 1), lim
n→∞

∑n
k=1 g(τ

3
k)−nc

n1/q = mg,c in the sense of convergence in

distribution, where mg,c is an uncertain variable with constant uncertainty distribution
equal to ψ( 3

√
c), i. e., for any z ∈ R,

lim
n→∞

Ch

{∑n
k=1 g(τ3

k )− nc
n1/q

≤ z
}

= ψ( 3
√
c),

and for any q > 1, c ∈ (−1, 0), lim
n→∞

−
∑n

k=1 g(τ
3
k)−nc

n1/q = m−g,c in the sense of conver-

gence in distribution, where m−g,c is an uncertain variable with constant uncertainty
distribution equal to 1− ψ( 3

√
−c), i. e., for any z ∈ R,

lim
n→∞

Ch

{
−
∑n
k=1 g(τ3

k )− nc
n1/q

≤ z
}

= 1− ψ( 3
√
−c).

Example 4.2. We consider a sequence of independent Rademacher random variables
{ε̄i}∞i=−1, i. e., random variables with distribution P{ε̄i = −1} = P{ε̄i = 1} = 1

2 ,
i ∈ N∪{−1, 0}, and a sequence of IID indicator functions IAi

, i ∈ N, such that P{Ai} = a,
0 < a < 1, i ∈ N. We assume that both sequences are independent. Let

ηi = IAi ε̄i+ = IAc
i
ε̄i−1ε̄i−2, i ∈ N.

Obviously, {ηi}∞i=1 is a sequence of Rademacher distributed and pairwise independent,
but dependent (see [3] for proof) random variables. Moreover, let {τi}∞i=1 be a sequence
of independent uncertain variables. {τ2i}∞i=1 has a cumulative distribution function
ψ(x) = 0I{x≤0}+xI{0<x<1}+ 1I{x≥1}, x ∈ R. {τ2i−1}∞i=1 has a cumulative distribution
function ϕ(x) = 0I{x≤0} + xI{0<x<1+δ} + 1I{x≥1+δ}, x ∈ R, where δ is a given small
positive constant. Then, by Theorem 3.6 and Theorem 3.13, we have:
(I) If z ∈ (−∞, 0],

lim
n→∞

Ch

{∑n
k=1(ηk + τk)

n
≤ z
}

= 0,

if z ∈ [1 + δ,∞),

lim
n→∞

Ch

{∑n
k=1(ηk + τk)

n
≤ z
}

= 1,

and if z ∈ (0, 1 + δ),

z

1 + δ
≤ lim inf

n→∞
Ch

{∑n
k=1(ηk + τk)

n
≤ z
}

≤ lim sup
n→∞

Ch

{∑n
k=1(ηk + τk)

n
≤ z
}
≤ z

∧
1.

(II) If z ∈ (−∞,−1− δ],

lim
n→∞

Ch

{∑n
k=1(ηk − τk)

n
≤ z
}

= 0,
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if z ∈ [0,∞),

lim
n→∞

Ch

{∑n
k=1(ηk − τk)

n
≤ z
}

= 1,

and if z ∈ (−1− δ, 0),

(1 + z)
∨

0 ≤ lim inf
n→∞

Ch

{∑n
k=1(ηk − τk)

n
≤ z
}

≤ lim sup
n→∞

Ch

{∑n
k=1(ηk − τk)

n
≤ z
}
≤ 1 +

z

1 + δ
.

(III) For any q > 1, z ∈ R, if c ∈ (−∞, 0],

lim
n→∞

Ch

{∑n
k=1(ηk + τk)− nc

n1/q
≤ z
}

= 0,

if c ∈ [1 + δ,∞),

lim
n→∞

Ch

{∑n
k=1(ηk + τk)− nc

n1/q
≤ z
}

= 1,

and if c ∈ (0, 1 + δ),

c

1 + δ
≤ lim inf

n→∞
Ch

{∑n
k=1(ηk + τk)− nc

n1/q
≤ z
}

≤ lim sup
n→∞

Ch

{∑n
k=1(ηk + τk)− nc

n1/q
≤ z
}
≤ c

∧
1.

(IV ) For any q > 1, z ∈ R, if c ∈ (−∞,−1− δ],

lim
n→∞

Ch

{∑n
k=1(ηk − τk)− nc

n1/q
≤ z
}

= 0,

if c ∈ [0,∞),

lim
n→∞

Ch

{∑n
k=1(ηk − τk)− nc

n1/q
≤ z
}

= 1,

and if c ∈ (−1− δ, 0),

(1 + c)
∨

0 ≤ lim inf
n→∞

Ch

{∑n
k=1(ηk − τk)− nc

n1/q
≤ z
}

≤ lim sup
n→∞

Ch

{∑n
k=1(ηk − τk)− nc

n1/q
≤ z
}
≤ 1 +

c

1 + δ
.
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5. CONCLUSIONS

This paper is devoted to the development of the limit theory of uncertain random vari-
ables. We have considered uncertain random variables in the form of continuous func-
tions of a random variable and an uncertain variable. It has been additionally assumed
that the functions are monotone (not necessary strictly monotone) with respect to their
second arguments. This paper’s main contribution is the Etemadi type LLN and two
types of Marcinkiewicz–Zygmund LLNs for such defined sequences of uncertain ran-
dom variables. The first theorem proved the Etemadi type LLN for uncertain random
variables being the above defined functions of pairwise independent and identically dis-
tributed random variables and uncertain variables without satisfying the conditions of
regular and IID. Two kinds of Marcinkiewicz–Zygmund type LLNs for uncertain random
variables that satisfied the conditions of the first theorem were established in the case of
p ∈ (0, 1) by the second theorem, and in the case of p > 1 by the third theorem, respec-
tively. Obviously, compared with the existed theorems of LLNs for uncertain random
variables, our theorems are the generalised results. For example, in Yao and Gao [47],
Nowak and Hryniewicz [39], LLNs for uncertain random variables need the conditions
that the continuous functions of a random variable and an uncertain variable are strictly
monotone with respect to their second arguments and uncertain variables are regular
and IID. One possible direction for further research is to study the Chow type law for
delayed sums of uncertain random variables being functions of pairwise independent,
identically distributed random variables and uncertain variables without satisfying the
conditions of regular and IID. Although there are some difficulties to handle, we will
actively explore more and better ways to solve this problem.
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