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A FAMILY OF LYAPUNOV-BASED CONTROL SCHEMES
FOR MAXIMUM POWER POINT TRACKING IN BUCK
CONVERTERS

Jorge Álvarez, Jorge Ruiz, and Miguel Bernal

This paper presents a novel family of Lyapunov-based controllers for the maximum power
point tracking problem in the buck converter case. The solar power generation system here con-
sidered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter.
Lyapunov function candidates depending on the output are considered to develop conditions
which, in some cases, can be expressed as linear matrix inequalities; these conditions guar-
antee that the output goes asymptotically to zero, thus implying that the MPPT is achieved.
Simulation and real-time results are presented, which validate the effectiveness of the proposals.
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1. INTRODUCTION

Fossil fuel-based energy sources emit large amounts of greenhouse gases, making them the
main cause of global warming; therefore, the interest in renewable energy has increased in
recent years [12, 22]. The main sources of renewable energy are wind [21], biomass, and
solar, their main advantages being low maintenance cost, non-pollution characteristics,
and their non-decreasing availability [5, 25].

Solar energy sources consist in using the photovoltaic (PV) effect to transform solar
energy into electrical one. Hence, being a constant source of energy, solar light can
be used to meet ever-increasing energy needs. The energy generation of PV systems
depends on weather conditions such as solar irradiation and temperature; for this reason,
the problem of tracking the point of maximum power output (MPPT problem), which
changes continuously during the day, is at the core of the efficient use of solar energy
[14, 16]. The MPPT problem can be seen as a control tracking one, i. e., by means of
a control input –duty cycle– a nonlinear output expression –the time derivative of the
system power with respect to the PV voltage– is driven to 0 [1].

There exists a lot of MPPT techniques in the literature; they can be classified in two
groups: those based on heuristics and algorithms (model-free) and those based on for-
mal control techniques (model-based). The advantages of the former lie on their easier
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design process, their intuitive physical appeal, and their readiness for practical imple-
mentability; in contrast, heuristics usually lack mathematical guarantees for stability
and convergence of algorithms. Popular model-free techniques are perturb and observe
(P&O) [28], incremental conductance (IC) [13], fractional open-circuit voltage (FVoc)
[8], fractional short circuit current (FSC) [27], neural networks [4] and fuzzy logic con-
trol [2]. The widely-used P&O algorithm is based on performing periodic disturbances
(increases or decreases) in the panel voltage and measuring the difference between the
voltage on the panel PV and the preceding perturbation cycle; a modification of this al-
gorithm under partial shading conditions by integrating artificial bee colony algorithms
is presented in [24].

On the other hand, model-based control schemes for solving the MPPT problem are
scarce, due to the complexity of expressions and nonlinearities involved in the model
of the DC-DC converter, especially when time-varying parameters and functions such
as temperature and irradiation are fully taken into account. Usual options include
linearization [18], Takagi–Sugeno blendings [10, 11], and Lyapunov-based design [26];
nevertheless, all sort of simplifications are made in them as standard feedback techniques
cannot be directly applied. Some works mix algorithms and model-based approaches;
they usually consider themselves model-based, though the assumptions and procedures
in them rely on practical data and on-line decisions, e. g., [19].

Contribution: This work belongs to the model-based class of control schemes to solve
the MPPT problem, considering a photovoltaic panel connected to DC/DC buck con-
verter; it is Lyapunov-based, taking full nonlinear expressions and time-varying func-
tions into account, and guaranteeing numerical obtention of gains via linear matrix
inequalities (LMIs) [9], which can be solved in polynomial time via efficient algorithms
already implemented in commercial software [15]. In contrast with other Lyapunov-
based proposals such as the well-known Artstein’s Theorem [3, 30], the proposal deals
with systems with time-varying expressions and no equilibrium point at the origin. It
is shown that, despite their complexity, several Lyapunov-based proposals can be suc-
cessfully designed, simulated, and physically implemented, thanks to convex handling of
nonlinear expressions, output-dependent Lyapunov functions, and availability of signals
via proper measurements [6].

Organization: Section 2 introduces some preliminaries on Lyapunov theory, convex
modelling, and linear matrix inequalities; Section 3 describes the MPPT setup this
work is concerned with; it includes enough detail as to formulate the problem statement
in the form of a nonlinear control challenge; Section 4 develops the Lyapunov-based
control proposals for the MPPT problem in a theorem-like form; Section 5 presents the
simulation results corresponding to the preceding theoretical proposals while real-time
implementation results of some of them are shown in Section 6; finally, some conclusions
and future work are discussed in Section 7.

2. PRELIMINARIES

In this section, basics on Lyapunov theory, convex rewriting of expressions, and linear
matrix inequalities, are briefly described as they constitute the basis on which the results
in this report are developed.
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Lyapunov theory: Recall that an equilibrium point x = 0 of a system ẋ = f(x) with
f(x) locally Lipschitz over a domain D ⊂ Rn such that 0 ∈ D, is asymptotically
stable if there exists a continuously differentiable function V (x) defined overD such
that V (0) = 0 with conditions V (x) > 0 and V̇ (x) < 0 holding ∀x 6= 0, x ∈ D.
See [17, Theorem 3.3] for details. The same results apply for uniform asymptotic
stability of equilibrium points of time-varying systems ẋ = f(t, x) like the one
under consideration, though the Lyapunov function is allowed to be time-varying,
i. e., V (t, x). See [7, Theorem B.3].

Convex embedding: Nonlinear scalar expressions z(x) defined on a compact set C of
the state space Rn can be written as convex sums of their bounds, i. e., defining
z0 = minx∈C z(x), z1 = maxx∈C z(x), w0(x) = (z1 − z(x))/(z1 − z0), and w1(x) =
1−w0(x), it is obvious that z(x) = w0(x)z0 +w1(x)z1 with w0(x) and w1(x) being
convex functions in C.

Linear matrix inequalities: Problems that can be solved in polynomial time include
linear programming and convex optimization; to the last sort of problems be-
long linear matrix inequalities, which can be efficiently solved via interior point
algorithms already implemented in several toolboxes, e. g., the LMI Toolbox of
MATLAB [15]. Their usual formulation is F0 +

∑m
i=1 xiFi > 0, where xi and F0,

Fi i ∈ {1, 2, . . . ,m}, are decision variables and constant matrices of adequate size
[9]. A whole body of theory derived form combining convex embedding and the
direct Lyapunov method is available for nonlinear control systems analysis and
design [7].

In the sequel, the following acronyms will be employed:

MPPT Maximum Power Point Tracking
PV Photovoltaic

P&O Perturb and Observe
DC/DC Direct Current/Direct Current

LMI Linear Matrix Inequalities
PDC Parallel Distributed Compensation

IC Incremental Conductance
FSC Fractional Short Current

Tab. 1: Abbreviations.

3. PROBLEM STATEMENT

This section describes the photovoltaic array and the DC/DC buck converter under
consideration, including their mathematical models. This set of PV array and buck
converter is ideal for high irradiation regions and charging of low-voltage batteries. A
problem statement is now made concerning the MPPT problem.
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Consider a PV power control system with a buck converter as the one schematically
shown in Figure 1; its dynamical model is given by the following 3rd-order nonlinear
state-space representation [10]:ẋ1ẋ2

ẋ3

=

(Rbio−(Rb+RL)x1−x3+(VD+x2)u−VD) /L
(ipv(x2, T (t), λ(t))−x1u)/Ca

(x1−io)/Cb

 (1)

where the states x1, x2, and x3 are the current on the inductance L, the PV array
output voltage (on the capacitance Ca), and the load voltage (on the capacitance Cb),
respectively; u is the control signal corresponding to the duty cycle; constants Rb and
RL are the internal resistances on the capacitance Cb and the inductance L, respectively;
constant VD is the forward voltage of the power diode, io is the measurable load current,
usually taken as x3/2, and ipv(x2, T (t), λ(t)) = npIph(t)−npIrs(t)(ekpv(t)x2/ns−1) is the
PV array output current for a panel composed of solar cells arranged in an np-parallel,
ns-series configuration, with kpv(t) = q/(pKT (t)) where constant q is the electronic
charge, constant p is the ideal p-n junction characteristic factor, K is the Boltzmann’s
constant, λ(t) is the irradiation measured in mW/cm2, T (t) is the cell temperature
measured in ◦C, Iph(t) is the light-generated current, and Irs(t) is the reverse saturation
current; the latter two, Irs and Iph, depend on the irradiation λ(t) and the temperature
T (t) via the following expressions:

Irs(t) =Irr

(
T (t)

Tr

)3

eqEgp(1/Tr−1/T (t))K/p,

Iph(t) =(Isc +KI(T (t)− Tr))
λ(t)

100
,

where constant Irr is the reverse saturation current at the reference temperature Tr,
constant Egp is the bandgap energy of the semiconductor making up the cell, constant Isc
is the short-circuit cell current at the reference temperature and irradiation, and constant
KI is the short-circuit current temperature coefficient. Importantly, only states x1 and
x2, temperature T (t) and irradiation λ(t) are measurable. The parameters employed in
this work are given in Table 2.

The array power is given by

Ppv = ipv(x2, T (t), λ(t))x2 = npIph(t)x2 − npIrs(t)x2(ekpv(t)x2/ns − 1).

Fig. 1: PV power control system using a dc/dc buck converter.
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Param. Value Param. Value
q 1.6× 10−19C Tr 25◦C
p 1 Egp 1.1
K 1.3805× 10−23J/K Isc 1.9A
Irr 1.73× 10−5A KI 0.00114
np 1 ns 72
Ca 1mF RL 4.1Ω
Cb 1mF Rb 0.25Ω
L 200µH VD 0.57

Tab. 2: Parameters.

The maximum power point is attained at dPpv/dvpv = 0, where

y(t) ≡dPpv

dvpv
= ipv(x2, T (t), λ(t)) + x2

dipv
dx2

=ipv(x2,T (t),λ(t))−npkpv(t)

ns
Irsx2e

kpv(t)x2/ns . (2)

Numerical simulations and real-time implementations developed in this work consider
the solar PV module DBF30 which characteristics of the power with respect to the
voltage are shown in Fig 2, also it can be seen that the maximum power point depends
on the different levels of irradiation and temperature.

Thus, the following problem statement can be made:

Control objective: The MPPT problem consists in finding u(t) such that limt→∞ y(t) = 0
considering that states x1(t) and x2(t) as well as the temperature T (t) and irradiance
λ(t) are measurable.

Note that y(t) in (2) is a highly nonlinear expression and therefore implies a high
degree of difficulty to employ it to find the maximum power point; this is the reason
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Fig. 2: Characteristics of the PV array: power with respect to the voltage.
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behind the fact that most of researchers avoid directly dealing with it [10].

4. MAIN RESULTS

In this section, a family of Lyapunov-based control proposals for MPPT is developed. It
is shown that, despite its complexity, output (2) can be driven to 0 by nonlinear control
laws that employ measurable signals such as x1 and x2 as well as time-varying functions
of temperature T (t) and irradiance λ(t); moreover, some of these schemes have fixed
structures in the form of parallel distributed compensation (PDC) whose gains that can
be obtained via LMIs [7].

System (1) is a 3rd-order time-varying affine-in-control nonlinear system which, along
with its output (2), has a compact form

ẋ(t) = f(t, x) + g(x)u(t), y(t) = h(t, x), (3)

where

f(t, x) =


Rbio−(Rb+RL)x1 − x3 − VD

L

ipv(x2, T (t), λ(t))/Ca

(x1 − io)/Cb

 , g(x) =


VD + x2

L

−x1
Ca

0

 ,

h(t, x) = ipv(x2, T (t), λ(t))− npkpv(t)

ns
Irsx2e

kpv(t)x2/ns .

The main idea behind the next proposals is to find a Lyapunov function V (y) guaran-
teeing limt→∞ y(t) = 0 by an appropriate choice of the duty cycle u: standard techniques
propose V (y) and deduce the corresponding u analytically; more systematic proposals
adopt a structure for V (y) and deduce u numerically by convex optimization techniques,
e. g., LMIs. In the sequel, both standard and dynamical Lyapunov functions are found;
all of them will be quadratic.

4.1. Lyapunov-based analytical proposals

Three analytical proposals are considered: a classical one employs a quadratic Lyapunov
function candidate that depends exclusively on the output; the other two are based on
time-varying Lyapunov functions which, despite its complexity, are more suitable for
time-varying systems as the one under consideration.

4.1.1. A standard quadratic Lyapunov function

Consider the Lyapunov function candidate V (y) = 0.5y2, which satisfies V (0) = 0 and
V (y) > 0 ∀y 6= 0; its time derivative is given by

V̇ =yẏ = y

[(
∂h

∂x

)T (
∂h

∂t

)T] [f(t, x) + g(x)u
1

]
,

=y

(
∂h

∂x

)T
(f(t, x) + g(x)u) +

(
∂h

∂t

)T
.
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Note that the output h(t, x) in (3) can be seen as a function of time-varying tem-

perature and irradiation as well as the state x2; thus,

(
∂h

∂t

)
T takes into account the

referred dependencies. In order to guarantee limt→∞ y(t) = 0 it is enough to satisfy
V̇ (y) < 0, ∀y 6= 0, t ≥ 0, which can be accomplished by solving u from the following
equation:

y

(
∂h

∂x

)T
(f(t, x) + g(x)u) +

(
∂h

∂t

)T
= −ky2, (4)

where k > 0 determines the rate of convergence for the Lyapunov function [23, 29].
Clearly, the solved u is a state-dependent time-varying control law, which tracks the
maximum power point of the PV array; despite its complexity, such control law is fully
implementable.

4.1.2. A dynamic quadratic Lyapunov function driven to a constant

As stated before, the time-varying nature of the system naturally asks for a time-varying
Lyapunov function. To this end, a quadratic time-varying Lyapunov function candidate
V (t, y) = 0.5y2p(t) is to be considered, such that p(t) > 0, ∀t ≥ 0; the latter requisite
will be guaranteed by imposing adequate dynamics from an initial condition p(0) > 0.
Thus,

V̇ (t, y) = yẏp(t) + 0.5y2ṗ(t),

which, again, can be made negative ∀y 6= 0, ∀t ≥ 0 if V̇ (t, y) = −kV (t, y), with k > 0,
i. e.

yẏp(t) + 0.5y2ṗ(t) = −0.5ky2p(t),

from which the dynamics of p(t) can be solved as

ṗ(t) = −
(
k + 2

ẏ

y

)
p(t), y 6= 0.

The time derivative of output y involves input u (via ẋ2), which means it has a
structure of the form ẏ = ȳ1(t, x)u + ȳ2(t, x), where expression ȳ1(t, x) gathers all the
terms involving u as a factor and ȳ2(t, x) the remaining terms; thus, ṗ(t) above can be
written as (omitting arguments)

ṗ(t) = −
(
k + 2

ȳ1
y
u+ 2

ȳ2
y

)
p(t), y 6= 0. (5)

The Lyapunov function candidate V (t, y) = 0.5y2p(t) will be a legitimate Lyapunov
function as long as p(0) > 0 and p(t) is driven keeping its positivity. An easy way
to do so consists in driving p(t) to a positive constant value pss. Following standard
methodology to this end [17][pg 197], the control structure is u = us + uss where uss is
the steady-state control that can maintain equilibrium at pss and us = u − uss drives
ps = p− pss to 0.

Solving uss from

0 = −
(
k + 2

ȳ1
y
uss + 2

ȳ2
y

)
pss,
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yields

uss = −
(
ky

2ȳ1
+
ȳ2
ȳ1

)
. (6)

As for us, it is calculated to stabilize the system

ṗs = −
(
k + 2

ȳ1
y

(us + uss) + 2
ȳ2
y

)
(ps + pss) = −2

ȳ1
y
us(ps + pss),

where the last expression is obtained taking into account uss in (6). A possible choice
for us is thus us = 100y(ps − pss)/ȳ1, as it ensures p(t) is driven to pss as time goes to
infinity. The final form of the duty cycle u is obtained adding up uss and us.

4.1.3. A dynamic quadratic Lyapunov function tracking a positive signal

Under the same considerations of the previous proposal, a Lyapunov function candidate
V (t, y) = 0.5y2p(t) whose time derivative allows solving the dynamics of p(t) as in (5),
can be used. Exploiting the time-varying properties of p(t) (namely, those of V (t, y)),
which can be any continuous function as long as it is positive, is the purpose of the next
development.

Consider the problem of tracking a desired positive function pd(t); the standard
solution consists in defining the tracking error e(t) = p(t)− pd(t), whose time derivative
ė(t) = ṗ(t)− ṗd(t) is, upon substitution of ṗ in (5),

ė(t) = −
(
k + 2

ȳ2
y

)
p(t)− 2

ȳ1
y
p(t)u(t)− ṗd(t). (7)

Thus, choosing the control input

u(t) =

(
k + 2

ȳ2
y

)
p(t) + ṗd(t) + v(t)

−2
ȳ1
y
p(t)

=
(ky + 2ȳ2) p(t) + yṗd(t) + yv(t)

−2ȳ1p(t)
, (8)

with v(t) = −kee(t), ke > 0, reduces the error dynamics to ė(t) = −kee(t), which means
e(t) asymptotically converges to zero as time goes to infinity.

4.2. Lyapunov-based numerical proposals

Two numerical proposals with different sets of nonlinearities are now developed; in
contrast with those already presented, finding the control law as well as the Lyapunov
function is no longer an analytical task, but a convex optimization problem in terms of
LMIs. Although these conditions are only sufficient, systematicness is a clear advantage
of the numerical approach.
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4.2.1. A 1-nonlinearity LMI based solution

As in the last two proposals, a dynamic Lyapunov function candidate V (t, y) = 0.5y2p(t)
whose time derivative allows solving the dynamics of p(t) as in (5), is considered. Again,
a positive function pd(t) is going to be tracked by the same techniques, i. e., defining the
tracking error e(t) = p(t)− pd(t) and using its time derivative (7) as to solve u to leave
a new system with input v. More specifically, adding and subtracting (k + 2ȳ2/y)pd(t)
to the error dynamics (7) yields

ė(t) =−
(
k + 2

ȳ2
y

)
p(t)− 2

ȳ1
y
p(t)u− ṗd(t) +

(
k + 2

ȳ2
y

)
pd(t)−

(
k + 2

ȳ2
y

)
pd(t)

=−
(
k+

2ȳ2
y

)
e(t)− 2ȳ1

y
p(t)u−ṗd(t)−

(
k+

2ȳ2
y

)
pd(t).

Applying the control input

u(t) =

ṗd(t) +

(
k + 2

ȳ2
y

)
pd(t)− v(t)

−2
ȳ1
y
p(t)

=
yṗd(t) + (ky + 2ȳ2) pd(t)− yv(t)

−2ȳ1p(t)
, (9)

with v(t) as a new virtual input, reduces the error dynamics to the following nonlinear
system:

ė(t) = −
(
k + 2

ȳ2
y

)
e(t)− v(t), y 6= 0.

The nonlinear term 2ȳ2/y depends on the state x2, temperature T (t), and irradiation
λ(t), thus, considering the bounds of the nonlinear term z(t, x2) = 2ȳ2/y ∈ [z0, z1], it
can be convexly rewritten by means of the nonlinear sector methodology [31] as follows

z(t, x2)=

1∑
i=0

wi(z)ai, w0(z)=
z1 − z
z1 − z0

, w1(z)=1− w0(z),

with ai = (2ȳ2/y)|wi=1, w0(z) + w1(z) = 1, 0 ≤ wi ≤ 1, i = {0, 1}. Then, considering

the virtual control v(t) =
∑1

i=0 wi(z)keie(t) the closed-loop of the error system can be
written as

ė(t) = −
1∑

i=0

wi(z) (k + ai + kei) e(t).

Therefore, the asymptotic stability of the origin is guaranteed if

−
1∑

i=0

wi(z) (k + ai + kei) < 0,

which in turn is guaranteed by the following LMIs

− (k + ai + kei) < 0, i = {0, 1}. (10)
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4.2.2. A 2-nonlinearity LMI based solution

Consider again a Lyapunov function candidate V (y) = 0.5y2p(t), whose time derivative
allows solving the dynamics of p(t) as in (5). As in the two previous proposals, a positive
function pd(t) is going to be tracked by the same techniques, i. e., defining the tracking
error e(t) = p(t) − pd(t) whose time derivative is (7), then, considering u(t) = 1 + ū(t)
with ū being a virtual input, the error dynamics (7) yield

ė(t) =−
(
k + 2

ȳ1
y

+ 2
ȳ2
y

)
p(t)− 2

ȳ1
y
p(t)ū− ṗd(t),

adding and subtracting (k + 2ȳ1/y + 2ȳ2/y)pd(t) allows rearrange the error dynamic as

ė(t) = −
(
k +2

ȳ1
y

+2
ȳ2
y

)
e(t)−

(
k+2

ȳ1
y

+2
ȳ2
y

)
pd(t)− 2

ȳ1
y
p(t)ū− ṗd(t).

Thus, choosing the control input

ū(t) =

−ṗd(t)−
(
k+2

ȳ1
y

+2
ȳ2
y

)
pd(t)+v(t)

2
ȳ1
y
p(t)

=
−yṗd(t)−(ky+2ȳ1+2ȳ2) pd(t)+yv(t)

2ȳ1p(t)
,

(11)
with v(t) as a new virtual input, the error dynamics are reduced to the following non-
linear system:

ė(t) = −
(
k + 2

ȳ1
y

+ 2
ȳ2
y

)
e(t)− v(t).

Nonlinear terms 2ȳ1/y and 2ȳ2/y depend on the states x1, x2 as well as on exter-
nal signals T (t) and λ(t); thus, considering its bounds z1(t, x) = 2ȳ1/y ∈ [z01 , z

1
1 ] and

z2(t, x) = 2ȳ2/y ∈ [z02 , z
1
2 ], they can be convexly rewritten by means of the nonlinear

sector methodology as follows

z1(t, x)=

1∑
i=0

w1
i (z1)ai, z2(t, x)=

1∑
i=0

w2
i (z2)bi,

w1
0(z1)=

z11−z1
z11−z01

, w1
1(z1)=1−w1

0(z1), w2
0(z2)=

z12−z2
z12−z02

, w2
1(z2)=1−w2

0(z2),

with ai = (2ȳ2/y)|w1
i (z1)=1, bi = (2ȳ2/y)|w2

i (z2)=1, wj
0(zj) + wj

1(zj) = 1, 0 ≤ wj
i ≤ 1,

i = {0, 1}, j = {1, 2}. In order to ease the notation let us define B = {0, 1}, i = (i1, i2) ∈
B2, and wi(z) = w1

i1
w2

i2
. Then, considering the virtual control v(t) =

∑
i wi(z)keie(t)

the closed-loop of the error system can be written as

ė(t) = −
∑

i=(i1,i2)

wi(z) (k + ai1 + bi2 + kei) e(t).

Therefore, the asymptotic stability of the origin is guaranteed if

−
∑
i∈B2

wi(z) (k + ai1 + bi2 + kei) < 0, (12)
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which in turn is guaranteed by the following LMIs

− (k+ai1 +bi2 +kei)< 0, i1, i2 ={0, 1}, i∈B2. (13)

Despite being scalar, the LMI-based methodologies just presented can straightfor-
wardly incorporate decay rate, input/output constraints and H∞ disturbance rejection
by means of well known LMIs [7]; generalizations to non-scalar cases as those which use
bidirectional converters can be easily adopted [20].

5. SIMULATION RESULTS
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Fig. 3: Irradiation λ(t) (mW/cm2) and temperature T (t) (◦C) signals for simulation
purposes.

The proposals developed in the previous section are put at test in the sequel; all of
them solve the MPPT problem under time-varying temperature T (t) = 50 + 2 sin(πt)
and irradiation λ(t) = 40(U (t)−U (t− 0.5)) + 100(U (t− 0.5)−U (t− 1)) + 70(U (t−
1) − U (t − 1.5)) + 30(U (t − 1.5) − U (t − 2)) (both shown in Figure 3) for the PV
power system with buck converter in (1); parameters are taken as given in Table 2. All
simulations consider initial conditions x1(0) = 1A, x2(0) = 12V, and x3(0) = 2V.

Proposal 4.1.1 corresponds to a standard quadratic Lyapunov-based analytical solu-
tion, where the control input u(t) is solved from (4) and applied to system (3) with gain
k = 50. Time evolution of the states and PV power is shown in Figure 4a while the
input and output signals are shown in Figure 4b; clearly, since output y(t) is driven to
0 despite irradiation changes, the PV power achieves the maximum power point.

Proposal 4.1.2 uses a time-varying Lyapunov function V (t, y) = 0.5y2p(t) where p(t)
will be driven to pss = 1 from the initial condition p(0) = 2. The structure of the control
input is u(t) = us + uss with us = 100y(ps − pss)/ȳ1 and uss as in (6), with k = 50.
Figure 5a shows the time evolution of the states as well as the PV power; Figure 5b shows
the control input u(t) (duty cycle) and the output y(t) (time derivative of the PV power
with respect to voltage); finally Figure 5c shows how p(t) goes to pss preserving the
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Fig. 4: Simulation results of proposal 4.1.1.
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Fig. 5: Simulation results of proposal 4.1.2.

Lyapunov function positive-definiteness. As expected, the MPPT problem is efficiently
solved as proven by the way y(t) is driven to 0 at every change of the external signals
λ(t) and T (t).
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Proposal 4.1.3 is very similar to the previous one in the sense that a dynamic Lya-
punov function V (t, y) = 0.5y2p(t) is employed to infer a control law that drives the
desired output y(t) to 0, but instead of driving function p(t) to a constant, it is shown
that any positive function may work as well providing a richer family of solutions. To
do so, gains k = 50 and ke = 20 have been employed in control law (8) with a desired
positive signal pd(t) = 0.1 sin(8t) + 1 to be tracked by p(t). Figure 6a shows the time
evolution of the states as well as the PV power; Figure 6b shows the control u(t) and
the output y(t); finally, Figure 6c shows p(t) tracking the desired positive signal pd(t).
Clearly, the maximum PV power is obtained when y(t) = 0.
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(c) Time evolution of signal p(t) vs pd(t).

Fig. 6: Simulation results of proposal 4.1.3.

Proposal 4.2.1 corresponds to a numerical Lyapunov-based solution, i. e., the gains in-
volved in the control law are calculated solving LMI conditions in the MATLABTMLMI-
Toolbox [15]. Numerical advantages come at a price as a region of interest should be
defined; in this case the region is defined by the state intervals x1 ∈ [−5, 5]A and
x2 ∈ [10, 20]V for the inductance current and the PV voltage, respectively, as well
as time-varying bounds λ ∈ [30, 100]mW/cm2 and T ∈ [48, 52]◦C, for irradiation and
temperature, respectively.

Based on these bounds, control law v(t) =
∑1

i=0 wi(z)keie(t) is constructed: wi(z)
are convex functions of the state; gains ke0 = 132608 and ke1 = −43600 are obtained
from LMIs (10). Figure 7a shows the states and PV power; Figure 7b the control u(t)
and output y(t); Figure 7c p(t) tracking pd(t) for Lyapunov function V (t, y) = 0.5y2p(t).
Clearly, the MPPT problem is solved as y(t) = 0 for every change in λ(t) and T (t).
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Fig. 7: Simulation results of proposal 4.2.1.

Proposal 4.2.2 considers a control law u(t) = 1 + ū(t) with ū as in (11) with k =

100 and a 2-nonlinearity PDC structure v(t) =
∑1

i=0 wi(z)keie(t), whose gains ke00 =
787026.86, ke01 = 490216.5, ke10 = −1639587.09 and ke11 = −1936397.45 are calculated
solving LMIs in (13). Figure 8a shows the states and PV power; Figure 8b the control
u(t) and output y(t); Fig 8c tracking of pd(t) by p(t). Again, these plots prove the
MPPT problem is effectively solved.

Table 3 shows a detailed comparison among the five approaches developed in this
work, showing the exact values of the control and output signals u and y, respectively,
the input signal energy defined as

∫ t

0
|u(t)|2dt, and the photovoltaic power Ppv at five

different time instants. Four of these time instants correspond to changes in the irradi-
ation signal (t = 0.0001s, t = 0.5001s, t = 1.001s and t = 1.5001s) while that at t = 0.9s
corresponds to a supposedly steady-state operation point. All approaches perform well
in a similar manner, but some differences can be highlighted: numerical approaches pro-
vide greater power (perhaps due to the optimization in the LMI solver algorithm) and
are the only ones that are able to bring output y to zero in steady state (see the rows
corresponding to them at t = 0.9s).
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Fig. 8: Simulation results of proposal 4.2.2.

6. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the Lyapunov-based approaches in real-time
experiments, the work bench is shown in Figure 9. Two experiments corresponding
to proposals 4.1.3 (analytical) and 4.2.2 (numerical) are now presented. In real-time
implementations, controllers are implemented by a DSP-based control card, specifically
the dSPACE DS1104. The frequency of the PWM signal is set to 100000Hz. The PV
voltage, inductance current, and irradiation are sampled by the A/D converters and fed
into the DSP card. To measure irradiation, the Kipp & Zonen SP Lite2 pyranometer
was used, which has a sensitivity of 67.6µV/W/m2. Because the temperature during
each experiment does not present significant changes, it was measured with a type K
thermocouple at the beginning of each experiment and set as constant in the control
laws.

Proposal 4.1.3: The implementation of the control law (8) with gains defined in the
simulation section 5 yields the power response shown at the bottom of Figure 10a for
the irradiance signal at the top of the same figure. As shown at the top of Figure 10b,
the control signal is initially set at 0.95 in order to switch later to our control proposal
and check the effect on the power and output responses, the latter seen going to 0 right
after the control signal corresponding to our proposal is turned on (Figure 10b, bottom);
therefore, since y(t)→ 0 the maximum power point is achieved.



A family of Lyapunov-based control schemes . . . 309

time (s) proposal input u output y energy of u power Ppv

4.1.1 0.5413 -0.8831 29.599×10−6 6.4159
4.1.2 0.5066 -0.8919 24.951×10−6 6.4076

0.0001 4.1.3 0.5392 -0.8836 29.318×10−6 6.4154
4.2.1 0.5384 -0.8742 29.009×10−6 6.4234
4.2.2 0.5509 -0.8486 30.394×10−6 6.4470
4.1.1 0.9456 1.2130 0.1921 18.4034
4.1.2 0.9564 1.1528 0.1894 18.5684

0.5001 4.1.3 0.9566 1.1528 0.1902 18.5685
4.2.1 0.9196 1.2782 0.1911 18.1984
4.2.2 0.8697 1.1293 0.1943 18.6274
4.1.1 0.9136 0.0001 0.5364 20.1142
4.1.2 0.9167 0.0464 0.5345 20.1133

0.9 4.1.3 0.9167 0.0459 0.5354 20.1134
4.2.1 0.9135 0 0.5319 20.1143
4.2.2 0.9135 0 0.5330 20.1143
4.1.1 0.7694 -0.5500 0.6195 13.2542
4.1.2 0.7731 -0.5263 0.6182 13.2660

1.0001 4.1.3 0.7731 -0.5264 0.6191 13.2660
4.2.1 0.7739 -0.3809 0.6150 13.3317
4.2.2 0.7771 -0.3715 0.6161 13.3353
4.1.1 0.5161 -0.7284 0.9175 4.6893
4.1.2 0.5205 -0.7639 0.9179 4.6543

1.5001 4.1.3 0.5207 -0.7640 0.9188 4.6543
4.2.1 0.5285 -0.5127 0.9137 4.8834
4.2.2 0.5384 -0.5001 0.9158 4.8937

Tab. 3: Comparison between different approaches.

PV panel

Buck converter

LoadDspace

Fig. 9: Work bench for MPPT control.

Proposal 4.2.2: The implementation of the control law (11) with gains defined in
the simulation section 5 are now presented. In contrast with the implementation shown
before, this experiment was done under a higher irradiation signal as shown at the top
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Fig. 10: Implementation results of proposal 4.1.3.
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Fig. 11: Implementation results of proposal 4.2.2.

of Figure 11a. Moreover, at the beginning of this experiment the control input is a ramp
signal ranging from 0.05 to 0.95 as shown at the top of Figure 11b causing the power and
output signals to oscillate as shown in the first four seconds at the bottom of Figs. 11a

and 11b respectively. After this, our control proposal is introduced, driving the power
to its maximum and keeping it there, as shown in Figure 11a (bottom). Also, it is easy
to see at the bottom of Figure 11b that the output signal goes to zero when our control
proposal takes over (a detailed subfigure is shown around this instant), which, as stated
before, means that the maximum power point has been achieved.

Importantly, note that the proposals just presented are able to robustly deal with
time-varying irradiation or temperature, without further adaptation in the control law
structure.
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7. CONCLUSIONS AND PERSPECTIVES

A novel family of Lyapunov-based controllers for solving the maximum power point
tracking problem in a solar power generation system (composed by a stand-alone pho-
tovoltaic panel connected to a DC/DC buck converter) has been presented. Based on
the fact that the maximum power point is achieved when its output, defined as the
derivative of the photovoltaic power with respect to its voltage, is zero, analytically and
numerically designed output-dependent Lyapunov functions, both state-dependent and
time-varying, have been proven to be effective in designing the required duty cycle sig-
nal. Simulation and real-time results have been presented to put at test the proposals
performance and implementability.

For future work, these results can be extended in the followings directions:

1. DC/DC boost converters: This class of systems can deal with other applications
of importance, e. g., those requiring keeping high voltages instead of high cur-
rents. Lyapunov-based approaches may require higher dimension vectors than
those above since the duty cycle u uses a different channel in the system.

2. Time-varying parameters: Aging, partial cloudiness, and other changes affecting
parameters can be taken into account via nonlinear time-varying control, e. g., by
means of P (t) in the Lyapunov proposals.

3. Fault-tolerant control: Sensor and actuator failures –common in some of the afore-
mentioned schemes can be dealt with using this sort of techniques.

4. Observer-based control: In order to reduce the number of sensors while keeping the
formal Lyapunov analysis, a state observer could be used to reduce implementation
costs.

5. Robustness: Control design able to deal with parametric uncertainties and/or dis-
turbances in the same convex embedding/LMI framework.

ACKNOWLEDGEMENT

This work was supported by the CONACYT scholarship for CVU 731421, the ECOS Nord SEP
CONACYT ANUIES Project 291309, and the ITSON PROFAPI Project 2023-CA-002.

(Received November 17, 2022)

R E F E R E N C E S

[1] A. Y. Abdelaziz and Y. Almoataz: Modern Maximum Power Point Tracking Techniques
for Photovoltaic Energy Systems. Springer, 2020.

[2] M. M Algazar, H. A. El-Halim, M. E. El Kotb Salem, et al.: Maximum power point track-
ing using fuzzy logic control. Int. J. Electr.Power Energy Systems 39 (2012), 1, 21–28.
DOI:10.1097/BPB.0b013e32834ee5f8

[3] Z. Artstein: Stabilization with relaxed controls. Nonlinear Analysis: Theory Methods
Appl. 7 (1983), 11, 1163–1173. DOI:10.1016/0362-546X(83)90049-4

https://doi.org/10.1097/BPB.0b013e32834ee5f8
https://doi.org/10.1016/0362-546X(83)90049-4
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