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A NEW ALGORITHM FOR OPTIMAL SOLUTION
OF FIXED CHARGE TRANSPORTATION PROBLEM

Nermin Kartli, Erkan Bostanci and Mehmet Serdar Guzel

Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem,
in addition to the cost per unit for each transported product, a fixed cost is also required. The
aim is to carry out the transportation process at the lowest possible cost. As with all supply
chain problems, this problem may have one, two, or three stages. An algorithm that can find
the optimal solution for the problem in polynomial time is not known, even if it is a single-stage
problem. For this reason, new algorithms have been proposed in recent years to provide an
approximate solution for the problem. The vast majority of these algorithms are meta-heuristic
algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for
the 1-stage FCTP. We compare the results of our algorithm with the results of other existing
algorithms.
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1. INTRODUCTION

The supply chain planning problem is one of the important research problems. The pur-
pose of the mathematical models proposed for supply chain planning is to set decision-
support systems that distribute strategic resources efficiently in the long term. There
are three types of models in supply chain planning: the production-distribution model
[7], the location-allocation and routing model [8], and the inventory-transport model [6].
In the production-distribution model, production and scheduling decisions are taken
and distribution is planned. In the location-allocation and routing model, the conve-
nient location of the facilities and warehouses is investigated, and the most suitable
transportation route is planned for the customers. In the inventory-transport model,
the inventory control of the warehouses is carried out, and the transportation of the
products from the production facilities to the wholesalers, retailers, and customers is
planned. Supply chain models can be constructed as one stage, two stages, or three
stages. One-stage model is the Plant-Distributor (PD) model. Two-stage models are
Plant-Distributor-Retailer (PDR) model and Plant-Distributor-Consumer (PDC) model.
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Three-stage supply chains are Plant-Distributor-Retailer-Consumer (PDRC), Supplier-
Plant-Distributor-Retailer (SPDR) and Supplier-Plant-Distributor-Consumer (SPDC)
models [25, 26].

Economic models involving an optimization problem can be divided into 2 groups:
models with and without uncertainty. Models including uncertainty can be solved
through probability theory, interval analysis, and fuzzy logic. If there are random vari-
ables in the problem formulation, it is appropriate to model and solve the problem
through probability theory. If there are no random variables in the problem formula-
tion, but there exists uncertainty, it is more reasonable to solve the problem using the
interval analysis method or to model the problem with fuzzy sets. If the values of certain
variables in the problem formulation are not known, but it is known that the variables
take the values in an interval with the same possibility, then the interval analysis method
is used. If certain values of the problem are unknown and the variables take the val-
ues in an interval with different possibilities, then fuzzy logic and fuzzy sets are used.
A problem can include all three kinds of variables and in that case, hybrid approaches
are used.

Different problems related to supply chain problem models are investigated in the
academic literature. Many of these problems are listed below.

• TP (Transportation Problem)

• FCTP (Fixed Charge Transportation Problem)

• CFCTP (Capacitated Fixed Charge Transportation Problem)

• SFCTP (Step Fixed Charge Transportation Problem)

• NLFCTP (Non-linear Fixed Charge Transportation Problem)

• FCSTP (Fixed Charge Solid Transportation Problem)

• FFCSTP (Fuzzy Fixed Charge Transportation Problem)

• SSFCTP (Single Sink Fixed Charge Transportation Problem)

Classical transportation problem defined by Hitchcock [15] for the first time is actually
a one-stage supply chain problem. Hitchcock [15] defines the problem as follows: a
product that is produced in more than one factory will be sent to different cities. The
cost of transporting products from different suppliers to a city and from a supplier to
different cities is different. The purpose is to form a distribution plan in which the
products are distributed at the lowest cost. Each supplier has a production capacity,
and each distributor has a storage capacity, in classical transportation problems. There
is a transportation cost for shipping a product from each supplier to each distributor and
this cost is directly proportional to the quantity of the transported product. In real life,
this issue may be different. Most transportation companies require a fixed cost regardless
of the number of products transported. Fixed Charge Transportation Problem (FCTP)
is defined by Hirsch and Dantzig [16] for the first time and under certain circumstances
it is transformed into a classical linear programming problem. [9] is the first study in
which the FCTP is examined as a linear integer programming problem. In this study,
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Balinski studied two classical transportation problems instead of FCTP and found upper
and lower limits for the optimal solution of the main problem. He proposed a matrix
called the Balinski matrix in order to find the lower limit of the problem and solved the
TP with real-valued conditions. To find an upper limit, he formed a feasible solution
based on the optimal solution obtained for the lower limit. He defined a new classical TP
using this feasible solution and solved the problem. We explain this problem in detail
in Section 3. Actually, in order to find an approximate solution for both one-stage and
two-stages FCTP, most of the algorithms proposed in the literature are either based on
modifying the Balinski matrix to increase the lower value founded or modifying various
meta-heuristic algorithms or directly using them in order to decrease the upper value.

The main idea behind the algorithms proposed to decrease the upper value will also be
explained in Section 3. After the work of Balinski [9], this problem is studied by Gottlieb
and Paulmann [14], Sun et al. [31], Adlakha and Kowalski [1], Adlakha and Kowalski
[2], Adlakha et al. ([3]-[5]), Jo et al [20], Raj and Rajendran [28, 29], Panicker et al. [25],
Lotfi and Tavakkoli-Moghaddam [24], El-Sherbiny and Alhamali [12], Eskandarpour et
al. [13], Pop et al. [27], Tari and Hashemi [32], Calvete et al. [10], Hong et al. [17],
Cosma et al. [11], Singh and Singh [30]. Sun et al. [31] solve the FCTP for the plant-
distributor (PD) model with Tabu Search (TS) algorithm. Gottlieb and Paulmann
[14] use a genetic algorithm for the same problem, while Adlakha and Kowalski [2]
propose a new heuristic algorithm. Jo et al. [20] solve the NLFCTP (Non-linear Fixed
Charge Transportation Problem) for the PD model with genetic algorithms. Jawahar
and Balaji [18] investigate FCTP for the plant-distributor-retailer (PDR) model by using
a genetic algorithm. Jawahar et al. [19] propose a Simulated Annealing algorithm to
solve FCTP for the PD model. Panicker et al. [25] solve the FCTP for the PDR
model using the ant colony optimization algorithm. Hong et al. [17] also solve the
same problem with the ant colony optimization method. This study differs from [25] as
the model enables a new distributor to be added to the examined problem. Panicker
et al. [26] use a genetic algorithm to solve FCTP for the plant-distributor-retailer-
customer (PDRC) model. Eskandarpour et al. [13] propose a heuristic algorithm Large
Neighborhood Search to solve FCTP for the TTDM model. Pop et al. [27] solve FCTP
(Fixed Charge Transportation Problem) for the plant-distributor-customer (PDC) model
using a genetic algorithm. Cosma et al. [11] propose a new algorithm based on a genetic
algorithm to solve FCTP for the PDR model.

In all the studies, described above, researchers either proposed heuristic algorithms
for obtaining better results following the method of Balinski or applied various meta-
heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) algorithm, or modified versions of them. Generally, the way followed is to trans-
form the problem into a classical transportation problem.

In this study, we also examine FCTP. However, we follow a different way such that we
try to minimize the value of objective function starting from an initial solution without
transforming FCTP to a classical TP. We use a large number of initial solutions (i. e.
use a large search space) to avoid getting stuck with the local minimum. As a result, in
this study, we propose a new heuristic algorithm to approximate the optimal solution of
FCTP. The results of the experiments show that the proposed algorithm is efficient and
successful. The proposed algorithm can also be applied to find an approximate solution
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for large-scale FCTP.

2. ONE-STAGE FCTP

There are m suppliers and n distributors. Shipping cost per unit product from ith
supplier to jth distributor is cij . Also if at least one product is transferred to jth
distributor from the ith supplier, then a constant cost aij is required. Capacity of ith
supplier is si and capacity of jth distributor is dj . All given numbers are positive integers
and the balance condition defined below holds.

We can write the problem as below:

F (X,Y ) =

m∑
i=1

n∑
j=1

(cijxij + aijyij)→ min (1)

n∑
j=1

xij = si (2)

m∑
i=1

xij = dj (3)

n∑
j=1

dj =

m∑
i=1

si. (4)

For all i, j

xij ≥ 0, (5)

yij =

{
1, if xij > 0
0, if xij = 0.

(6)

The condition (4) is called a balance condition and for all i, j the given values
cij , aij , si, dj are positive integers. The aim is to find non-negative integers xij and
yij which minimize the objective function (1) under the conditions (2–6). The m × n
sized matrices X = (xij) and Y = (yij) are called a feasible solution if they satisfy
the conditions (2–6). A pair (X0, Y 0) of m× n matrices which minimizes the objective
function (1) among all feasible solutions is called an optimal solution.

3. PRELIMINARIES

Even though FCTP is first defined by Hirsch and Dantzig [16], the problem is first
investigated by Balinski [9] as an integer programming problem. In general, integer
programming problems are known to be more difficult than problems with real numbers.
These problems can arise not only in transportation but also in other areas [22, 23].
Balinski proved many important theorems in his study. Let us remember some of them:

Theorem 1. (Balinski [9]) Problem (1–6) has the optimal solution (X0, Y 0) in the
set of integer numbers.
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Let the pair (X0, Y 0) be the optimal solution in the set of integer numbers for the
problem (1–6).

For all i, j, define c̃ij as:

c̃ij =

{
cij , if y0ij = 1
cij + aij , if y0ij = 0 .

(7)

Then, the objective function is defined as:

F̃ (X) =

m∑
i=1

n∑
j=1

(c̃ijxij)→ min . (1∗)

Theorem 2. (Balinski [9]) Let (X0, Y 0) be the optimal solution of problem (1–6) in
the set of integer numbers. Then, X0 is the optimal solution of the problem (1∗)-(2–5).

Note that problem (1∗)-(2–5) is a classical transportation problem.
Now, let us define mij = min{si, dj} for all i, j. Then the condition

0 ≤ xij ≤ mijyij (5∗)

will hold for all feasible solutions X = (xij) of the problem (1–6).

Theorem 3. (Balinski [9]) If (X̄ = (x̄ij), Ȳ = (ȳij)) is the optimal solution of the
problem (1–4) – (5∗) in the real numbers set, then for all i, j the equality x̄ij = mij ȳij is
satisfied.

Theorem 4. (Balinski [9]) Let (X0, Y 0) be the optimal solution of problem (1–6) in
the set of integer numbers. Then, at most, m + n− 1 number of elements of the matrix
X0 are positive integers.

In order to set the lowest bound for the optimal value of the objective function of
the problem (1–6), Balinski puts yij =

xij

mij
instead of yij in the objective function using

Theorem 3. Then, the objective function becomes:

F (X) =

m∑
i=1

n∑
j=1

(
cij +

aij
mij

)
xij → min . (1∗∗)

Afterward, he searches for the minimum value of the function (1**) holding conditions
(2-5) in the set of integers. This value will not exceed the optimal value of the problem
(1–6). In the literature, matrix B = (bij) = (cij +

aij

mij
) is called Balinski matrix.

Let X̄ = (x̄ij) be the optimal solution of problem (1∗∗)-(2–5) in the set of the integer
numbers. Balinski forms the feasible solution (X∗ = (x∗

ij), Y = (y∗ij)) of the problem
(1–6) based on this optimal solution as: For all i, j; if x̄ij = 0, then x∗

ij = y∗ij = 0; else
if x̄ij > 0, then x∗

ij = x̄ij , y∗ij = 1.
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After that, he finds the optimal value of the problem (1∗)-(2–5) by setting values
of c̃ij based on values of y∗ij in the formula (7). This value will not be lesser than the
optimal value of the problem (1–6).

As we stated before, most of the algorithms proposed for finding an approximate
solution of the FCTP, are either based on modifying the Balinski matrix for increasing
the lowest value or modifying the meta-heuristic algorithms or directly using them to
decrease the highest value Balinski finds.

The main idea behind the algorithms to decrease the highest value Balinski finds
is simple: randomly choose a matrix Y , then form the values of formula (7) based on
this matrix and find the optimal solution of the problem (1∗)-(2–5). If this solution
holds the condition (6), then stop; otherwise, update the matrix Y and continue. It is
natural that there is no guarantee for the condition (6) to be held, even if it holds, it
is possible that the solution obtained will not be the optimal solution to the problem
(1–6). Moreover, based on just a matrix Y , the probability of getting a good result is
low. Therefore, a specific number of (population) matrices Y are taken in the proposed
algorithms, and some meta-heuristic algorithms like genetic algorithms are applied to
crossover matrices Y .

4. THE PROPOSED ALGORITHM TO FIND AN APPROXIMATE OPTIMAL
SOLUTION

In this section, we propose a new algorithm to find an approximate optimal solution
for the FCTP. Let us explain the main idea behind the algorithm.

First of all, assume that we have an initial solution X. Pick up any 2× 2 sub-matrix
SQ of this solution. In the general case, this sub-matrix can be defined as follows:

SQ =

[
xi1,j1 xi1,j2

xi2,j1 xi2,j2

]
.

Let us take i1 = 1, i2 = 2, j1 = 1, j2 = 2 for the simplicity of the explanation.
That is, let SQ be:

SQ =

[
x11 x12

x21 x22

]
.

Let us define:
s̃1 = x11 + x12

s̃2 = x21 + x22

d̃1 = x11 + x21

d̃2 = x12 + x22.

Consider the FCTP defined below:

c11x̃11 + c12x̃12 + c21x̃21 + c22x̃22 + a11ỹ11 + a12ỹ12 + a21ỹ21 + a22ỹ22 → min

x̃11 + x̃12 = s̃1
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x̃21 + x̃22 = s̃2

x̃11 + x̃21 = d̃1

x̃12 + x̃22 = d̃2,

where for all i = 1, 2 and j = 1, 2 the conditions x̃ij ≥ 0 are satisfied. Moreover, if

x̃ij > 0, then ỹij = 1; otherwise, ỹij = 0. Since s̃1 + s̃2 = d̃1 + d̃2, this problem is
a balanced problem. The matrix SQ is a feasible solution to this problem. If all the
elements of the matrix SQ are positive, the matrix SQ cannot be the optimal solution
to the problem according to Theorem 4. Assume that at least one element of matrix
SQ is zero. For example, let x11 = 0. If x12 = 0 or x21 = 0, then the matrix SQ is the
unique feasible solution, and therefore it is the optimal solution to the problem.

Now, let x12x21 > 0. If x22 >0, then, no other solution can be obtained by decreasing
this value, because when this value is decreased, x12 must be increased, but this is not
possible according to the condition x11 = 0. So it can be possible to obtain a better
solution by decreasing x21 or x12. For example, assume that the minimum of these two
values is x12. Now, search for the new solution by:

X̃ =

[
s̃1 − x x

d̃1 + x− s̃1 d̃2 − x

]
.

Here, s̃1 = x12 and d̃1 = x21. Condition 0 ≤ x ≤ s̃1 = x12 holds for x. If x 6= 0 or
x 6= x12, then all elements of the matrix X̃ will be positive, consequently this solution
cannot be the optimal solution by the Theorem 4. So in order to be an optimal solution,
either x = 0 or x = x12 should hold. The case of x = x12 is the same as the initial case.
The case of x = 0 means that the minimum element of the diagonal (both elements
of which are positive) is subtracted from the elements of this diagonal and added to
the elements of the other diagonal. That is, in order to find the optimal solution, it is
sufficient to calculate the value of the objective function for these two cases and choose
the smallest one.

The proposed algorithm has 2 parameters h and k. The parameter h shows the
maximum number of times the objective function is allowed not to decrease at each
minimization stage. The parameter k is equal to the number of the initial feasible
solutions. In the algorithm, we define a variable kf with an initial value equal to 0.
We also define the variables fbest and fprebest with initial values +∞ (In fact, the
largest number that can be used on a computer) and repeat the steps below as long as
kf < h. In these steps for each 1 ≤ i ≤ k, we find an initial feasible solution X(i) and
calculate the value of the objective function f(i) at X(i). Then, for all X(i), we provide
the minimization stage in which the minimization procedure returns the new values f(i)
and X(i). After this step, we find the minimum value of f(i) and the index i min for
which this minimum value is attained. We assign the value f(i min) to the variable
fbest. If this value is lower than the value of fprebest, then we assign fprebest = fbest
and store the solution X(i min) as the best solution XC; otherwise, we increase the
value of the variable kf by one. The steps of the algorithm are explained below. These
steps are shown in Figure 1 as a flowchart.
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Fig. 1. Flowchart of the algorithm.

Step 1. Define the number k. (It shows the number of initial solutions to be used in
each stage.)

Step 2. Define the number h. (This number shows the maximum number of times the
objective function is allowed not to decrease.)

Step 3. Define kf = 0, fbest =∞, fprebest =∞.

Step 4. While kf < h, repeat Steps 5–10.
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Step 5. For each 1 ≤ i ≤ k, find the initial solution X(i).

Step 6. For each X(i), calculate f(i) = F (X(i))

Step 7. Call for minimization procedure for all X(i). (The minimization procedure
finds a new solution X(i) and f(i) for each i.)

Step 8. Find the index imin for which f(i) takes the minimum value.

Step 9. fbest = f(imin)

Step 10. If fbest < fprebest, then fprebest = fbest, XC = X(imin), otherwise kf =
kf + 1

Let us now explain the minimization stage. In this stage, we define a variable df
with an initial value equal to −1. We assign the value of the objective function f(X)
for the initial feasible solution X to the variable f1. In order to find the initial feasible
solution, we apply the algorithm proposed by us recently [21]. Then, we begin a loop
while df < 0. At the beginning of this loop, we assign df = 0. Then, we search for each
element of the X and find nonzero elements. We keep row and column numbers of the
nonzero elements in the vectors Irow and Jcol, respectively. According to Theorem
4, dimensions of these vectors cannot exceed m + n − 1. Then we look at all 2 × 2
sub-matrices where the product of the elements of a diagonal is nonzero. We find the
minimum of the elements of this diagonal, subtract this minimum from the elements of
this diagonal, add it to the elements of the other diagonal, and write the result to a 2×2
dimensional matrix SQ. We calculate the difference df1 of the objective function for SQ
and for the considered 2× 2 sub-matrix of X. If df1 < df then we put df = df1. In this
case, we store the matrix SQ as SQM , the row and column numbers of the considered
2× 2 sub-matrix of X. After looking at all possible 2× 2 sub-matrices of X, if df < 0,
the elements of the stored 2×2 sub-matrix are replaced with the appropriate elements of
the matrix SQM . We also change the value of f1 with f1+df and repeat the iterations
for the new matrix X while df < 0. After finishing the while loop, we return the value
f1 and X.

Pseudo-code for the minimization procedure is given below in Algorithm 1.

Remark. It is possible that the optimal solution cannot be obtained for an initial
solution after the minimization process. We can show this case in Balinski’s example.

X =


10 0 0
0 0 30
10 30 0
0 20 0

 .

The value of the objective function for this initial solution is 360. According to the
proposed algorithm, we keep indices of nonzero elements of X in vectors Irow and Jcol
in order to find 2× 2 sub-matrices.
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Algorithm 1: Minimization procedure
Input: m× n matrix X, which is initial feasible solution.
Output: m× n matrix X, which is approximate optimal solution and f1, the value of the

objective function.
procedure Min(X)

1 f1← F (X); df ← −1
2 while df < 0 do
3 df ← 0; kk ← 0
4 for i← 1 to m do
5 for j ← 1 to n do
6 if X(i, j) > 0 then
7 kk ← kk + 1; Irow(kk)← i; Jcol(kk)← j
8 end

9 end

10 end
11 for ik ← 1 to kk − 1 do
12 i1← Irow(ik); j1← Jcol(ik)
13 for jk ← ik + 1 to kk do
14 i2← Irow(jk); j2← Jcol(jk)
15 if i1 6= i2 and j1 6= j2 then
16 min← X(i1, j1)
17 if min > X(i2, j2) then
18 min← X(i2, j2)
19 end
20 SQ(1, 1)← X(i1, j1)−min; SQ(1, 2)← X(i1, j2) +min

SQ(2, 1)← X(i2, j1) +min; SQ(2, 2)← X(i2, j2)−min
f2← C(i1, j1) ∗X(i1, j1) + C(i1, j2) ∗X(i1, j2) + C(i2, j1) ∗X(i2, j1) +
C(i2, j2) ∗X(i2, j2) +A(i1, j1) +A(i2, j2)

21 if X(i1, j2) > 0 then
22 f2← f2 +A(i1, j2)
23 end
24 if X(i2, j1) > 0 then
25 f2← f2 +A(i2, j1)
26 end
27 f3← C(i1, j1) ∗ SQ(1, 1) + C(i1, j2) ∗ SQ(1, 2) + C(i2, j1) ∗ SQ(2, 1) +

C(i2, j2) ∗ SQ(2, 2) +A(i1, j2) +A(i2, j1)
28 if SQ(1, 1) > 0 then
29 f3← f3 +A(i1, j1)
30 end
31 if SQ(2, 2) > 0 then
32 f3← f3 +A(i2, j2)
33 end
34 df1← f3− f2
35 if df1 < df then
36 df ← df1; f ← f1 + df
37 i1m← i1; j1m← j1
38 i2m← i2; j2m← j2
39 SQM(1, 1)← SQ(1, 1); SQM(1, 2)← SQ(1, 2)
40 SQM(2, 1)← SQ(2, 1); SQM(2, 2)← SQ(2, 2)

41 end

42 end

43 end

44 end
45 if df < 0 then
46 X(i1m, j1m)← SQM(1, 1); X(i1m, j2m)← SQM(1, 2)
47 X(i2m, j1m)← SQM(2, 1); X(i2m, j2m)← SQM(2, 2)
48 f1← f

49 end

50 end
51 return X and f1
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Irow Jcol
kk = 1 1 1
kk = 2 2 3
kk = 3 3 1
kk = 4 3 2
kk = 5 4 2

Tab. 1. Indices of nonzero elements of X.

For, i1 = 1 and j1 = 1; positive cells are: (2,3), (3,1), (3,2), and (4,2). Here, (i, j)
indicates the intersection of i−th row and j−th column. Then we have to consider 3
sub-matrices (Tables 2-4). The sub-matrix corresponding to the (3,1) is not considered
since it is in the same column as (1,1).

j1 = 1 j2 = 3
i1 = 1 10 0
i2 = 2 0 30

Tab. 2. The first sub-matrix considered for the cell (1,1).

j1 = 1 j2 = 2
i1 = 1 10 0
i2 = 3 0 30

Tab. 3. The second sub-matrix considered for the cell (1,1).

j1 = 1 j2 = 2
i1 = 1 10 0
i2 = 4 0 20

Tab. 4. The third sub-matrix considered for the cell (1,1).

For example, for the first case (Table 2) we have the sub-matrix
[

10 0
0 30

]
In order to create sub-matrix SQ, we subtract 10 from positive cells and add 10 to

the other cells, since the minimum number in the diagonal whose elements are positive
is 10.

Sub matrix SQ obtained is:

SQ =

[
0 10
10 20

]
.
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Now, let us calculate the value of the objective function for the examined 2×2 sub-matrix
and sub-matrix SQ.

The first value is c11x11 + a11 + c23x23 + a23 = 2× 10 + 10 + 1× 30 + 20 = 80.

The value for the matrix SQ is:

c13x12+c21sq21+c23sq22+a13+a21+a23 = 4×10+3×10+1×20+20+10+20 = 140.

Since there is no decreasing, we do not store this 2 × 2 sub-matrix and the matrix
SQ in memory.

Similarly, we can check that the value of the objective function does not decrease for
other cases too.

Therefore, the result of the minimization process will remain 360 for this initial
solution X.

However, the value of the objective function will be 350 for

X =


0 0 10
0 30 0
20 20 0
0 0 20

 ,

which means that we do not get the optimal value from this initial solution. It is clear
that it may be many such initial solutions. Therefore, in our proposed algorithm, we
use a large number of initial solutions in order to increase the possibility of reaching
optimal value.

5. EXPERIMENTAL RESULTS

Experiments were conducted by MATLAB 7.0 using a computer with the following
technical specifications: Intel R©CoreTM2 DUO CPU E8500@3.16GHZ, 3.17GHZ, 4GB
RAM.

We apply the proposed algorithm to the problems in recently published studies of
[20, 24, 30] in which algorithms are proposed for the one-stage FCTP.

Singh and Singh [30] propose PSO based algorithm, Jo et al. [20] and Lotfi ve
Tavakkoli-Moghaddam [24] propose a genetic algorithm.

Inputs of the problems P1–P5 taken from the study of [30] are given below in Tables 5–
9. The numbers in the cells of the tables indicate unit cost and fixed charge, respectively.
For example, the numbers 34 and 91 in the cell (S1, D1) of Table 5 means that the unit
cost is 34 and the fixed charge is 91 for shipping a product from supplier S1 to the
distributor D1.

D1 D2 D3 D4

S1 34;91 97;47 57;44 37;68 76
S2 99;26 49;62 8;60 70;45 83
S3 50;57 78;57 47;32 63;96 63

73 33 66 52

Tab. 5. Inputs of the Problem 1.
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D1 D2 D3 D4 D5

S1 6;46 65;57 55;55 23;45 21;58 49
S2 25;95 82;91 57;60 46;59 71;92 87
S3 34;31 46;90 40;39 68;56 16;45 97

40 54 43 42 54

Tab. 6. Inputs of the Problem 2.

D1 D2 D3 D4 D5

S1 45;58 30;33 85;69 61;61 44;72 86
S2 98;63 62;27 85;37 39;21 78;64 50
S3 31;68 61;57 100;99 69;46 1;100 99
S4 90;88 83;94 29;56 43;22 57;47 75

58 75 31 77 69

Tab. 7. Inputs of the Problem 3.

D1 D2 D3 D4 D5 D6

S1 77;45 22;88 69;89 8;64 93;42 41;62 50
S2 19;90 31;56 33;75 16;32 90;80 6;86 98
S3 53;57 13;81 40;24 69;72 74;98 61;82 95
S4 36;77 80;92 7;23 63;75 31;52 10;52 87

54 29 67 70 36 74

Tab. 8. Inputs of the Problem 4.

D1 D2 D3 D4 D5 D6

S1 73;55 56;30 64;32 50;21 75;52 62;64 76
S2 89;47 96;45 46;37 97;23 82;90 60;73 78
S3 95;31 87;61 78;91 20;32 3;34 40;60 40
S4 51;24 32;54 71;78 33;74 72;31 86;21 42
S5 58;54 26;37 49;100 59;36 26;84 59;20 51

57 53 34 59 36 48

Tab. 9. Inputs of the Problem 5.

All of these problems are balanced problems. Singh and Singh [30] solved these 5
problems with known algorithms and 5 different PSO-based algorithms. They obtained
their best result with the least number of iterations using the PSO-5 algorithm. Accord-
ing to the results of this study, the best value for P1, P2, P3, P4, and P5 are 8021, 8364,
9516, 6889, and 12468, respectively. They obtained these values at 49, 31, 236, 274, and
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637 iterations, respectively. Comparative results of the algorithms for problems 1-5 are
given in Table 10.

Problem VAM SSM MODI LINGO PSO-5 Proposed algorithm
P1 (3x4) 8021 8021 8021 8021 8021 8021
P2 (3x5) 8428 8364 8364 8364 8364 8364
P3 (4x5) 9909 9516 9516 9516 9516 9516
P4 (4x6) 6889 6889 6889 6889 6889 6889
P5 (5x6) 12492 12492 12492 12468 12468 12468

Tab. 10. The results of the algorithms for Problems 1–5.

Since these problems are small in size, the values found by LINGO are optimal. We
take population number k as 5 and h as 3 for all these problems.

Matrix X is found as the best solution for problem 1:

X =

 24
0
49

0
17
14

0
66
0

52
0
0

 .

The running time of the proposed algorithm is 2.14 s for problem 1.
The best solution obtained for problem 2 is:

X =

 0
40
0

0
0
54

0
43
0

38
4
0

11
0
43

 .

The running time of our algorithm is 1.83 s for problem 2.
The best solution obtained for problem 3 is:

X =


28
0
30
0

58
17
0
0

0
0
0
31

0
33
0
44

0
0
69
0

 .

The proposed algorithm found the result at 1.67 s for problem 3.
Our algorithm found the best solution below at 2.22 s for problem 4:

X =


0 0 0 50 0 0
4 0 0 20 0 74
50 29 16 0 0 0
0 0 51 0 36 0

 .

Our algorithm found the best solution below at 3.8 s for problem 5:

X =


15 2 0 59 0 0
0 0 34 0 0 44
0 0 0 0 36 4
42 0 0 0 0 0
0 51 0 0 0 0

 .
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Problems 6–8 are taken from the study [20]. Inputs of this algorithm are given in Tables
11–13 below.

D1 D2 D3 D4 D5

S1 10;100 8;150 12;120 9;80 15;90 30
S2 11;130 13;80 8;110 10;90 9;140 40
S3 13;150 11;120 15;90 8;130 10;100 20
S4 13;110 10;140 12;90 9;80 14;100 10

20 30 15 25 10

Tab. 11. Inputs of the Problem 6.

D1 D2 D3 D4 D5

S1 8;60 4;88 3;95 5;76 8;97 57
S2 3;51 6;72 4;65 8;87 5;76 93
S3 8;67 4;89 5;99 3;89 4;100 50
S4 4;86 6;84 8;70 3;92 3;88 75

88 57 24 73 33

Tab. 12. Inputs of the Problem 7.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 8;160 4;488 3;295 5;376 2;297 1;360 3;199 5;292 2;481 6;162 157
S2 2;451 3;172 4;265 8;487 5;176 3;260 5;280 1;300 4;354 5;201 293
S3 7;167 4;250 5;499 3;189 4;340 2;216 4;177 3;495 7;170 3;414 150
S4 1;386 2;184 8;370 1;292 3;188 1;206 4;340 6;205 8;465 2;273 575
S5 4;156 5;244 6;460 3;382 3;270 4;180 2;235 1;355 2;276 1;190 310

225 150 90 215 130 88 57 124 273 133

Tab. 13. Inputs of the Problem 8.

Problem St-GA
(Genetic algo-
rithm based
algorithm of
Jo et al. [20])

Pb-GA(Genetic
algorithm based
algorithm of Lotfi
and Tavakkoli-
Moghaddam [24])

LINGO Proposed
algorithm

6 1610 1610 1610 1610
7 1642 1484 1484 1484
8 6696 6195 6195 6195

Tab. 14. Comparative results of algorithms for Problems 6–8.
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Our algorithm solved problem 6 at 0.84 s, problem 7 at 1.02 s, and problem 8 at
1.15 s.

Lotfi and Tavakkoli–Moghaddam [24], produced 5 problems randomly (P9 – 14) and
used the algorithm they developed for these problems and compared their results with
the algorithm proposed by Jo et al. [20]. To compare, we applied our algorithm to these
problems. The dimensions of the problems and the input data can be found in [24].

Comparative results obtained with the proposed algorithm are given in Table 15.

P
Parameter St-GA Pb-GA Proposed

algorithm
Pop
/k

max-
gen
/h

Mean Time
(s)

Mean Time
(s)

Mean Time
(s)

10 10
/5

300
/3

9404 2.93 9295 1.96 9168 0.77

10
/5

500
/5

9364 4.88 9295 3.25 9168 1.03

11 10
/5

300
/3

13866 6.95 12751 3.47 12718 2.51

10
/5

500
/5

13481 11.54 12734 5.81 12718 3.94

12 20
/5

300
/5

16388 24.89 14047 9.33 13934 4.48

20
/5

500
/10

15750 41.45 14139 15.6 13930 7.06

30
/5

500
/5

15621 62.63 13987 23.5 13934 9.45

13 20
/5

500
/5

27844 85.15 22484 29.9 22040 7.8

20
/5

700
/10

27333 119.1 22376 42.1 22040 10.7

30
/10

700
/30

27620 180.8 22284 62.8 22035 40.7

14 30
/5

500
/5

45586 349.1 34119 97.4 33622 12.7

30
/15

700
/10

45473 473 33796 136 33498 79

40
/25

700
/15

45208 657 33912 182 33420 112

15 40
/5

700
/5

78145 1612 56399 403 56508 29

40
/15

1000
/15

78252 2295 56007 575 55677 212

50
/30

1000
/10

77777 2893 55912 722 55310 330

Tab. 15. Comparative results of the algorithms for Problems 9–14.
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6. CONCLUSION

In this study, we examine fixed-charge transportation problems. As it is known, FCTP
is an NP-hard problem, that is, there is no algorithm that can find the exact solution
in polynomial time. Therefore, in most of the studies in the literature, meta-heuristic
algorithms are applied to find an approximate optimal solution. Researchers usually
transform the FCTP into a classical TP for this purpose. In this study, we propose a
new heuristic algorithm for finding an approximate optimal solution for the FCTP.

There are 2 parameters of our algorithm. The first parameter is the number of initial
solutions k and the second one is h indicating the maximum number that the objective
function is allowed not to decrease. Here, k corresponds to the population number in the
genetic algorithm and h corresponds to the max-gen parameter. The running time of
the algorithm and how close it will find the approximate solution to the optimal solution
depend on these two parameters.

We apply our algorithm to the problems defined in recently published papers [20],
[24], and [30]. Results obtained from the experimental studies indicate that the proposed
algorithm is efficient considering running time and being able to find the approximate
optimal solution.
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