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LIMIT STATE ANALYSIS ON THE UN-REPEATED
MULTIPLE SELECTION BOUNDED CONFIDENCE MODEL

Jiangbo Zhang and Yiyi Zhao

In this paper, we study the opinion evolution over social networks with a bounded confidence
rule. Node initial opinions are independently and identically distributed. At each time step,
each node reviews the average opinions of several different randomly selected agents and updates
its opinion only when the difference between its opinion and the average is below a threshold.
First of all, we provide probability bounds of the opinion convergence and the opinion consensus,
are both nontrivial events by analyzing the probability distribution of order statistics. Next,
similar analyzing methods are used to provide probability bounds when the selection cover all
agents. Finally, we simulate all these bounds and find that opinion fluctuations may take place.
These results increase to the understanding of the role of bounded confidence in social opinion
dynamics, and the possibility of fluctuation reveals that our model has fundamentally changed
the behavior of general DeGroot opinion dynamical processes.
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1. INTRODUCTION

1.1. Background

Today, understanding how opinions of social peers evolve is of increasing importance to
our society, for which challenges lie in the intrinsic nonlinearity, unpredictability, and
randomness that are ubiquitous for complex systems like our society [4]. Social media
has undeniably changed the ways of people interacting with each other at a fundamental
level [13]. We now rely on social networks as a major resource of information from which
we make decisions on matters that range from restaurant and movie choices to online
sellers. Specially, companies and political election preferences also largely rely on social
network platforms to spread ideas and opinions to others with the hope of generating
influences.

In fact, the study of social interactions began long before this era of social media.
In the 1970s the classical DeGroot model [6] was introduced to describe how trustful
interactions among social members can lead to agreement in the asymptotic sense, where
the opinions were defined as real-valued variables, and the underlying social network
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was modeled as a fixed graph so that any social member only talks with a given set of
neighbors. This model was then generalized to the so-called Hegselmann–Krause model,
where nodes holds bounded confidence in the sense that nodes tend to interact only with
neighbors that hold opinions within a given confidence neighborhood [9]. It is known
that under such bounded confidence, social opinions continue to tend to converge in
time, but the limits form different clusters [2, 15]. The Deffuant-Weisbuch model [5]
stood along the same line of consideration for bounded confidence, but was restricted to
pairwise interactions in a gossiping fashion [3].

1.2. Related work

The proposed social network model with bounded confidence is a generalization of the
bounded confidence type of social interactions [5, 9, 12, 14]. In Deffuant-Weisbuch
models, peers only meet randomly in pairs, while Ni(t) is assumed to be a cluster with m
nodes. The boundedness of social confidence in Deffuant-Weisbuch models is inherited
in our model here, where the cluster opinions describe peer pressure in nearby social
groups. When m is reduced to two and selections is limited to mutual selection, the
model essentially recovers the Deffuant-Weisbuch model with a homogeneous confidence
bound. Bounded confidence in social interactions is also captured in the Hegselmann–
Krause model, where nodes average their states among a deterministic neighborhood
determined by the nodes sharing the states within a given bound. The confidence
bound yields a state-dependent underlying communication graph, compared to standard
DeGroot type of opinion dynamics holding a static or time-dependent communication
graph among the peers [6].

For DeGroot opinion dynamics, a number of results have been demonstrated re-
garding the convergence and convergence rate of the network opinions into a consensus
state [8, 10]. Since DeGroot opinion dynamics impose non-expansiveness of the convex
hull of the node opinions over time, such convergence to consensus has been proven
to be true for a number of deterministically switching network structures [1, 11]. The
bounded confidence Deffuant-Weisbuch and Hegselmann–Krause models preserve this
non-expansive property of the network states, and thus convergence of individual states
is expected. The presence of bounded confidence, however, may forbid the node states
from converging to a consensus in general. There has been a large number of litera-
tures, where thorough numerical studies and excellent analytical results establish that
social opinions in Deffuant-Weisbuch and Hegselmann–Krause models often converge
to clusters [2], except to the case where external noises or different stubborn agents
exist [14].

1.3. Contributions

In this paper, we propose and study opinion dynamics over a social network with
bounded confidence and un-repeated multiple selection.

Firstly, probability bounds of opinion consensus and multiple limits are estimated
according to the probability distributions of order statistics and special initial value
setting. Secondly, probability bounds for the global selection are estimated with a
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similar method. Thirdly, we provide some simulations on the probability bounds of
opinion limit states, including opinion fluctuation.

2. OUR MODEL

We generalize the Long-range model [14] to a new model that there are no stubborn
agents and the selection rule is un-repeated. Here both rules are exists among the de-
centralized large-scale social network structures, such as the Internet, the social network
chat tools and the social interaction platform, e.t.c. [14]. In fact, the no stubborn agents
rule denotes there are no decision makers or leaders, while the un-repeated selection
often happens on a large-scale network. The bounded confidence and the hyperlocality
of social interactions are remained where neighbors could sample the entire network so
that neighborhoods can be formed at a global scale. Bounded confidence is put in place
during opinion evolution where reference opinion becomes the centroid of the opinions
from the random neighbor set.

2.1. Neighbor selection process

Consider a network of n nodes indexed in the set V = {1, 2, . . . , n}. Time is slotted at
t = 0, 1, . . . . At each time t, each node i ∈ V randomly selects m (1 ≤ m ≤ n) different
nodes as its neighbor Ni(t) = {i1, i2, . . . , im} from the network node set V, independent
with other nodes’ selections. This results in a set of neighbors Ni(t) for i ∈ V and
t = 0, 1, . . . . Let {V1, . . . ,Vz} be the set containing all subsets of V with m different
elements, where z = Cmn . For the random neighbor set Ni(t), we impose the following
assumption.

Assumption 1. The {Ni(t)} are independent and identically distributed for t =
0, 1, . . . , and

P{Ni(t) = Vk} > 0

for all i = 1, 2, . . . , n and k = 1, 2, . . . , z at any given time t.

2.2. Opinion dynamics

Each node i holds an opinion xi(t) ∈ R at time t. After interacting with the neighbors
in the set Ni(t), each node i computes a local average opinion

yi(t) =
1

m

∑
j∈Ni(t)

xj(t).

Then nodes update their opinions at time t+ 1 according to

xi(t+ 1) =

{
(1− δ)xi(t) + δyi(t), if |xi(t)− yi(t)| ≤ η
xi(t), otherwise

(1)

for all i ∈ V. Here 0 < δ < 1 is the mixing parameter and η > 0 is the confidence
level, which are assumed to be two constants. Regarding the initial node opinions
x1(0), . . . , xn(0). We impose the following assumption.
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Assumption 2. The xi(0), i ∈ V are independent and identically distributed by the
uniform distribution in [0, 1].

We use P to denote the probability of the total randomness generated by both the
neighbor selection process and the nodes’ initial values.

3. PRELIMINARY NOTATIONS AND LEMMAS

We first define the order statistics of opinion states as follows:

Definition 3.1. Given a moment t = 0, 1, . . . ,

x[1](t),x[2](t), . . . ,x[n](t)

are the order statistics of opinion states xi(t), i ∈ V satisfying that x[1](t) ≤ x[2](t) ≤
· · · ≤ x[n](t). Specially, D[i,j](t)

.
= x[j](t)− x[i](t) denotes the opinion range from x[i](t)

to x[j](t), t ∈ N.
Similarly, we denote

y[1](t),y[2](t), . . . ,y[z](t)

as the ordered average opinions selected from {Vi, 1 ≤ i ≤ z} satisfying y[i](t) ≤
y[i+1](t), i = 1, 2, . . . , z − 1 where z = Cmn .

We remark that D[1,n](t) is the opinion range at time t. When D[1,n](t) → 0 as
t→∞, all opinions will reach a same limit, which is called opinion consensus.

Secondly, some graph definitions are provided as follows:

Definition 3.2. (i) A directed graph sequence {Dt, t = 0, 1, . . . } of the model (1) is
defined as: Dt = (V,Et) where [i, j] ∈ Et if and only if i ∈ Nj(t) and |yj(t)| ≤ η.

(ii) An undirected graph sequence {D̄t, t = 0, 1, . . . } of the model (1) is defined as:
D̄t = (V̄, Ēt) where V̄ = {1, 2, . . . , z = Cmn } and (i, j) ∈ Ēt if and only if |x̄i(t)−
x̄j(t)| ≤ η, x̄i(t) = 1

m

∑
j∈Vi xj(t) is an average value at time t with i ∈ V̄.

Remark 3.3.

(1) [i, j] ∈ Et but [j, i] would not belong to Et. For example, if x(0) = (0.3, 0.4, 0.8),
m = 2, δ = 0.5, η = 0.1 and N3(0) = {1, 2}, then [2, 3] ∈ E0 but [3, 2] /∈ E0.

(2) Note that directed graph sequence {Dt} is stochastic because Nj(t) is randomly
selected from {Vi, 1 ≤ i ≤ z}, 1 ≤ j ≤ n, t = 0, 1, . . . .

(3) Similarly, the undirected graph sequence D̄t is also stochastic and depend on the
initial opinions and the previous t− 1 selection averages, t ≥ 0.

Next, we give some definitions on opinion evolutions.

Definition 3.4. (i) An event sequence {At, t = 0, 1, . . . } is said to happen infinitely
often (i.o.) if

P{lim sup
t→∞

At} = P{∩∞m=1 ∪∞t=m At} = 1.
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(ii) An event sequence {At, t = 0, 1, . . . } is said to happen almost surely (a.s.) if

P{lim inf
t→∞

At} = P{∪∞m=1 ∩∞t=m At} = 1.

(iii) For the opinion dynamics (1), opinions will reach convergence a.s. if there exist
n r.v.s B1, . . . , Bn such that limt→∞ xi(t) = Bi, i ∈ V a.s.. While opinions will
fluctuate a.s. if there exists at least a node i ∈ V such that lim inft→∞ xi(t) <
lim supt→∞ xi(t), i ∈ V a.s.

Remark 3.5. We remark that {At, t = 0, 1, . . . } happens i.o. is equivalent to that
there exists a subsequence {Atk , k = 1, 2, . . . } of {At, t = 0, 1, . . . } such that {Atk , k =
1, 2, . . . } happens a.s. for {tk, k = 1, 2, . . . } ⊂ {t, t = 0, 1, . . . }.

Finally, we introduce some lemmas.

Lemma 3.6. Under the Assumption 2.2, the r.v. D[1,n](t) ∈ [0, 1] for any t = 0, 1, . . .
must decrease as t increases.

Lemma 3.7. (Durrett [7]) If Y = LX where L ∈ RK×K is positive, X,Y ∈ R1×K ,
and the probability densities of X, Y exist, then we have

fY (y) =
1

|L|
fX(L−1y)

where y = (y1, y2, . . . , yK)′.

Lemma 3.8. Under the Assumption 2.1 and the Assumption 2.2, the probability den-
sity of

X∗ = (x[i1](0),x[i2](0), . . . ,x[ik](0))

satisfies:

fX∗(x) =


n!

(i1 − 1)!(n− ik)!
∏k−1
s=1 (is+1 − is − 1)!

xi1−11 (1− xn)n−ik
∏k−1
s=1 (xs+1 − xs)is+1−is−1,

0 ≤ x1 ≤ · · · ≤ xk ≤ 1,

0, otherwise,

(2)

where x = (x1, x2, . . . , xk).

Lemma 3.9. (Durrett [7]) For the Beta function B(p, q) =
∫ 1

0
xp−1(1 − x)q−1 dx,

p > 1, q > 1, we have B(n,m) = (n−1)!(m−1)!
(n+m−1)! for n,m ∈ Z.



The un-repeated multi-selection bounded confidence model 259

4. PROBABILITY BOUNDS FOR OPINION CONVERGENCE

In this section, we will estimate the probability bounds for opinion convergence of the
model (1).

4.1. The case of opinion clustering

Theorem 4.1. Let n < 2m − 1 and η < 1
m . Then the opinion dynamics (1) leads to

network opinion clustering with a strictly positive probability. To be precise, there holds

P
{
∃n r.v.s Bi such that lim

t→∞
xi(t) = Bi, i ∈ V

}
≥ 1

2

m−1∑
s=n−m+1

(1−max{ m

m− s
,

m

m+ s− n
}η)n. (3)

This theorem indicates that public opinions reach stable more easily if we have a
smaller confidence bound. The upper probability bound estimation of opinion clustering,
is relatively difficult, because this problem is equivalent to estimating the lower bound
of opinion fluctuation. The lower probability bound of the opinion fluctuation is still a
hard work.

P r o o f . We first construct an initial condition that ensures the opinion convergence,
and then provide a lower probability bound of the probability for this initial condition.

Step 1: An initial condition that ensures the opinion convergence.
In fact, if y[1](0) > x[s](0) + η,y[z](0) < x[s+1](0)− η for some s = 2, 3, . . . , n− 1 and

z = Cmn , then min1≤j≤n,1≤s≤z |ys(0) − xj(0)| > η by Remark 3.3. Note that yj > η
for any j = 1, 2, . . . , n and any selected average opinions. Thus xi(1) = xi(0), i ∈ V.
Recursively, xi(t + 1) = xi(t) for any t = 1, 2, . . . and i ∈ V. Thus, opinions will keep
unchanged based on the opinion dynamics (1).

Denote A
(1)
s = {y[1](0) > x[s](0) + η}, A(2)

s = {y[z](0) < x[s+1](0) − η}, As =

A
(1)
s ∩A(2)

s and A = ∪n−1s=2As.

Step 2: We will prove that P{A} = P{∪m−1s=n−m+1As} if n < 2m − 1 and P{A} = 0 if
n ≥ 2m− 1.

(i) If s /∈ {1, 2, . . . ,m}∪{n−m+1, . . . , n}, then P{As} = 0. In fact, if s /∈ {1, 2, . . . ,m},
then x[s](0) ≥ 1

m

∑m
j=1 x[j](0) = y[1](0). Therefore, P{As} ≤ P{A(1)

s } = 0. Similarly, if

s /∈ {n−m+ 1, . . . }, then x[s+1](0) ≤ y[Cmn ](0), thus P{As} ≤ P{A(2)
s } = 0.

(ii) If n ≥ 2m − 1, then P{As} = 0 for any s ∈ {1, . . . ,m} ∪ {n − m + 1, . . . , n}.
This can be deduced by the following fact: If s ∈ {1, 2, . . . ,m}, by n − m + 1 ≥ m,
x[s+1](0) ≤ x[m+1](0) ≤ x[n−m+1](0) ≤ 1

m

∑n
j=n−m+1 x[j](0) = y[Cmn ](0), then P{As} ≤

P{A(2)
s } = 0; Similarly, if s ∈ {n−m+ 1, n−m+ 2, . . . , n}, then x[s](0) > y[1](0), and

P{As} ≤ P{A(1)
s } = 0.

(iii) Consider the condition of n < 2m − 1 or n −m + 1 < m. If s ∈ {1, 2, . . . , n −m},
then P{As} ≤ P{A(1)

s } = 0 because x[s](0) ≤ y[1](0); Similarly, P{As} ≤ P{A(2)
s } = 0 if

s ∈ {m,m+ 1, . . . , n}.
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In a sum, P{A} = P{∪m−1s=n−m+1As}.

Step 3: Two traits of {As} are provided.

(1) A
(1)
n−m+1 ⊃ A

(1)
n−m+2 ⊃ · · · ⊃ A

(1)
m−1 and A

(2)
n−m+1 ⊂ A

(2)
n−m+2 ⊂ · · · ⊂ A

(2)
m−1.

This can be deduced by {y[1](0) > x[s](0) + η} ⊃ {y[1](0) > x[s+1](0) + η} for
s = n−m+1, . . . ,m−1 and {y[Cmn ](0) < x[s](0)−η} ⊂ {y[Cmn ](0) < x[s+1](0)−η}
for s = n−m+ 1, . . . ,m− 1.

(2) As ∩ Aj = ∅, s 6= j. In fact, assume that s < j, {y[Cmn ](0) < x[s+1](0) − η} ∩
{y[1](0) > x[j](0) + η} = ∅, thus As ∩Aj ⊂ A(2)

s ∩A(1)
j = ∅. Similarly, As ∩Aj = ∅

if s > j. Therefore, P{A} = P{∪m−1s=n−m+1As} =
∑m−1
s=n−m+1 P{As}.

Step 4: The lower probability bound of P{A} is estimated by the order statistics method.

Along to Definition 3.1, we get that

{y[1](0) > x[s](0) + η} ⊃ {m− s
m

x[s+1](0) +
s− 1

m
x[1](0)− m− 1

m
x[s](0) > η}

which can be obtained by

y[1](0) =

m∑
j=1

x[j](0) ≥ 1

m

(
(s− 1)x[1](0) + x[s](0) + (m− s)x[s+1](0)

)
.

Similarly,

{y[Cmn ](0) < x[s+1](0)− η}

⊃
{m− 1

m
x[s+1](0)− m+ s− n

m
x[s](0)− n− s− 1

m
x[n](0) > η

}
which can be obtained by

y[Cmn ](0) =

n∑
j=n−m+1

x[j](0) ≤ 1

m

(
(s− n+m)x[s](0) + x[s+1](0) + (n− s− 1)x[n](0)

)
.

By Lemma 3.8, the probability density of Xs = (x[1](0),x[s](0),x[s+1](0),x[n](0)) ∈ R4

is:

fXs
(xs) =

{
n!

(s−2)!(n−s−2)! (x2 − x1)s−2(x4 − x3)n−s−2, 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1,

0, otherwise,

where xs = (x1, x2, x3, x4).
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Therefore, for s = n−m+ 1, n−m+ 2, . . . ,m− 1, by Lemma 3.9,

P{As}
(a)

≥
∫
m−s
m x3+

s−1
m x1+

m−1
m x2>η,

m−1
m x3−m+s−n

m x2−n−s−1
m x4>η

fXs
(xs) dxs

(b)

≥
∫
m−s
m (x3−x2)>η,

m+s−n
m (x3−x2)>η

fXs
(xs) dxs

=
n!

(s− 2)!(n− s− 2)!

∫ 1−η∗

0

dx2

∫ x2

0

(x2 − x1)s−2 dx1

∫ 1

x2+η∗
dx3

∫ 1

x3

(x4 − x3)n−s−2 dx4

≥ n!

(s− 2)!(n− s− 2)!

∫ 1−η∗

0

dx2

∫ 1

x2+η∗
xs−12 (1− x3)n−s−1 dx3

=
n!

(s− 2)!(n− s− 1)!

∫ 1−η∗

0

xs−12 (1− η∗ − x2)n−s dx2

=
n!

(s− 2)!(n− s− 1)!
(1− η∗)nB(s, n− s+ 1) = (1− η∗)n

where (a) holds because
{As} ⊇ {m−sm x3 + s−1

m x1 + m−1
m x2 > η, m−1m x3 − m+s−n

m x2 − n−s−1
m x4 > η},

(b) comes from {m−sm x3 + s−1
m x1 + m−1

m x2 > η, m−1m x3 − m+s−n
m x2 − n−s−1

m x4 > η} ⊇
{m−sm (x3 − x2) > η, m+s−n

m (x3 − x2) > η} and η∗ = max{ m
m−s ,

m
m+s−n}η.

In a sum, P{A} ≥ 1
2

∑m−1
s=n−m+1

(
1−max{ m

m−s ,
m

m+s−n}η
)n

where n < 2m − 1 and

η < 1
m .

We remark that P{A} ≥ (2m− n− 1)(1−mη)n for simplicity. �

4.2. The case of opinion consensus

Theorem 4.2. Let η > 0. Then along the opinion dynamics (1) the network will reach
a consensus with some positive probability. Precisely there holds

P
{
∃a r.v. B∗ such that lim

t→∞
xi(t) = B∗, i ∈ V

}
≥ n!ηn−1(1− η). (4)

Theorem 4.3. If η ≤ 1
m+1 , then

P
{
∃a r.v. B∗ such that lim

t→∞
xi(t) = B∗, i ∈ V

}
≤ 1− n(n− 1)

2

( η
m

)n−2
(1− (m+ 1)η)2.

(5)

According to these theorems, the event that agent opinions of the opinion dynamics
(1) reach consensus is non-singular.

P r o o f of Theorem 4.2. We prove this theorem with the following two steps.

(Step 1): If η ≥ D[1,n](0), then D[1,n](t)→ 0 as t→∞;
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In fact, at time 0, for any agent selected average opinion y[j](0) of agent [i], i ∈ V,
j ∈ V̄, we have

|y[i](0)| = |y[j](0)− x[i](0)| ≤ 1

m
|
m∑
j=1

D[1,n](0)| ≤ η.

At time 1, by Lemma 3.6, we get that D[1,n](1) ≤ D[1,n](0). Similarly, for any agent
selected average opinion y[j](0) of agent [i], i ∈ V, j ∈ V̄,

|y[i](1)| = |y[j](1)− xi(1)| ≤ 1

m
|
m∑
j=1

D[1,n](1)| ≤ D[1,n](0) ≤ η.

Recursively, we get that for any i ∈ V, j ∈ V̄ and t = 0, 1, . . . ,

|x[i](t)| ≤ η. (6)

At any time t ∈ N, by Assumption 1 and Lemma 3.6, D[1,n](t)→ x∗ as t→∞.

If x∗ > 0, then for any small real number 0 < ε < δx∗

m−δ , there exists a random variable
T ∈ N, when t > T , x∗ ≤ D[1,n](t) < x∗ + ε. Note that

y[Cmn ](t) ≥
m− 1

m
x[1](t) +

1

m
x[n](t) = x[1](t) +

D[1,n](t)

m
,

and agent [1] at time t has a positive probability to select the average opinion y[Cmn ](t),
thus

D[1,n](t+ 1) ≤ D[1,n](t)− δ
D[1,n](t)

m

if agent [1] at time t selects the average opinion y[Cmn ](t). By ε < δx∗

m−δ ,

D[1,n](t+ 1) ≤ (1− δ

m
)(x∗ + ε) < x∗.

Note that agent [1] has a strictly positive probability to select the average opinion
y[Cmn ](t), by (6) and Borel-Cantelli lemma, it provides a contradiction. Thus,
limt→∞D[1,n](t) = 0 a.s.

(Step 2): The lower bound of the probability P{η ≥ D[1,n](0)} can be estimated.
Set Xc = (x[1](0),x[n](0))′, then by Lemma 3.8,

fXc
(x) =

{ n!
(n−2)! (x2 − x1)n−2, 0 ≤ x1 ≤ x2 ≤ 1

0, others.

Therefore,

P{ lim
t→∞

D[1,n](t) = 0} ≥ P{D[1,n](0) ≤ η}

=

∫
x2−x1≤η,0≤x1≤x2≤1

n!

(n− 2)!
(x2 − x1)n−2 dx1dx2

=
n!

(n− 2)!

∫ 1−η

0

dx1

∫ x1+η

x1

(x2 − x1)n−2 dx2 = nηn−1(1− η).

�
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P r o o f . of Theorem 4.3. We prove this theorem with the following two steps:

(Step 1): If D[1,2](0) > m2+m−1
m η, D[2,n](0) < 1

mη, then opinions will not reach consen-
sus.

We will prove that x[1](t) will keep unchanged, t = 0, 1, . . . and xj(t) ∈ [x[2](0),x[n](0)]
for any j 6= [1].

(i) At time 0, Note that

|y[1](0)| = 1

m
|

∑
[jk]∈N[1](0),1≤k≤m

D[1,jk](0)| ≥ 1

m
|D[1,1](0) +

∑
[jk]∈N[1](0),jk 6=1

D[1,jk](0)|

≥ m− 1

m
min
k≥2

D[1,k](0) >
m− 1

m
(m+

m− 1

m
)η > η,

|y[i](0)| = 1

m
|

∑
[js]∈N[i](0),1≤s≤m

D[i,js](0)| > 1

m

(
(m+

m− 1

m
)η −max

j≥2
D[i,j](0)

)
≥ η

for [1] ∈ N[i](0) and |y[i](0)| ≤ η for [1] /∈ N[i](0). Thus, x[1](1) = x[1](0) and x[i](1) ∈
[x[2](0),x[n](0)] for i ≥ 2. Besides, the minimum order is preserved. Furthermore,

D[1,2](1) ≥ D[1,2](0) > m2+m−1
m η, D[2,n](1) ≤ D[2,n](0) < η

m .

Recursively, D[1,2](t) ≥ D[1,2](t − 1) ≥ · · · ≥ D[1,2](0) > m2+m−1
m η. Thus, opinions

will not reach consensus in this condition.

(Step 2): We estimate the lower probability bound of P{D[1,2](0) > m2+m−1
m η,D[2,n](0) <

1
mη}.

Denote Xc = (x[1](0), D[1,2](0), D[2,n](0))′ and X(3) = (x[1](0),x[2](0),x[n](0))′. Then

Xc = L2X
(3) where

L2 =

 1 0 0
−1 1 0
0 −1 1

 .

By Lemma 3.7, we get that fXc(y) = 1
|L2|fX(3)(L−12 y) = fX(3)(L−12 y), where y =

(y1, y2, y3), 0 ≤ y1, y2, y3 ≤ 1, y1 + y2 + y3 ≤ 1.

By Lemma 3.8,

fX(3)(x) =

{ n!
(n−3)! (x3 − x2)n−3, 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1

0, otherwise

where x = (x1, x2, x3). Thus,

fXc
(y) =

{
n!

(n−3)!y
n−3
3 , 0 ≤ yj ≤ 1,

∑3
i=1 yi ≤ 1, j = 1, 2, 3

0, otherwise.
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In a sum,

P{D[1,2](0) >
m2 +m− 1

m
η,D[2,n](0) <

1

m
η}

=

∫ ∫ ∫
0≤y1+y2+y3≤1,y2≥m

2+m−1
m η,y3≤ η

m

n!

(n− 3)!
yn−33 dy1 dy2dy3

≥ n!

(n− 3)!

∫ 1−(m+1)η

0

dy1

∫ 1− η
m−y1

m2+m−1
m η

dy2

∫ η
m

0

yn−33 dy3

=n(n− 1)
( η
m

)n−2 ∫ 1−(m+1)η

0

(1− (m+ 1)η − y1) dy1

=
n(n− 1)

2

( η
m

)n−2
(1− (m+ 1)η)2

if η < 1
m+1 . �

4.3. The case of global selection

In this subsection, we consider the case that m = n. Then the network Dt = (V,Et)
satisfies Ni(t) = V for any i ∈ V and t ∈ N. Thus, for any i ∈ V , xi(t + 1) =
xi(t) + δ(y1(t) − xi(t)) if |y1(t) − xi(t)| ≤ η and xi(t + 1) = xi(t) otherwise. Here

y1(t) =
∑
j∈V

xj(t)
n . Based the previous subsections, the probability bounds of opinion

limit states can be estimated as follows:

Theorem 4.4. Suppose m = n. For the opinion dynamics (1), the distribution of limit
states B1, B2, . . . , Bn satisfies

(P1.) P{B1 = B2 = · · · = Bn}
≥
(
η
n

)n−1 n−η(n−1)
n

∑bn/2c
s=2

n!
(s−2)!(n−s−2)!

(
1− n(n−s)+s2

(n−s)n η
)
s2(n−s−1)

(n−s)n−2s and

P{B1 = B2 = · · · = Bn} ≤ (2η)n−1(n− 2η(n− 1)) for η ≤ 1
2 ;

(P2.) P{|Bi −Bj | > η,∀i 6= j, i, j ∈ V} ≥
∑n−1
s=1

n!(1−K0η−nη)n−1

(s−1)!(n−s−1)!

(
s

n−s

)n−2s
1

n−1 and

P{|Bi −Bj | > η,∀i 6= j, i, j ∈ V} < (1− η)n for η ≤ 1
n2

where K0 = max{ (n−s)
2

s , s(s+1)
n−s }.

Theorem 4.4 shows that both the opinion consensus event and {|Bi−Bj | > η,∀i 6= j}
are non-trivial. Due to {D[1,n](0) < 2η} is a small probability event, opinion consensus
is a comparative ’rare’ event.

P r o o f . We divide the proof into two parts.

Part 1. The probability bound estimation for the consensus event.
Define

Bs , {
n− s
n

D[s,s+1](0) ≥ s

n
D[1,s](0),

s

n
D[s,s+1](0) +

n− s
n

D[1,n](0) ≤ η}
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and

Us , {
s

n
D[1,n](0) +

n− s
n

D[s+1,n](0) ≤ n

n− s
η,
s

n
D[s,s+1](0) ≥ n− s

n
D[s+1,n](0)}.

Further, we define B′s = {yj ∈ (0, η), yk ∈ (− n
n−sη, 0), j 6= k, 1 ≤ j ≤ s, s+1 ≤ k ≤ n} for

s = 1, 2, . . . , n − 1 and U′s = {yj ∈ (−η, 0), yk ∈ (0, n
s−1η), j 6= k, s ≤ j ≤ n, 1 ≤ k < s}

for s = 2, 3, . . . , n where yk = x̄[1](0)− x[k](0). It shows that

{B1 = B2 = · · · = Bn}
a)
= ∪n−1s=1 {0 < yk < η, 0 < −yj < η +

∑s
r=1 yr
n− s

, 1 ≤ k ≤ s}∪

∪ns=2 {0 < −yj < η, s ≤ j ≤ n, 0 < yk < η −
∑n
r=s yj
s− 1

, 1 ≤ k < s}
b)

k
n−1⋃
s=1

Bs ∪
n⋃
s=2

Us

(7)

where a) is based on the model (1) and b) holds by the definition of Bs and Us. Fur-
thermore, by the definition of Bs and Us, Bs ∪ Us+1, s = 1, 2, . . . , n − 1 are mutually
exclusive events.

Then by the inequality (7),

P{B1 = B2 = · · · = Bn} ≥
n−1∑
s=1

P{B′s ∪ U′s+1}.

By the definition of the event B′s,

x̄[1](0) ∈ [
1

n

(
sx[1](0) + (n− s)x[s+1](0)

)
,

1

n

(
sx[s](0) + (n− s)x[n](0)

)
].

Then

yk ∈ [
n− s
n

D[s,s+1](0)− s

n
D[1,s](0),

s

n
D[1,s](0) +

n− s
n

D[1,n](0)] if 1 ≤ k ≤ s,

yk ∈
[
− s

n
D[1,n](0)− n− s

n
D[s+1,n](0),− s

n
D[s,s+1](0) +

n− s
n

D[s+1,n](0)
]

if s+ 1 ≤ k ≤ n.

Obviously,

B′s k Bs , {
n− s
n

D[s,s+1](0) ≥ s

n
D[1,s](0),

s

n
D[s,s+1](0) +

n− s
n

D[1,n](0) ≤ η}

1 ≤ k ≤ s and

U′s k Us , {
s

n
D[1,n](0) +

n− s
n

D[s+1,n](0) ≤ n

n− s
η,
s

n
D[s,s+1](0) ≥ n− s

n
D[s+1,n](0)}

for s+ 1 ≤ k ≤ n.
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Define

Zs = (z1, z2, z3, z4) , (x[1](0), D[1,s](0), D[s,s+1](0), D[s+1,n](0))

and
Xs = (x[1](0), x[s](0), x[s+1](0), x[n](0)).

Then Zs = LXs where

L =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

By Lemma 3.8 and z3 ≥ max { s
n−sz2,

n−s
s z4} in the event Bs ∪ Us+1, we have

P{Bs ∪ Us+1}

a)

≥
∫
z2≤n−s

s z3,z4≤ s
n−s z3,z4+

s
n (z2+z3)≤ nη

n−s ,z2+
n−s
n (z3+z4)≤η

n!zs−22 zn−s−24

(s− 2)!(n− s− 2)!
dZs

b)

≥ n!

(s− 2)!(n− s− 2)!

∫
sz2+(n−s)z4≤sη

zs−22 zn−s−24 dZs

where a) follows from the inequality (7) and b) holds because { n
n−sz2 + z3 + z4 ≤

n
n−sη} ⊂ {z4 + s

n (z2 + z3) ≤ n
n−sη}, z3 ≤

s
nη by n

n−sz2 + z3 + z4 ≤ n
n−sη, z2 ≤ n−s

s z3
and z4 ≤ s

n−sz3. We further get that

P{Bs ∪ Us+1}

(a)

≥ n!

(s− 2)!(n− s− 2)!

(
1− n2 − sn+ s2

(n− s)n
η

)
{∫ n−s

n η

0

zs−22 dz2

∫ s2

(n−s)n

( s
n−s )

2z2

zn−s−24 (
s

n
η − n− s

s
z4) dz4

+

∫ s2

(n−s)nη

0

zn−s−24 dz4

∫ n−s
n η

(n−s
s )2z4

zs−22 (
s

n
η − n

n− s
z2) dz2

}

≥ n!

(s− 2)!(n− s− 2)!

s2(n−s−1)η

(n− s)n−2s
( η
n

)n−2(
1− (n− s)n+ s2

(n− s)n
η

)
{

s

n(n− 1)(n− s)
+

1

s

(
1

n− 1
− η

n

)
− s

s− 1

(
1

n(n− 2)
− η

n2

)}

≥
n!
(

1− (n−s)n+s2
(n−s)n η

)
(s− 2)!(n− s− 2)!

s2(n−s−1)η

(n− s)n−2s
( η
n

)n−2{ s

n(n− 1)(n− s)
+

(
1

s
− 1

n

)(
1

n− 1
− η

n

)}
≥
( η
n

)n−1 n− η(n− 1)

n

n!

(s− 2)!(n− s− 2)!

(
1− n(n− s) + s2

(n− s)n
η

)
s2(n−s−1)

(n− s)n−2s
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where (a) holds by the fact that z3 ≥ max{ s
n−sz2,

n−s
s z4} and

η ≤ mins∈{1,2,...,bn2 c}

{
(n−s)n

(n−s)n+s2

}
=

n2

2
n2

2 +n2

4

= 2
3 .

For the upper probability bound for the consensus event, note that {B1 = B2 = . . . =
Bn} ⊂ {D[1,n](0) < 2η}, by

P{D[1,n]<2η} = n(n− 1)

∫ 2η

0

rn−2(1− r) dr = (2η)n−1[n− 2η(n− 1)],

we get that

P{B1 = B2 = . . . = Bn} ≤ (2η)n−1[n− 2η(n− 1)].

Part 2: The probability bound estimation for the {|Bi −Bj | ≥ η, i 6= j} event.
Denote D = {|Bi −Bj | ≥ η, i 6= j}.

D ⊃ {|x[i](0)− x̄[1](0)| > η} ∩ {D[i,i+1](0) > η}
∩{0 < x̄[1](0)− x[i0](0) < η, x[i0+1](0)− x̄[1](0)

> η +
1

n− 1
(x̄[1](0)− x[i0](0)), 1 ≤ i0 ≤ n− 1}

∩{0 < x[j0+1](0)− x̄[1](0) < η, x̄[1](0)− x[j0](0)

> η +
1

n− 1
(x[j0+1](0)− x̄[1](0)), 1 ≤ i0 ≤ n− 1}.

According to Lemma 3.8,

P{D} ≥
n−1∑
s=1

n!

(s− 2)!(n− s− 2)!∫ ∫
· · ·
∫
n−s
n w3− s

nw2>
s(s+1)
n η, snw3−n−s

n w4>
(n−s)2
n η,

∑
wi≤1−nη,wi≥0

ws−22 wn−s−24 dw1 dw2 dw3dw4

≥
n−1∑
s=1

n!

(s− 1)!(n− s− 1)!

∫ 1−nη

K0η

(
n− s
s

)s−1(
s

n− s

)n−s−1
(w3 −K0η)n−2 dw3

=

n−1∑
s=1

n!(1−K0η − nη)n−1

(n− 1)(s− 1)!(n− s− 1)!

(
n− s
s

)s−1(
s

n− s

)n−s−1
,

where K0 = max{ (n−s)
2

s , s(s+1)
n−s } ≥ K̄ = max{s+ 1, n− s} for any s ∈ V.

For the upper bound, note that

{x[s](0)− x̄[1](0) < η, x̄[1](0)− x[s−1](0) > η +
x[s](0)− x̄[1](0)

n− 1
} ⊂ {D[s−1,s](0) > η}

and

{x̄[1](0)− x[s−1](0) < η, x[s](0)− x̄[1](0) > η +
x̄[1](0)− x[s−1](0)

n− 1
} ⊂ {D[s−1,s](0) > η},
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thus, D ⊂ {D[i,i+1](0) > η, i = 1, 2, . . . , n− 1}.
Similarly, by Lemma 3.7,

P{D} ≤ n!
1

n!
(1− η)n = (1− η)n.

�

According to these theorems, it is illustrated that the convergence events would not
happen a.s., it emerges possibly other kinds of events, for example, the opinion fluctua-
tion. In the next section, we will demonstrate the probability bounds for the convergence
events and find that the fluctuation events would happen with positive probabilities.

5. SIMULATIONS

In this section, we first simulate the probability bounds of Theorem 4.1, Theorem 4.2
and Theorem 4.3. Here we provide typical examples to show how the bounds changes as
the agent number increases. To further understand the upper and lower bounds, some
potential significance are talked among these simulations.

For Theorem 4.1, the convergence event is simplified as
∑20
k=0

∑n
i=1(xi(t−k)−xi(t−

k − 1))2 < 0.01. Here we set η = 0.05, δ = 0.5, the selection number m = 17 and the
termination time T = 1000 in Figure 1. We count the average of 1000 simulations on
the convergence events and find that the numerical frequencies of convergence events
are beyond the lower probability bounds.

Figure 1: The lower bound of opinion convergence when η = 0.05, which illustrates
individual opinions are more hard to reach stable if agent number increases and the
confidence bound is small enough.
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For Theorem 4.2 and Theorem 4.3, η = 0.02, δ = 0.5, m = 2 and T = 1000 in
Figure 2. The consensus event is simplified as {D[1,n](T ) < 0.01}. Considering that
1000 simulations are far from enough to simulate the theoretical initial value equal
probability coverage, we set agent number n changes from 91 to 100 in Figure 2, which
further shows that the bound estimation of Theorem 4.2 and Theorem 4.3 is relatively
loose, comparing to Figure 1.

Figure 2: The bound of opinion consensus when η = 0.02, and the numerical bounds
show that opinion consensus probability would be not too closely related to the individual
number.

Secondly, we simulate how the probability bounds of Theorem 4.4 change. Here
η = 0.02, δ = 0.5 and the termination time T = 10000. According to Theorem 4.4, the
consensus event is simplified as {D[1,n](T ) < 0.00001} in this demonstration. We count
the average of 1000 simulations on the events {D[1,n](T ) < 0.00001} and {|Bi − Bj | >
η, i 6= j}, respectively. In Figure 3, we find that as the agent number n increases, the
consensus probability bounds decrease and the probability upper bounds for the limit
distances larger than the confidence bound decrease.

Next, we simulate how opinions evolve for general cases. Here n = 30, the selection
number m = 12, δ = 0.5, the confidence bound η = 0.1 and the termination time
T = 1000. Figure 4 implies that opinions always fluctuate between the relative extremal
opinions on both sides. This phenomenon needs further mathematical proving, whose
mathematical analysis will be our further work.

Finally, based on the simulation of Figure 4, probability bounds of opinion fluctua-
tions are demonstrated where n = 100, δ = 0.8 and the termination time T = 1000. For
this demonstration, the opinion fluctuation is assumed to occur if

∑20
k=0

∑n
i=1(xi(t −
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(a) the opinion consensus bounds for the
global selection rule.

(b) the pair wise convergence bounds for the
global selection rule.

Figure 3: Bounds of multiply limit states change as n increases when η = 0.02.
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Figure 4: opinion dynamics when m = 12 and n = 30.

k)− xi(t− k− 1))2 > 0.01 and opinion convergence happens otherwise. In Figure 5, we
simulate the experiment for 100 times. The frequency of opinion fluctuations is defined
as the proportion of the opinion fluctuation events for these 100 experiments. Results
show that opinion fluctuation would happen with positive probabilities if the confidence
bound η is small enough.

Through these results, we find that the opinion dynamics of the model (1) are more
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Figure 5: The frequency of opinion fluctuation changes as m and the confidence bound
increase.

complicated than the one in [14], especially for the parameter conditions. Furthermore,
different from the case in [14], simulations show that opinion fluctuation would happen
even without the influence of stubborn agents.

6. CONCLUSIONS

In this paper, we analyzed the multiple selection bounded confidence model (1) and
estimated probability bounds of opinion convergence and consensus, respectively. The
results showed that both the multi limit events and the consensus events are non-trivial
with certain parameter conditions. Simulations indicated that opinion fluctuation would
happen with positive probability or occur a.s. asymptotically if the confidence bound is
less enough. The complete mathematical analysis for opinion fluctuation of the model
(1) will be our future work.
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