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The article presents an extension of the theory of standard Markov decision processes on
discrete spaces and with the average cost as the objective function which permits to take into
account a fuzzy average cost of a trapezoidal type. In this context, the fuzzy optimal control
problem is considered with respect to two cases: the max-order of the fuzzy numbers and
the average ranking order of the trapezoidal fuzzy numbers. Each of these cases extends the
standard optimal control problem, and for each of them the optimal solution is related to
a suitable standard optimal control problem, and it is obtained that (i) the optimal policy
coincides with the optimal policy of this suitable standard control problem, and (ii) the fuzzy
optimal value function is of a trapezoidal shape. Two models: a queueing system and a machine
replacement problem are provided in order to examplify the theory given.
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1. INTRODUCTION

This paper concerns discrete-time Markov decision processes (MDPs, in singular MDP)
(see [9, 24], and [26]) on a denumerable state space under fuzzy preferences (see [6] and
[29]). Specifically, a trapezoidal fuzzy cost-per-stage is taken into account and the other
components of the Markov control model are considered as usual in the MDPs theory.
The evolution of the system is roughly described as follows: in each stage the decision-
maker observes the state of the system and chooses an admissible action. The sequence
of actions is known as a policy. Here, the performance of a policy is measured by the
fuzzy long-run expected average cost and the fuzzy optimal control problem consists in
determining a policy that minimizes in an appropiate sense the performance criterion.
In fact, the minimization is presented from two approaches: first by using the partial
order on the α-cuts of fuzzy numbers and then by applying the average ranking order on
the trapezoidal fuzzy numbers. It is relevant to comment that both approaches applied
to the fuzzy optimal control problem extend the standard optimal control problem with
respect to the average cost (see [1, 9, 24], and [26]).
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In fuzzy theory literature, it has been noted that the decision making in real situations
is taking place in an environment of uncertainty and imprecision (see, for instance, [12]
and [28]), and in many cases the uncertainty is not characterized by a random processes.
Then, a possibility to model this class of situations is to use the fuzzy theory proposed by
L. Zadeh [29]. In this paper, under this approach an MDP with fuzzy cost is analyzed.
Background around this topic is listed now and the presentation is given with respect
to the performance criterion. In [3], a fuzzy total expected reward criterion is analyzed
for an MDP with finite state space and with a trapezoidal fuzzy reward function. On
the other hand, one of the most studied criteria in the literature is the discounted total
expected reward/cost, see, for instance, [2, 14, 15, 16, 17] and [25]. In these works, the
fuzzy approach is applied either in the reward/cost function ([2, 14, 15, 25]) or in the
dynamic of the system ([14, 16, 17]), all of them under finite state and action spaces
framework. In regards to the long-run expected average cost criterion, only the following
two works were found: [10] and [13]. In [13], a Pareto optimal policy maximizing the
average expected fuzzy reward under the max-order is found. And, in [10], using the
concept of the random fuzzy variable in credibility theory they introduce a new model,
called credibilistic MDPs, in order to treat the unknown transition matrices of classical
MDPs with credibilistic information; it is important to mention that in both cases the
expected average cost is analyzed under the assumption that the state and action spaces
are finite.

The methodology applied in this article is described as follows. Based on a standard
MDP a fuzzy MDP is induced, with the characteristic that all its components are the
same as the standard MDP except for its cost function which is considered a fuzzy
function. Under the assumption that the cost function is a fuzzy trapezoidal one, it
is demonstrated that this fuzzy function, with a convenient theoretical framework, is
a fuzzy random variable and a formula for its expectation is deduced. Based on this,
it is shown that the fuzzy average cost is well defined, then the authors proceed to
introduce the fuzzy optimal control problem subject to the average criterion and use the
partial order on the α-cuts of fuzzy numbers (see [8]). And, under the assumption that
the standard optimal control problem has an optimal solution it is demonstrated that
the optimal policy of the fuzzy MDP coincides with the optimal policy of the standard
MDP. Moreover, the fuzzy optimal value function is trapezoidal in shape, as expected.
Later, a similar analysis is presented for the approach of average ranking order on the
trapezoidal fuzzy numbers (see [21, 22] and [25]). In this approach, it is confirmed again
that the policies of both optimal control problems, i. e., the standard problem and the
fuzzy one coincide. Moreover, it is important to point out that the manuscript provides
an adequate interpretation for the use of fuzzy costs in MDPs, see Remark 4.7.

Now, the organization of the paper is given. In Section 2, some basic definitions and
properties related to fuzzy theory are presented. Section 3 addresses the topics of MDPs
focused on the case of the long-run expected average cost. Subsequently, in Section 4 the
fuzzy optimal control problem is introduced. Section 5 presents the analysis for fuzzy
optimal control problem with respect to the average ranking. Section 6 illustrates the
theory exposed in two examples. The first example is referring to a queueing model, and
the second example shows a fuzzy machine replacement problem. To end the paper, in
Section 7 some ideas for research in progress are provided.
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Notation. In the article, the following standard mathematical symbols will be distin-
guished in the fuzzy context with an asterix symbol: “ * ” (or sometimes the symbol “
** ”) . That is, in the fuzzy context, “≤”, “+” and “

∑
”, will be denoted by “≤∗”, “+∗”

and “
∑∗

”, respectively. Similarly, in the fuzzy context, the expectation operator “E”,
the limit “lim” and the infimum “inf”, will be denoted by “E∗”, “lim∗” and “inf∗”,
respectively. Also, the notations: “≤∗∗” and “inf∗∗” are used for a second comparison
between trapezoidal fuzzy numbers referent to the ranking order. It is important to
mention that the product of a real number λ and a fuzzy number Υ will be simply
denoted as λΥ. Moreover, some special functions which appear as fuzzy quantities, say,
the cost function, the optimal value function, and so on, will be distinguished with a
“tilde”; for instance, the fuzzy cost function will be written as C̃.

2. SOME FACTS ON FUZZY THEORY

The first part of this section presents some definitions and basic results about the fuzzy
set theory (see [6, 27], and [29]).

Let Λ be a non-empty set. Then a fuzzy set Γ on Λ is defined in terms of the
membership function Γ′, which assigns to each element of Λ a real value from the interval
[0, 1]. The α-cut of Γ, denoted by Γα, is defined to be the set Γα := {x ∈ Λ | Γ′(x) ≥ α}
(0< α ≤1) and Γ0 is the closure of {x ∈ Λ | Γ′(x) > 0} denoted by cl{x ∈ Λ | Γ′(x) > 0}.

Definition 2.1. A fuzzy number Γ is a fuzzy set defined on the set of real numbers R
(i. e., taking Λ = R in the previous definition), which satisfies:

a) Γ′ is normal, i. e., there exists x0 ∈ R with Γ′(x0) = 1;

b) Γ′ is convex, i. e., Γα is convex for all α ∈ [0, 1];

c) Γ′ is upper-semicontinuous;

d) Γ0 is compact.

The set of the fuzzy numbers will be denoted by F(R).

Definition 2.2. A fuzzy number Γ is called a trapezoidal fuzzy number if its membership
function has the following form:

Γ′(x) =



0 if x ≤ l
x−l
m−l if l < x ≤ m
1 if m < x ≤ n
p−x
p−n if n < x ≤ p
0 if p < x ,

(1)

where l, m, n and p are real numbers, with l < m ≤ n < p. A trapezoidal fuzzy number
is simply denoted by (l,m, n, p).
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Remark 2.3. a) The case in which m = n in (1) will be named a triangular fuzzy
number and it will be simply denoted as (l,m, p). And, considering the degenerated
case in which l = m = p in a triangular number, the fuzzy representation of the
real number m is obtained with the membership function given by:

m′(x) =

{
1 if x = m

0 if x 6= m.
(2)

b) For a trapezoidal fuzzy number Γ = (l,m, n, p) the corresponding α-cuts are given
by Γα = [(m− l)α+ l, p− (p− n)α], α ∈ [0, 1] (see [23]).

Definition 2.4. Let Γ and Υ be fuzzy numbers. If “ ? ” denotes the addition or the
scalar mutiplication, then it is defined as the fuzzy set Γ ? Υ with the membership
function:

(Γ ?Υ)′(u) = sup
u=x?y

min{Γ′(x),Υ′(y)},

for all u ∈ R.

As a consequence of Definition 2.4, it is possible to obtain the following result for
trapezoidal fuzzy numbers (see [23]).

Lemma 2.5. If H = (al, am, an, ap) and I = (bl, bm, bn, bp) are two trapezoidal fuzzy
numbers and letting λ be a positive number, then it follows that

a) λH = (λal, λam, λan, λap), and

b) H+∗ I = (al+bl, am+bm, an+bn, ap+bp). And, it also holds: if {(atl , atm, atn, atp) :
0 ≤ t ≤ N} is a finite set of N trapezoidal fuzzy numbers, then

N∑∗

t=0

(atl , a
t
m, a

t
n, a

t
p) =

( N∑
t=0

atl ,

N∑
t=0

atm,

N∑
t=0

atn,

N∑
t=0

atp

)
.

Let D denote the set of all closed bounded intervals on the real line R. For Ψ = [al, au],
Φ = [bl, bu] ∈ D define

d(Ψ,Φ) = max(|al − bl| , |au − bu|).

It is possible to verify that d defines a metric on D and that (D, d) is a complete metric
space (see [19]). Now, if η̃ ∈ F(R), then η̃α is a compact set because its membership
function is upper semicontinuous and has a compact support. Therefore, it is defined as
d̂ : F(R)× F(R) −→ R by

d̂(η̃, µ̃) = sup
α∈[0,1]

d(η̃α, µ̃α).

It is straightforward to see that d̂ is a metric in F(R) (see [19]).
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Definition 2.6. A sequence {η̃t}∞t=0 of fuzzy numbers is said to be convergent to the

fuzzy number µ̃, written as lim∗t−→∞ η̃t = µ̃ if and only if d̂(η̃t, µ̃) −→ 0 as t −→∞.

Lemma 2.7. (Puri and Ralescu [19]) The metric space (F(R), d̂) is complete.

Now, for η̃, µ̃ ∈ F(R), with α-cuts η̃α = [aα, bα] and µ̃α = [cα, dα], α ∈ [0, 1], respec-
tively, define η̃ 6∗ µ̃ if and only if aα ≤ cα and bα ≤ dα for all α ∈ [0, 1] (see [8]). It is
not difficult to verify that the order “≤∗ ” is, in fact, a partial order on F(R).

Remark 2.8. Take w, z ∈ R, and let w̃ and z̃ be fuzzy numbers with membership
functions given by (w̃)′(x)=1, x = w and (w̃)′(x) = 0, x 6= w, and (z̃)′(x)=1, x = z and
(z̃)′(x) = 0, x 6= z. Then, it is easy to see that w̃ 6∗ z̃ is equivalent to w ≤ z.

Moreover, the following comparison between the trapezoidal fuzzy numbers (see [21],
[22], and [25]) is also introduced. Let H = (al, am, an, ap) be a trapezoidal fuzzy number.
Then its average ranking <(H) is defined as

<(H) =
al + am + an + ap

4
.

Now, let H = (al, am, an, ap) and I = (bl, bm, bn, bp) be trapezoidal fuzzy numbers.
Hence, it is defined that H 6∗∗ I if and only if

<(H) ≤ <(I). (3)

Remark 2.9. In relation to the last comparison between trapezoidal fuzzy numbers,
note that in the degenerate case for which in H: al = am = an = ap = a and in I:
bl = bm = bn = bp = b, it results that H 6∗∗ I if and only if a ≤ b.

Following [18] and [19], the next definitions on fuzzy random variables and their
expectations are established. For this, C(R) denotes the class of nonempty compact
subsets of R, and if (Ω1,A1) and (Ω2,A2) are measurable spaces, then A1⊗A2 denotes
the corresponding product σ-algebra associated to the product space Ω1 × Ω2.

Definition 2.10. Let (Ω,A) be a measurable space and (R,B(R)) be the measurable

space of the set of real numbers. A function Ỹ : Ω −→ F(R) is said to be a fuzzy

random variable associated with (Ω,F), if the section Ỹα : Ω −→ C(R) which is the

α-cut function defined by Ỹα(ω) = (Ỹ (ω))α for all ω ∈ Ω and α ∈ [0, 1] satisfies that

Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ (Ỹ (ω))α} ∈ A ⊗ B(R), for all α ∈ [0, 1].

Definition 2.11. Given a probability space (Ω,A, P ), a fuzzy random variable Ỹ asso-
ciated to (Ω,A) is said to be an integrably bounded fuzzy random variable with respect
to (Ω,A, P ) if there is a function h : Ω −→ R, h ∈ L1(Ω,A, P ) such that |x| ≤ h(ω), for

all (ω, x) ∈ Ω × R with x ∈ (Ỹ (ω))0 := Ỹ0(ω).

Definition 2.12. Given an integrably bounded fuzzy random variable Ỹ associated to
the probability space (Ω,A, P ), then the fuzzy expected value of Ỹ in Aumann’s sense is

the unique fuzzy set of R, E∗[Ỹ ] such that for each α ∈ [0, 1]:(
E∗[Ỹ ]

)
α

=

{∫
Ω

f(ω) dP (ω) | f : Ω −→ R, f ∈ L1(Ω,A, P ), f(ω) ∈ (Ỹ (ω))α a.s. [P ]

}
.
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3. STANDARD AVERAGE MARKOV DECISION PROCESSES

Markov Decision Models
Let (X,A, {A(i) | i ∈ X}, Q,C) be the usual discrete-time Markov decision model

(see [9, 24], and [26]), where the state space X is denumerable and the decision space
A is finite. For each i ∈ X, A(i) ⊂ A, A(i) 6= ∅, is the subset of admissible actions at
a state i. Let K := {(i, a) | i ∈ X, a ∈ A(i)}. Q = [pij(a)] is the controlled transition
law on X given K, for each (i, a) ∈ K, pij(a) ≥ 0 and

∑
j∈X pij(a) = 1. Finally, the cost

per-stage C is a nonnegative function on K.

Strategies
A decision strategy π is a (possibly randomized) rule for choosing actions, and at each
time t (t = 0, 1, . . .) the decision prescribed by π may depend on the current state as
well as on the history of the previous states and actions. The set of all strategies will
be denoted by Π. Given an initial state i ∈ X and π ∈ Π there is a canonical space
(Ω,A, Pi,π) with the corresponding state-action process {(xt, at)} (for details, see [9, 24],
and [26]). Ei,π denotes the expectation operator with respect to the probability measure
Pi,π, and the stochastic process {xt} will be called Markov decision process. F denotes
the set of functions f : X → A such that f(i) ∈ A(i) for all i ∈ X. A strategy π ∈ Π is
stationary if there exists f ∈ F such that, under π, the action f(xt) is applied at each
time t. The class of stationary strategies is naturally identified with F.

Optimality Criterion
Given π ∈ Π and initial state x0 = i ∈ X, let

Jn(i, π) =
1

n
Ei,π

[ n−1∑
t=0

C(xt, at)
]
,

for n > 0, and

J(i, π) = lim
n→∞

Jn(i, π) (4)

be the long-run expected average cost when using the strategy π, given the initial state i.

Remark 3.1. See Proposition 8.1.1 in [20] and Proposition 6.1.1 in [26] for the existence
of the limit in (4). Some authors consider in their works “limsup” in (4) instead of “lim”,
as it is taken into account in this paper (see [9] and [26]). Of course, if the limit exists
in (4) it coincides with the corresponding limsup.

A strategy πo is said to be optimal if J(i, πo) = Jo(i) for all i ∈ X, where

Jo(i) = inf
π∈Π

J(i, π), (5)

i ∈ X. Jo defined in (5) is called the optimal value function.

Existence of Stationary Optimal Policies
It is important to observe that the conditions which ensure the existence of optimal
policies requiere the existence of at least one policy π ∈ Π such that J(i, π) <∞, for all
i ∈ X; otherwise the solution of the optimal decision problem would be trivial.
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Lemma 3.2. Under certain Assumptions (see Remark 3.3 below) there exists a constant
jo and a function h : X −→ R such that

a) The pair (jo, h) satisfies the following Optimality Equation:

jo + h(i) = inf
a∈A(i)

C(i, a) +
∑
j

pij(a)h(j)

 , (6)

for all i ∈ X.
Moreover,

b) There exists a stationary policy fo ∈ F such that, for each i ∈ X, fo(i) ∈ A(i)
minimizes the right-hand side of (6), and fo is optimal, and J(i, fo) = jo, for all
i ∈ X.

Remark 3.3. Lemma 3.2 holds under any of the following assumptions.

a) Assumptions given in Theorem 6.18, p. 146 in [24]. (These Assumptions support
the validity of Example 2 below.)

b) Assumptions 4.2.1 and 5.5.1 given in Theorem 5.5.4, p. 97 in [9]. (In [9], average
cost MDPs on Borel spaces are dealt with; this context obviously covers the case
of discrete MDPs of this article.)

Remark 3.4. In Chapter 8 of [26] a detailed technique is developed which permits to
obtain the optimal solution of the average cost MDPs on discrete spaces. This technique
will be illustrated in Example 1 below.

4. FUZZY AVERAGE MARKOV DECISION PROCESSES

In this section the fuzzy optimal control problem is introduced. To this end, consider
the following assumption.

Assumption 4.1. Let (X,A, {A(i) : i ∈ X}, Q,C) be a decision model of a standard
MDP for which it is supposed that there exists a stationary optimal policy fo whose
existence comes from Lemma 3.2. Let B, D, F , G, B1, D1, F1, and G1 be nonnegative
real numbers such that B < D ≤ F < G and B1 < D1 ≤ F1 < G1. It will be also
supposed that

C̃(i, a) = (B,D,F,G)C(i, a) +∗ (B1, D1, F1, G1)

= (BC(i, a) +B1, DC(i, a) +D1, FC(i, a) + F1, GC(i, a) +G1) ,
(7)

i ∈ X, a ∈ A(i).

Now, the new Markov decision model (X,A, {A(i) : i ∈ X}, Q, C̃) will be analyzed.

Lemma 4.2. Suppose that Assumption 4.1 holds. Take i ∈ X, π ∈ Π, and t ≥ 0 such
that Ei,π[C(xt, at)] <∞, and let (Ω,A, Pi,π) be the corresponding canonical space (see

Section 3). Then, C̃(xt, at) is a fuzzy random variable associated to (Ω,A, Pi,π), and

E∗i,π[C̃(xt, at)] = Ei,π[C(xt, at)](B,D,F,G) + (B1, D1, F1, G1). (8)
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P r o o f . Fix i ∈ X, π ∈ Π, α ∈ [0, 1], and t ≥ 0. Write Ct := C(xt, at), Ct(ω) :=

C(xt(ω), at(ω)), and C̃t(ω) := C̃(xt(ω), at(ω)), ω ∈ Ω. Observe that as K ⊆ X × A
is denumerable (recall that X is denumerable and A is finite), it follows that Ct is
a nonnegative discrete random variable with denumerable range denoted by Ct[Ω] =
{λ1, λ2, ...} and consider the measurable sets [Ct = λj ] := {ω ∈ Ω | Ct(ω) = λj}, j =
1, 2, .... Put Θ = (B,D,F,G) and Λ = (B1, D1, F1, G1), with α-cuts Θα = [β(α), γ(α)]
and Λα = [β1(α), γ1(α)], respectively, where β(α) = Dα+(1−α)B, γ(α) = Fα+(1−α)G,
β1(α) = D1α+ (1− α)B1, and γ1(α) = F1α+ (1− α)G1.
Consider the following multifunction given by

(C̃t)α(ω) := (C̃t((ω))α = [Ct(ω)β(α) + β1(α), Ct(ω)γ(α) + γ1(α)],

ω ∈ Ω.
Now, notice that

Gr((C̃t)α) = {(ω, x) ∈ Ω× R | x ∈ (C̃t((ω))α}
= {(ω, x) ∈ Ω× R | x ∈ [Ct(ω)β(α) + β1(α), Ct(ω)γ(α) + γ1(α)]}

=
⋃
j

([Ct = λj ]× [λjβ(α) + β1(α), λjγ(α) + γ1(α)]).

Hence, Gr((C̃t)α) ∈ A⊗B(R). Since α is arbitrary, from Definition 2.10, it results that

C̃t is a fuzzy random variable. Next, note that, for each ω ∈ Ω,

(C̃t(ω))0 := (C̃t)0(ω) = [Ct(ω)B +B1, Ct(ω)G+G1].

Define h : Ω −→ R given by

h(ω) := Ct(ω)G+G1,

ω ∈ Ω. Then:

|x| ≤ h(ω),

(ω, x) ∈ Ω×R with x ∈ [Ct(ω)B+B1, Ct(ω)G+G1]. Also, clearly Ei,π[h] = GEi,π[Ct]+

G1 is finite. Therefore, from Definition 2.11, C̃t is an integrably bounded fuzzy random
variable with respect to (Ω,A, Pi,π). Now, from Definition 2.12, there is a unique fuzzy

expected value E∗i,π[C̃t] and it is direct to verify from Definition 2.12 that,

(E∗i,π[C̃t])α = [Ei,π[Ct]β(α) + β1(α), Ei,π[Ct]γ(α) + γ1(α)]

which is the α-cut of the trapezoidal number given for

Ei,π[C(xt, at)](B,D,F,G) +∗ (B1, D1, F1, G1),

that is,

E∗i,π[C̃t] = Ei,π[Ct](B,D,F,G) +∗ (B1, D1, F1, G1),

or equivalently, (8) holds. �
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Let (X,A, {A(i) : i ∈ X}, Q, C̃) be a fixed decision model which satisfies Assumption
4.1. For each policy π ∈ Π and state i ∈ X, it is defined that

J̃n(i, π) :=
1

n

n−1∑∗

t=0

E∗i,π[C̃(xt, at)],

where n is a positive integer.

Lemma 4.3. Suppose that Assumption 4.1 holds. Then, for each i ∈ X and π ∈ Π
such that J(i, π) <∞, {J̃n(i, π)}+∞n=0 converges and

J̃(i, π) := lim∗n→∞J̃n(i, π) = lim∗n→∞
1

n

n−1∑∗

t=0

E∗i,π[C̃(xt, at)]

= (BJ(i, π), DJ(i, π), FJ(i, π), GJ(i, π)) +∗ (B1, D1, F1, G1)

= (BJ(i, π) +B1, DJ(i, π) +D1, FJ(i, π) + F1, GJ(i, π) +G1) .

P r o o f . Fix π ∈ Π, i ∈ X such that J(i, π) < ∞ and α ∈ [0, 1]. Observe that
J(i, π) <∞ implies that Ei,π[C(xt, at)] <∞, for all t ≥ 0. Then, from Lemmas 2.5 and

4.2, it follows that J̃n(i, π), n ≥ 1 is well-defined and it is given by

J̃n(i, π) = (BJn(i, π) +B1, DJn(i, π) +D1, FJn(i, π) + F1, GJn(i, π) +G1),

and its α-cut is given by

(J̃n(i, π))α = [(DJn(i, π) +D1)α+ (1− α)(BJn(i, π) +B1), (FJn(i, π) + F1)α

+ (1− α)(GJn(i, π) +G1].

Write
Γ = (BJ(i, π) +B1, DJ(i, π) +D1, FJ(i, π) + F1, GJ(i, π) +G1),

with α-cut given by

Γα = [(DJ(i, π) +D1)α+ (1− α)(BJ(i, π) +B1), (FJ(i, π) + F1)α

+ (1− α)(GJ(i, π) +G1)].

Now, it is direct to prove that

d(Γα, (J̃n(i, π))α) = |J(i, π)− Jn(i, π)|max{αD + (1− α)B,αF + (1− α)G}.

Then, as α is arbitrary and B < D ≤ F < G

d̂(Γ, J̃n(i, π)) = supα∈[0,1]d(Γα, (J̃n(i, π))α)

= |J(i, π)− Jn(i, π)| supα∈[0,1]{αF + (1− α)G}
≤ |J(i, π)− Jn(i, π)|G.

(9)

Hence, when n −→∞ in (9), it follows that

lim
n−→∞

d̂(Γ, J̃n(i, π)) = 0.
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Consequently, since π and i are arbitrary, the result follows. �

For each policy π ∈ Π and state i ∈ X such that J(i, π) <∞,

J̃(i, π) = lim∗n→∞
1

n

n−1∑∗

t=0

E∗i,π[C̃(xt, at)]

will be named the fuzzy average cost, when the policy π is applied, given the initial state i.

Fuzzy Optimal Control Problem (FOCP)
Therefore, the fuzzy optimal problem is as follows: determine πo ∈ Π (if it exists) such
that:

J̃(i, πo) ≤∗ J̃(i, π) (10)

for all i ∈ X, and π ∈ Π. In this case, it is possible to write

J̃(i, πo) = inf
π∈Π

∗J̃(i, π), (11)

i ∈ X, and it is said that πo is optimal. Moreover, the function J̃o(i) = J̃(i, πo), i ∈ X,
will be called the optimal fuzzy cost function.

Remark 4.4. It is easy to see that in the (degenerate) case when in the decision model

C̃(i, a) is a fuzzy quantity with a membership function given by:

(C̃(i, a))′(x) =

{
1 if x = C(i, a)

0 if x 6= C(i, a),

for all i ∈ X and a ∈ A(i), then the fuzzy optimal control problem described in (10) and
(11) is reduced to the optimal control problem described in (5) (See also Remark 2.8.)

Theorem 4.5. Suppose that Assumption 4.1 holds. Then, with respect to the max-
order, the following statements hold.

a) The optimal policy of the fuzzy decision problem is fo whose existence is guaran-
teed in Assumption 4.1.

b) The optimal fuzzy cost function is given by the fuzzy constant

J̃o = (B,D,F,G) jo +∗ (B1, D1, F1, G1) ,

i ∈ X.

P r o o f . Fix π ∈ Π, i ∈ X such that J(i, π) <∞ and α ∈ [0, 1]. Now, since J(i, fo) ≤
J(i, π), it results that

(DJ(i, fo)+D1)α+(1−α)(BJ(i, fo)+B1) ≤ (DJ(i, π)+D1)α+(1−α)(BJ(i, π)+B1),
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and

(FJ(i, fo) +F1)α+ (1−α)(GJ(i, fo) +G1) ≤ (FJ(i, π) +F1)α+ (1−α)(GJ(i, π) +G1).

Since

[(DJ(i, fo)+D1)α+(1−α)(BJ(i, fo)+B1), (FJ(i, fo)+F1)α+(1−α)(GJ(i, fo)+G1)],

is the α-cut of J̃(i, fo) and as π, i and α are arbitrary, it results that

J̃(i, fo) ≤∗ J̃(i, π),

for all π and i. Hence, fo is optimal with respect to the max-order. Therefore, Theorem
4.5 follows from Lemmas 3.2 and 4.3.

�

Corollary 4.6. Let ε be a positive number. Suppose that Assumption 4.1 holds and
that C̃(i, a) is specifically given by

C̃(i, a) = (1/2, 1, 1, 2)C(i, a) +∗ (ε, 2ε, 3ε, 4ε)

=

(
1

2
C(i, a) + ε, C(i, a) + 2ε, C(i, a) + 3ε, 2C(i, a) + 4ε

)
,

(12)

for all i ∈ X and a ∈ A(i). Then, with respect to the max-order, the optimal policy of
the fuzzy decision problem is fo whose existence is guaranteed in Assumption 4.1, and
the optimal fuzzy cost function is given by the fuzzy constant

J̃o =

(
1

2
jo + ε, jo + 2ε, jo + 3ε, jo + 4ε

)
. (13)

P r o o f . Follows directly from Theorem 4.5. �

Remark 4.7. Note that (12) models the fact that “the cost is approximately in the
interval [C(i, a) + 2ε, C(i, a) + 3ε]” rather than paying C(i, a) as it happens in the
standard model. Moreover, (13) models the fact that “the optimal cost is approximately
in the interval [jo + 2ε, jo + 3ε]” instead of receiving jo as in the standard MDP.

5. COMPARISON WITH THE AVERAGE RANKING

In this section the ranking comparison between trapezoidal fuzzy numbers provided in
(3) will be used.

Fuzzy Optimal Control Problem with Respect to the Average Ranking
(FOCPAR)
Consider the formulation of the fuzzy MDPs and Assumption 4.1 given in Section 4. So
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the fuzzy optimal problem with respect to the average ranking is as follows: determine
πro ∈ Π (if it exists) such that:

J̃(i, πro) ≤∗∗ J̃(i, π) (14)

for all i ∈ X, and π ∈ Π. In this case, it is possible to write

J̃(i, πro) = inf
π∈Π

∗∗J̃(i, π), (15)

i ∈ X, and it is said that πro is optimal. Moreover, the function J̃ro(i) = J̃(i, πro), i ∈ X,
will be called the optimal fuzzy cost function with respect to the average ranking.

Remark 5.1. If in (7) (see Assumption 4.1) the degenerate case is considered in which
B = D = F = G = 1 and B1 = D1 = F1 = G1 = 0, it is obtained that

C̃(i, a) = C(i, a)1̃

for all i ∈ X and a ∈ A(i), and in this situation it is easy to obtain that

J̃(i, π) = J(i, π)1̃

and that
<(J̃(i, π)) = J(i, π)

for all π ∈ Π and i ∈ X. It yields that the optimal control problem described in (14)
and (15) is reduced to the standard optimal control problem given in (5).

Theorem 5.2. Suppose that Assumption 4.1 holds. Then, with respect to the average
ranking, the following statements hold.

a) The optimal policy of the fuzzy decision problem is fo whose existence is guaran-
teed in Assumption 4.1.

b) The optimal fuzzy cost function is given by the fuzzy constant

J̃ro = (B,D,F,G) jo +∗ (B1, D1, F1, G1) ,

i ∈ X.

P r o o f . Fix π ∈ Π, i ∈ X such that J(i, π) < ∞. From (3) and Lemma 4.3, it is
obtained that

<(J̃(i, π)) = J(i, π)<((B,D,E, F )) + <((B1, D1, E1, F1)).

Now, since J(i, π) ≥ J(i, fo) ≥ 0, it follows that

<(J̃(i, π)) ≥ J(i, fo)<((B,D,E, F )) + <((B1, D1, E1, F1)),

i. e.,
<(J̃(i, π)) ≥ <((J̃(i, fo)).

Since π and i are arbitrary, it results that fo is optimal with respect to the average
ranking. Therefore, Theorem 5.2 follows from Lemmas 3.2 and 4.3. �
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The next corollary is a direct consequence of Theorem 5.2.

Corollary 5.3. Let ε be a positive number. Suppose that Assumption 4.1 holds and
that C̃(i, a) is specifically given by

C̃(i, a) = (1/2, 1, 1, 2)C(i, a) +∗ (ε, 2ε, 3ε, 4ε)

=

(
1

2
C(i, a) + ε, C(i, a) + 2ε, C(i, a) + 3ε, 2C(i, a) + 4ε

)
,

for all i ∈ X and a ∈ A(i). Then, with respect to the average ranking, the optimal
policy of the fuzzy decision problem is fo whose existence is guaranteed in Assumption
4.1, and the optimal fuzzy cost function is given by the fuzzy constant

J̃ro =

(
1

2
jo + ε, jo + 2ε, jo + 3ε, jo + 4ε

)
.

6. EXAMPLES

Example 1: A queueing model
This example presents a version of a fuzzy queue. The standard case of this example
has been addressed in different references, see for instance, [5] and [26]. This model
considers a single-server with service rate control. There is a probability 0 < p < 1
which denotes a single customer arriving, then 1 − p represents the probability of no
arrival. The queuing system can hold at most two customers, one in service and one
waiting for a service. If a customer arrives to an empty system, then it may enter
service immediately. Moreover, the system can be operating with one of the following
two service rates: 0 < a1 < a2 < 1. Under this framework, the stochastic process of
interest corresponds to the number of customers in the queueing system. This model
can be identified as a Markov decision model as follows: X = {0, 1, 2}, A = {a1, a2} and
with the following transition law:

p00(a) = 1− p+ ap,

p01(a) = (1− a)p,

p10(a) = 1(1− p),
p11(a) = ap+ (1− a)(1− p),
p10(a) = (1− a)p,

p21(a) = 1(1− p),
p22(a) = 1− a(1− p),

with a ∈ A, in the other cases the transition law is zero. Moreover, it is assumed that
there exists a trapezoidal fuzzy holding cost, defined by

L̃(i, a) := Hi(1/2, 1, 1, 2),

(i, a) ∈ K, where H is a positive number, furthermore, a service cost M(a) is considered
for a = a1, a2, then

M̃(a) = M(a)(1/2, 1, 1, 2).
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Therefore, the fuzzy cost function is given by

C̃(i, a) = (Hi+M(a))(1/2, 1, 1, 2) + (ε, 2ε, 3ε, 4ε), (16)

(i, a) ∈ K and ε > 0.
In particular, a numerical experiment is considered. To this end, assume that H = 2,

p = 0.6, a1 = 0.3, a2 = 0.5, M(a1) = 3 and M(a2) = 4. To solve this numerical case,
the value iteration algorithm (VIA) is considered, which is exposed in [26]:

1. Set n = 0, ε > 0, u0 := 0 and let x ∈ X be a distinguished state.

2. Set wn(i) := mina{C(i, a) + Ei[un(x1)]}.

3. If n = 0, set δ = 1. If n ≥ 1, then set δ = |wn(x)− wn−1(x)|. If δ < ε, go to
step 6.

4. Set un+1 = wn(i)− wn(x).

5. Go to step 2, and replace n by n+ 1.

6. Print wn(x) and a stationary policy realizing mina{C(i, a) + Ei[un(x1)]}.

Then, consider x = 0 as a distinguishable state, this implies that un(0) = 0 for all
n ≥ 1. Consequently, the following equations are valid:

wn(0) = 3 + min{0.42un(1), 1 + 0.3un(1)},
wn(1) = 5 + min{0.46un(1) + 0.42un(2), 1 + 0.5un(1) + 0.3un(2)},
wn(2) = 7 + min{0.12un(1) + 0.88un(2), 1 + 0.2un(1) + 0.8un(2)}

Now, an implementation of VIA in software R returns the summarized results in Table
1. In Table 1, f1 is defined as f1(i) = a1 for all i ∈ X and f2 is given by

f2(i) =

 a1 if i ∈ {0, 2}

a2 if i = 1.

In summary, it is concluded from Table 1 that the average cost optimal policy for the
crisp model is f2 and the long-run expected average optimal cost is jo = 6.26.

Lemma 6.1. With respect to both problems, the FOCP and the FOCPAR, the optimal
policy of the fuzzy service rate control queues problem is

fo(i) =

 a1 if i ∈ {0, 2}

a2 if i = 1

i ∈ X, and the corresponding optimal fuzzy cost function is given by

J̃o(i) = J̃ro(i) = (
1

2
jo + ε, jo + 2ε, jo + 3ε, jo + 4ε),

i ∈ X with jo = 6.26, and ε > 0.
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n un wn strategy n un wn strategy

0

0.00 3.00

f1 10

7.52 6.16

f2
0.00 5.00 13.29 13.75

7.00 19.6

1

2.00 3.84

f1 12

7.64 6.2

f2
4.00 7.6 13.55 13.88

10.76 19.84

2

3.76 4.57

f1 14

7.70 6.24

f2
6.92 9.63 13.69 13.96

13.54 19.98

3

5.05 5.12

f1 16

7.74 6.25

f2
8.96 11.09 13.77 14.00

15.49 20.05

4

5.96 5.5

f2 17

7.75 6.26

f2
10.36 12.09 13.79 14.02

16.84 20.07

5

6.58 5.76

f2 18

7.75 6.26

f2
11.33 12.69 13.81 14.03

17.76 20.09

Tab. 1. VIA.

P r o o f . This lemma is a direct consequence of Corollaries 4.6 and 5.3. �

Example 2: A machine replacement problem
Suppose that there is a machine which is in any one of the states 0, 1, 2, . . .. Suppose
that at the beginning of each day, the state of the machine is noted and a decision upon
whether or not to replace the machine is made. If the decision to replace is made, then
the fact that the machine is instantaneously replaced by a new machine whose state is
0 is assumed.

There is a non-negative cost associated with each state and available action in that
state. The cost is associated with the state-action pair. The cost of replacing the machine
will be denoted by R > 0, and furthermore, a maintenance cost C(i) is incurred each
day that the machine is supposed to be in state i.

Let pij represent the probability that a machine in state i at the beginning of one day
will be in state j at the beginning of the next day. The action space have two actions
in which action 1 is the replacement action and action 2 is the nonreplacement action.
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The one-stage costs and transition probabilities are given by{
C(i, 1) = R+ C(0),
C(i, 2) = C(i), i ≥ 0

{
pij(1) = p0j ,
pij(2) = pij , i ≥ 0.

Furthermore, the following assumptions on the costs and transition probabilities are
imposed.

Assumption 6.2. (i) {C(i), i ≥ 0} is a bounded, increasing sequence

(ii)
∑∞
j=k pij is an increasing function of i, for each k ≥ 0.

Hence, (i) asserts that the maintenance cost is an increasing function of the state;
and (ii) asserts an increasing failure rate, that is, the increasing failure rate assumption
states that machines in better states are more likely to remain in better states than
machines in worse states.

Now, let ε be a fixed positive number and suppose that

C̃(i, a) =

(
1

2
C(i, a) + ε, C(i, a) + 2ε, C(i, a) + 3ε, 2C(i, a) + 4ε

)
,

(i, a) ∈ K.

The optimal solution of this example is given in terms of the next auxiliar optimal
control problem widely studied and known in the literature of MDPs as the total dis-
counted cost problem (see [9, 24], and [26]). To define this problem, consider 0 < β < 1.
Hence, given π ∈ Π and initial state x0 = i ∈ X, let

Vβ(i, π) = Ei,π

[ ∞∑
t=0

βtC(xt, at)
]
,

be the expected total discounted cost when using the strategy π, given the initial state i.
And

Vβ(i) = inf
π∈Π

Vβ(i, π), (17)

i ∈ X. Vβ defined in (17) is called the discounted optimal value function.

Lemma 6.3. Under Assumptions 6.2, with respect to both problems, the FOCP and
the FOCPAR, the optimal fuzzy cost function is given, for ε > 0, by

J̃o = J̃ro =

(
1

2
jo + ε, jo + 2ε, jo + 3ε, jo + 4ε

)
,
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where

jo + h(i) = min

R+ C(0) +

∞∑
j=0

p0jh(j);C(i) +

∞∑
j=0

pijh(j)

 , i ≥ 0

with a constant jo and an increasing function h which are given by

jo = lim
β−→1

(1− β)Vβ(0),

and for a suitable sequence {βn} −→ 1,

h(i) = lim
n−→∞

(Vβn
(i)− Vβn

(0)),

i ∈ X. Moreover, there exists an integer i∗, i∗ ≤ ∞ given by

i∗ = max

i : C(i) +

∞∑
j=0

pijh(j) ≤ R+ C(0) +

∞∑
j=0

p0jh(j)

 ,

where the optimal policy fo is characterized by the fact that it is replaced in all states
greater than i∗.

P r o o f . It is a direct consequence of the examples given in [24] pp. 129 and 147, and
Corollaries 4.6 and 5.3. �

7. RESEARCH IN PROGRESS

The authors are developing a theory of MDPs with different objective functions like
the total discounted cost, the total cost, or the average cost, incorporating as the main
assumptions the concept of generalized trapezoidal costs with both the average rank-
ing (see [7] and [11]) or with other ranking criteria (see [4]). In fact, the concept of
generalized trapezoidal fuzzy number extends Definition 2.2.

(Received July 8, 2022)
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versidad Autónoma de Puebla, Av. San Claudio y Rı́o Verde, Col. San Manuel, CU,
Puebla, Pue. 72570. México.
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