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A NOTE ON THE EXISTENCE
OF GIBBS MARKED POINT PROCESSES
WITH APPLICATIONS IN STOCHASTIC GEOMETRY

Martina Petráková

This paper generalizes a recent existence result for infinite-volume marked Gibbs point
processes. We try to use the existence theorem for two models from stochastic geometry.
First, we show the existence of Gibbs facet processes in Rd with repulsive interactions. We
also prove that the finite-volume Gibbs facet processes with attractive interactions need not
exist. Afterwards, we study Gibbs–Laguerre tessellations of R2. The mentioned existence result
cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able
to show the existence of an infinite-volume Gibbs–Laguerre process with a particular energy
function, under the assumption that we almost surely see a point.
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1. INTRODUCTION

Gibbs point processes present a broad family of models that considers various possibili-
ties of interactions between points. The effect of these interactions is explained through
the notion of an energy function, with states possessing lower energy being more prob-
able than states possessing higher energy. This convention stems from the physical
interpretation, as the notion of Gibbs processes was first introduced in statistical me-
chanics; see [10] for the standard reference. Among others, [8] and [2] provide a general
introduction to the topic of Gibbs point processes in the context of spatial modelling.

Gibbs point processes in a bounded window are defined using a density with respect
to the distribution of a Poisson point process; however, the situation gets much more
complicated once we start to consider processes in the whole Rd. As one can no longer
use the approach with a density with respect to a reference process, one can no longer
define the distribution of an infinite-volume Gibbs process (called the infinite-volume
Gibbs measure) explicitly. Instead, the DLR equations (see [10]) are used, which pre-
scribe the distribution of the process inside a bounded window conditionally on a fixed
configuration outside of this window.
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The standard approach to obtain an infinite-volume Gibbs measure is based on the
topology of local convergence and the result from [4] for level sets of a specific entropy.
One of the standard assumptions for the energy function is the finite-range assumption,
which ensures that the range of interactions is uniformly bounded. It was proved in [1]
that the quermass-interaction process with unbounded grains (i. e., unbounded interac-
tions) exists. Using this paper as an inspiration, an existence result for marked Gibbs
point processes with unbounded interaction was proved in [9].

In the present paper, we address the assumptions of the existence theorem from [9]
and present a modified version of the range assumption. Afterwards, we present two
applications on models from stochastic geometry.

The first one is the Gibbs facet process in Rd (see [13]). Here the energy is a function
of the intersections of tuples of facets. We prove that the repulsive model satisfies
assumptions of the existence theorem, and therefore the infinite-volume Gibbs facet
process exists in this case. On the other hand, we find a counterexample in R2 for the
case with attractive interactions and we extend it to prove that the finite-volume Gibbs
facet processes with attractive interactions do not exist in R2.

The second application deals with a model for a random tessellation of R2. We con-
sider the Laguerre tessellation L(γ) (see [6]), which partitions R2 according to the power
distance w.r.t. at most countable set of generators γ ⊂ R2× (0,∞). We are interested in
the situation where the random set of generators is a marked Gibbs point process with
the energy function depending on the geometric properties of the tessellation.

Gibbs point processes with geometry-dependent interactions (which include random
tessellations) were considered in [3]. Using the concept of hypergraph structure, an
existence result was derived for the unmarked case. It was remarked that the same
existence result would extend to the marked case, and based on this, the existence of an
infinite-volume Gibbs measure for several models of Gibbs–Laguerre tessellations of R3

was derived in [5] under the assumption of bounded marks.

In the case of marks not being uniformly bounded, while the range assumption from [9]
turned out to be more restricting than initially expected, we noticed that one can still
use some of the results from that paper to support the proof of the existence of the
Gibbs–Laguerre tessellation. After a careful analysis of the behaviour of the Laguerre
diagram, we considered as an example the model with energy given by the number of
vertices in the tessellation, where we were able to prove a new existence theorem under
the condition that we almost surely see a point.

2. BASIC NOTATION AND DEFINITIONS

In this paper, we study simple marked point processes. Our state space will be in the
product form Rd × S, where d ≥ 2 and the mark space (S, ‖ · ‖) is a normed space.
Each point (x,m) ∈ Rd × S consists of the location x ∈ Rd and the mark m ∈ S. Let
B(Rd × S) denote the Borel σ−algebra on Rd × S and let Bd and Bdb denote the Borel
σ−algebra and the set of all bounded Borel subsets of Rd, respectively.

We denote byM the set of all simple counting locally finite Borel measures on Rd×S
such that their projections γ′(·) = γ(· × S) on Rd are also simple counting locally finite
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Borel measures. Each γ ∈M (often referred to as configuration) can be represented as

γ =

N∑
i=1

δ(xi,mi),

where δ(·) denotes the Dirac measure, (xi,mi) ∈ Rd ×S, where xi are pairwise different
points and N ∈ N ∪ {0,∞}. Therefore, we can identify γ with its support (the zero
measure ō is identified with ∅), γ ≡ supp γ = {(x1,m1), (x2,m2), . . . } ⊂ Rd × S. As is
usual, we will sometimes regard γ ∈ M as a (locally finite) subset of Rd × S instead of
a simple counting locally finite measure for the sake of simple notation.

Simple marked point process is a random element in the space (M,M). Here M is
the usual σ-algebra on M defined as the smallest σ-algebra such that the projections
pB : M→ R, where pB(ν) = ν(B), are measurable ∀B ∈ B(Rd × S). The distribution
of a given point process is a probability measure on (M,M).

Take γ, ξ ∈ M, z ∈ Rd, Λ ∈ Bd and denote by γΛ =
∑
i:xi∈Λ δ(xi,mi) the restriction

of γ to Λ×S and by |γ| = γ(Rd×S) the number of points of γ. The sum of measures γ
and ξ is denoted by γ ξ =

∑
(x,m)∈γ δ(x,m) +

∑
(y,n)∈ξ δ(y,n) and the supremum of norms

of all marks in γ is denoted by m(γ) = sup
(x,m)∈γ

‖m‖.

Let f : Rd × S → R be a measurable, γ-integrable function. We write

〈γ, f〉 =

∫
f(x) γ(dx) =

∑
x∈γ

f(x).

We define the set of configurations with points in Λ × S as MΛ = {γ ∈ M : γ = γΛ}.
The set of all finite configurations is denoted by Mf = {γ ∈ M : |γ| < ∞} and for
a > 0 define Ma = {γ ∈M : m(γ) ≤ a}.

Take x ∈ Rd and r > 0, then the open ball with centre x and radius r is denoted by
U(x, r) and the closed ball with centre x and radius r by B(x, r). The complement of
a set A ⊂ Rd will be denoted by Ac, the interior of A by int(A), the closure of A by
clo(A) and bd(A) = clo(A) \ int(A) denotes the boundary of A.

Let Λ ∈ Bdb . A function F : M → R is called local (or Λ-local), if it satisfies
F (γ) = F (γΛ) for all γ ∈M.

2.1. Tempered configurations and Gibbs measures

From now on, we fix δ > 0. Before we dive into the theory of Gibbs processes, we define
the set of tempered configurations (for reference, see Section 2.2 in [9]). The importance
of this definition lies in the fact that the infinite-volume Gibbs measure is concentrated
on the set of tempered configurations.

Take t ∈ N and set Mt =
{
γ ∈M :

〈
γU(0,l), (1 + ‖m‖d+δ)

〉
≤ t · ld holds ∀l ∈ N

}
.

Then Mtemp =
⋃
t∈NMt is called the set of tempered configurations. These configura-

tions have the following property (for proof, see Lemma 2 in [9]). For t ∈ N there exists
l(t) such that ∀l ≥ l(t) and ∀γ ∈Mt the following implication holds

(x,m) ∈ γU(0,2l+1)c =⇒ B(x, ‖m‖) ∩ U(0, l) = ∅. (1)
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This property inspires the following definition of an increasing sequence of subsets of
Mtemp. Take l ∈ N and define

Ml = {γ ∈Mtemp : B(x, ‖m‖) ∩ U(0, k) = ∅, ∀(x,m) ∈ γU(0,2k+1)c , ∀k ∈ N, k ≥ l}.

We can see from (1) thatMt ⊂Mdl(t)e, ∀t ∈ N, and consequentlyMtemp =
⋃
l∈NM

l.

For simplicity, we will write Ml(t) instead of Mdl(t)e in the following text.
The focus of this work is the family of Gibbs point processes. In particular, we will

work with the distributions of these processes, which are called Gibbs measures. Choose
a reference mark distribution Q on the mark space (S, ‖ · ‖) and take Λ ∈ Bdb and z > 0.
As a reference distribution take πzΛ, the distribution of the marked Poisson point process
in Rd × S with intensity measure zλΛ(dx)

⊗
Q(dm), where λΛ(dx) is the restriction of

the Lebesgue measure λ on Λ and
⊗

denotes the standard product of measures.
An energy function is a mapping H :Mf → R ∪ {+∞} which is measurable, trans-

lation invariant and satisfies H(ō) = 0. Take Λ ∈ Bdb and z > 0. We define the
finite-volume Gibbs measure in Λ with energy function H and activity z as

PΛ(dγ) =
1

ZΛ
· e−H(γΛ) πzΛ(dγ), (2)

where ZΛ =
∫
e−H(γΛ)πzΛ(dγ) is the normalizing constant called the partition function.

Clearly, for the finite-volume Gibbs measure to be well defined, we need 0 < ZΛ <∞.
This will be satisfied under our assumptions on the energy function H (see Section 3).

Example 2.1. (Example 2 in [9]) Let φ : Rd×Rd → R be a non-negative, translation
invariant, measurable function, called the pair potential, and consider

H1(γ) =
∑ 6=

(x,m), (y,n)∈γ

φ(x, y) · 1{|x− y| ≤ ‖m‖+ ‖n‖}.

Although there is a natural generalization of the measures πzΛ to πz, where πz is the
distribution of a marked Poisson point process with intensity measure zλ(dx)

⊗
Q(dm),

we cannot generalize the definition of a finite-volume Gibbs measure to an infinite-volume
Gibbs measure.

For energy function H and Λ ∈ Bdb define the conditional energy of γ ∈M in Λ given
its environment as

HΛ(γ) = lim
n→∞

H(γΛn)−H(γΛn\Λ), (3)

where Λn = [−n, n)d. For the conditional energy to be well defined, we later pose some
assumptions on H (see Section 3). For Λ ∈ Bdb , z > 0, energy function H and ξ ∈ M,
define the Gibbs probability kernel as

ΞΛ(ξ,dγ) =
e−HΛ(γΛξΛc )

ZΛ(ξ)
πzΛ(dγ), (4)

where ZΛ(ξ) =
∫
e−HΛ(γΛξΛc )πzΛ(dγ) is the normalizing constant. Again, for ΞΛ(ξ,dγ) to

be well defined, we need 0 < ZΛ(ξ) <∞. Under our assumptions on H (see Section 3 ),
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this will be true for ξ ∈ Mtemp. The infinite-volume Gibbs measure is now defined as
a probability measure onM, which satisfies the DLR equations (named after Dobrushin,
Lanford and Ruelle). This definition follows naturally from the fact that the finite-
volume Gibbs measures also satisfy DLR (see [2], Proposition 5.3).

Definition 2.2. A probability measure P onM is called an infinite-volume Gibbs mea-
sure with energy function H and activity z, if for all Λ ∈ Bdb and for all measurable
bounded local functions F :M→ R the DLRΛ equation holds:∫

M
F (γ)P(dγ) =

∫
M

∫
MΛ

F (γΛξΛc) ΞΛ(ξ,dγ)P(dξ).

The existence of a measure satisfying the definition above is not guaranteed and must
be proved.

3. THE EXISTENCE RESULT

To be able to prove the existence of an infinite-volume Gibbs measure, we need the
following four assumptions: the moment assumption Hm, the stability assumption Hs,
the local stability assumption Hl and the range assumption Hr.

3.1. The Moment and Stability Assumptions

Recall that we have chosen δ > 0 and a reference mark distribution Q in Section 2.1.
The moment assumption Hm concerns the distribution Q, as it has to satisfy

Hm :

∫
S

exp(‖m‖d+2δ)Q(dm) <∞.

The rest of the assumptions pertain to the energy function H. The first one is the
stability assumption:

Hs : There exists c ≥ 0 such that ∀γ ∈Mf : H(γ) ≥ −c
〈
γ, 1 + ‖m‖d+δ

〉
.

Under the assumptions Hs and Hm we have 0 < ZΛ <∞ for all Λ ∈ Bdb and therefore
the finite-volume Gibbs measures are well defined (for proof, see Lemma 4 in [9]). For the
infinite-volume Gibbs measure to be well defined, we need an analogue of the stability
assumption for the conditional energy, the local stability assumption.

Hl : For all Λ ∈ Bdb and all t ∈ N there exists c(Λ, t) ≥ 0 such that for all ξ ∈Mt

the following inequality holds for any γΛ ∈MΛ :

HΛ(γΛ ξΛc) ≥ −c(Λ, t)
〈
γΛ, 1 + ‖m‖d+δ

〉
.

Let us emphasize that the lower bound for the conditional energy must hold uniformly
over Mt. In the same way the stability ensures that the partition function is finite, it
can be proved that assumptions Hl and Hm imply that 0 < ZΛ(ξ) <∞, for all Λ ∈ Bdb
and ξ ∈ Mtemp (for proof, see Lemma 7 in [9]). Contrary to the stability assumption,
local stability is often, but not automatically, satisfied for non-negative energy functions.
We state our observation regarding the validation of this assumption.
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Observation 3.1. Assume that the energy function H satisfies H(γA)−H(γB) ≥ 0, for
all γ ∈Mf , whenever B ⊂ A; A,B ∈ Bdb . Then the conditional energy is non-negative
and the local stability assumption Hl holds.

P r o o f . Let γ ∈ M and Λ ∈ Bdb . Then ∃K ∈ N and points x1, . . . ,xK ∈ Rd × S such

that γΛ =
∑K
i=1 δxi and we can write

lim
n→∞

H(γΛn)−H(γΛn\Λ) = lim
n→∞

K∑
i=1

H(γΛn\{x1,...,xi−1})−H(γΛn\{x1,...,xi}) ≥ 0.

�

3.2. New formulation of the range assumption

The last assumption considers the range of the interactions among the points. First, we
state the original range assumption from [9].

H̃r : Fix Λ ∈ Bdb . For any γ ∈Mt, t ≥ 1, there exists τ(γ,Λ) > 0 such that

HΛ(γ) = H(γΛ⊕B(0,τ(γ,Λ)))−H(γ(Λ⊕B(0,τ(γ,Λ)))\Λ),

where Λ ⊕ B(0, R) = {x ∈ Rd : ∃y ∈ Λ, |x− y| ≤ R}. It is noted that the choice of
τ(γ,Λ) can be

τ(γ,Λ) = 2l(t) + 2m(γΛ) + 1, (5)

and this choice is used in the proof of the existence theorem. Contrary to the claims
in [9], this choice of τ(γ,Λ) does not work for the presented examples of the energy
function, as we prove in the following lemma.

Lemma 3.2. Consider the state space R2×R and the energy function H1 from Exam-
ple 2.1. Then ∀δ > 0 there exist Λ ∈ B2

b and a set MC ⊂M1 such that ∀γ ∈MC

lim
n→∞

H(γΛn)−H(γΛn\Λ) = HΛ(γ) 6= H(γΛ⊕B(0,τ))−H(γ(Λ⊕B(0,τ))\Λ)

if we choose τ = 2l(1) + 2m(γΛ) + 1.

P r o o f . First, we consider δ = 1
2 and afterwards modify the example for general δ.

Step 1) Let δ = 1
2 . It holds that (see Lemma 2 in [9])

l(t) =
1

2
· t 1

δ · 2
2+δ
δ = t2 · 24.

Therefore, we get that l(1) = 24 = 16. Take points (x,m), (y, n) ∈ R2 × R, where
x = (120, 120), m = 1, y = (150, 150) and n = 43. Let Λ = B(x, ε), where ε ∈ [0, 1],
and set γ = δ(x,m) + δ(y,n). Then it holds that γ ∈ M1, B(x,m) ∩ B(y, n) 6= ∅, and
(y, n) /∈ γΛ⊕B(0,τ) for τ = 2l(1) + 2m(γΛ) + 1 = 35, and therefore

lim
n→∞

H(γΛn)−H(γΛn\Λ) = φ(x, y),

H(γΛ⊕B(0,τ))−H(γ(Λ⊕B(0,τ))\Λ) = 0− 0 = 0.
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Choose k ∈ N such that k ≥ l(1) and Λ ⊕ B(0, 1) ⊂ U(0, k) and then define the set
MC = {γ ξU(0,2k+1)c : ξ ∈M1, (x,m) ∈ ξ, (y, n) ∈ ξ} ⊂ M1. We get that ∀ν ∈MC

lim
n→∞

H(νΛn)−H(νΛn\Λ) = φ(x, y),

H(νΛ⊕B(0,τ))−H(ν(Λ⊕B(0,τ))\Λ) = 0− 0 = 0.

Step 2) Let δ > 0. Then we can choose (x,m) and (y, n) in the following way:

1. m = 1 and x = (x′, 0) where x′ is large enough so that

4 + 2 · 2 2
δ ≤ 1

2
+ ((4 + 2 · 2 2

δ + x′)2 − 3)
1

2+δ and x′ > 1,

2. y = (y′, 0), where y′ = 4 + 2 · 2 2
δ + x′ and n = ((y′)2 − 3)

1
2+δ .

Set γ = δ(x,m) + δ(y,n) and Λ = B(x, ε) for some ε ∈
[
0, 1

2

]
. We again obtain

that γ ∈ M1, B(x,m) ∩ B(y, n) 6= ∅ and also that (y, n) /∈ γΛ⊕B(0,τ) for the choice
τ = 2l(1) + 2m(γΛ) + 1. The choice ofMC proceeds in the same way as in the first step.

�

In particular, we have found a counterexample to the claim that for any configuration
γΛ ∈ MΛ and any ξ ∈ Mt the equality HΛ(γΛξΛc) = HΛ(γΛξ∆\Λ) holds as soon as
Λ ⊕ B(0, 2l(t) + 2m(γΛ) + 1) ⊂ ∆. We have given the counterexample for d = 2, t = 1
and pairwise-interaction model, however, it should be clear that it would be possible to
find counterexamples in the same way for d ≥ 3, t ∈ N and other energy functions, for
which the interaction between two points is given by the intersection of their respective
balls1.

We propose the following modification of the range assumption.

Hr: Fix Λ ∈ Bdb and l ∈ N. Then for all γ ∈ Mtemp such that γΛc ∈ Ml there exists
τ = τ(m(γΛ), l,Λ) > 0 such that

HΛ(γ) = H(γΛ⊕B(0,τ))−H(γ(Λ⊕B(0,τ))\Λ),

holds and τ(m(γΛ), l,Λ) is a non-decreasing function of m(γΛ). Particularly, τ depends
on γΛc only through l.

With this new modified assumption the existence theorem from [9] holds.

Theorem 3.3. (Theorem 1 in [9]) Under assumptions Hs, Hl, Hr and Hm there
exists at least one infinite-volume Gibbs measure with energy function H.

Concerning the use of the range assumption in the original proof in [9], we refer to
the proof of formula (20) on page 990 and the estimation of δ24 on page 992, which
remain the same.

1After seeing our counterexample from Lemma 3.2, the authors of [9] submitted errata with a cor-
rected form of formula (5) by means of adding a term that depends on the distance from the origin.
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4. GIBBS FACET PROCESS

The first model we consider will be the process of facets (presented in [13]). For d ≥ 2
denote by Gd the space of all (d − 1)-dimensional linear subspaces of Rd and let Sd−1

denote the unit sphere in Rd, then A(n) ∈ Gd denotes the linear subspace with unit
normal vector n ∈ Sd−1. Let A(n) ∈ Gd and R > 0. Then a facet V (n,R) with radius
R and normal vector n is defined as V (n,R) = A(n) ∩B(0, R).

As we can see from the definition above, each facet is uniquely described by its
radius R and its normal vector n (up to the orientation of n). Therefore, it is natural
to choose the space of marks as (S, ‖ · ‖) = (Rd+1, ‖ · ‖) with the standard Euclidean

norm2 ‖m‖ =
√∑d+1

i=1 m
2
i . The marks will be specified by choosing the reference mark

distribution Q so that it satisfies Q(Sd−1
+ × (0,∞)) = 1, where Sd−1

+ is the semi-closed
unit hemisphere in Rd,

Sd−1
+ =

d⋃
i=1

{u ∈ Sd−1 : u1 = 0, · · · , ui−1 = 0, ui > 0}.

Clearly, there exists a bijection between Sd−1
+ ×(0,∞) and the set of all facets, the first

d coordinates define the normal vector for the corresponding facet and the last coordinate
defines the radius. Take γ ∈ M, then we define the set of all facets (shifted to their
location) corresponding to configuration γ as A(γ) = {x + V (n,R) : (x, n,R) ∈ γ}.
The energy of a configuration will depend on the number (and volume) of intersections
among the facets. The energy function of a facet process is defined as

H(γ) =

d∑
j=2

ajφj(γ), where a2, . . . , ad ∈ R and

φj(γ) =
∑6=

K1,...,Kj∈A(γ)

Hd−j
(

j⋂
i=1

Ki

)
· 1

[
Hd−j(

j⋂
i=1

Ki) <∞

]
.

(6)

Here, Hk denotes the k-dimensional Hausdorff measure on Rd and
∑6=
... denotes the sum

over all j-tuples from A(γ). From now on, the indicator in (6) will be denoted by 1∞,j .

4.1. Existence of Gibbs facet process with repulsive interactions

To verify the existence of the Gibbs facet process, we must verify the assumptions of
Theorem 3.3. Regarding the assumption Hm, we have to choose the mark distribution
Q such that ∫

Sd−1
+ ×(0,∞)

exp((1 +R2)d/2+δ)Q(d(n,R)) <∞.

To address the assumption Hr, we rewrite the definition of sets Ml in the language
of facets.

2We will use the notation ‖m‖ for the Euclidean norm when talking about mark m from Rd and |x|
when talking about location point x from Rd.
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Lemma 4.1. Take γ ∈ Mtemp, γ ∈ Ml0 . Then ∀l ≥ l0 and for all K ∈ A(γ) we have
the following implication: K ∈ A(γU(0,2l+1)c) =⇒ K ∩ U(0, l) = ∅.

P r o o f . We know that the implication (x,m) ∈ γU(0,2l+1)c =⇒ U(0, l)∩B(x, ‖m‖) = ∅
holds ∀l ≥ l0 (from the definition ofMl0 ) and in our case B(x, ‖m‖) = B(x,

√
1 +R2).

Clearly K ⊂ B(x,
√

1 +R2) and therefore K ∩ U(0, l) = ∅. �

Now we will show that the range assumption holds.

Theorem 4.2. The energy function H of a facet process defined in (6) satisfies the
range assumption Hr.

P r o o f . Fix Λ ∈ Bdb and l0 ∈ N. We want to prove that for all γ ∈ Mtemp such that

γΛc ∈ Ml0 there exists τ = τ(m(γΛ), l0,Λ) > 0 which is a non-decreasing function of
m(γΛ) and for which it holds that HΛ(γ) = H(γΛ⊕B(0,τ))−H(γ(Λ⊕B(0,τ))\Λ).

Take i0 ∈ N large enough so that Λ ⊂ Λi0 = [−i0, i0)
d
. From the definition of the

conditional energy, we have that HΛ(γ) = limn→∞
(
H(γΛn)−H(γΛn\Λ)

)
.

We can write for all n ≥ i0

H(γΛn)−H(γΛn\Λ) =

d∑
j=2

aj
∑ 6=

K1,...,Kj∈A(γΛn )

Hd−j
(

j⋂
i=1

Ki

)
· 1∞,j

−
d∑
j=2

aj
∑6=

K1,...,Kj∈A(γΛn\Λ)

Hd−j
(

j⋂
i=1

Ki

)
· 1∞,j .

Now define for general sets A ⊂ B, A,B ∈ Bdb , and for j = 2, . . . , d the set of all j-tuples
of points from γ in B (or more specifically the set of (non-ordered) j-tuples of facets
represented by these points) such that at least one of these points lies in A:

Cj(γ,A,B) = {{K1, . . . ,Kj} : Ki ∈ A(γB) for all i = 1, . . . , j and ∃i s.t. Ki ∈ A(γA)}.

Then for any τ > 0 and n large enough so that Λ⊕B(0, τ) ⊂ Λn we can write

H(γΛn)−H(γΛn\Λ) =

d∑
j=2

aj
∑

{K1,...,Kj}∈Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j
(

j⋂
i=1

Ki

)
· 1∞,j

+

d∑
j=2

aj
∑

{K1,...,Kj}∈Cj(γ,Λ,Λn)\Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j
(

j⋂
i=1

Ki

)
· 1∞,j .

(7)

Clearly, the first sum does not depend on n and it is in fact equal to the desired
H(γΛ⊕B(0,τ)) −H(γ(Λ⊕B(0,τ))\Λ)). Therefore, it is sufficient to show that for the right
choice of τ each summand in the second sum is 0. Consider the following steps.

1. We have l1(m(γΛ),Λ) = min{l ∈ N : Λ⊕B(0,m(γΛ)) ⊂ U(0, l)} <∞, since m(γΛ)
is finite.
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2. Let l2(m(γΛ), l0,Λ) = max{l0, l1(m(γΛ),Λ)}.

3. Take τ(m(γΛ), l0,Λ) = min{k ∈ N : U(0, 2l2(m(γΛ), l0,Λ) + 1) ⊂ Λ⊕B(0, k)}.

Then clearly for a < b we have that τ(a, l0,Λ) ≤ τ(b, l0,Λ). Now, let n0 be the
smallest n such that Λ⊕B(0, τ(m(γΛ), l0,Λ)) ⊂ Λn. Let n ≥ n0 and fix j ∈ {2, . . . , d}.
For simplicity, denote τ = τ(m(γΛ), l0,Λ) and l2 = l2(m(γΛ), l0,Λ) from the second step
in the definition of τ .

Take {K1, . . . ,Kj} ∈ Cj(γ,Λ,Λn) \ Cj(γ,Λ,Λ ⊕ B(0, τ)). From the definition of Cj
there exist indices i, k ∈ {1, . . . , j}, i 6= k such that Ki = x + V (n,R) ∈ A(γΛ) and
Kk ∈ A(γΛn\Λ⊕B(0,τ)).

In particular, considering the choice of τ above, it holds that Ki ⊂ U(0, l2) (from the
first and second step), Kk ∈ A(γU(0,2l2+1)c) (from the third step) and l2 ≥ l0 (from the

second step). We get from Lemma 4.1 that Ki ∩Kk = ∅ and so Hd−j
(⋂j

i=1Ki

)
= 0.

This holds for all {K1, . . . ,Kj} ∈ Cj(γ,Λ,Λn) \ Cj(γ,Λ,Λ ⊕ B(0, τ)) and therefore we
have for all n ≥ n0 and for τ = τ(m(γΛ), l0,Λ):

H(γΛn)−H(γΛn\Λ)
(7)
=

d∑
j=2

aj
∑

{K1,...,Kj}∈Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j
(

j⋂
i=1

Ki

)
· 1∞,j .

�

Consider now a situation where the constants aj in the definition of the energy func-
tion of facet process satisfy aj ≥ 0 for all j = 2, . . . , d. This leads to repulsive interactions
between the facets, i. e., configurations with a lot of interacting facets will have higher
energy, compared to those with disjoint facets, and they will be therefore less probable.
We have the following existence result.

Theorem 4.3. Let the energy function (6) of a facet process satisfy aj ≥ 0, for all
j ∈ {2, . . . , d} and assume that the reference mark distribution Q satisfies Hm. Then
the infinite-volume Gibbs facet process exists.

P r o o f . In this case, the energy function H is non-negative and, therefore, the stabil-
ity assumption Hs holds. Since H clearly satisfies observation 3.1, the local stability
assumption Hl also holds. Theorem 4.2 shows that also the range assumption Hr is
satisfied and therefore the assumptions of Theorem 3.3 hold and the existence is proven.

�

4.2. The counterexample for attractive interactions in R2

Consider the facet process in R2, i. e., the energy function is

H(γ) = a2

∑6=

K1,K2∈A(γ)

H0 (K1 ∩K2) · 1∞,2. (8)

Suppose that a2 < 0 (we can assume for simplicity that a2 = −1). This leads to attrac-
tive interactions between the facets. We will show that the finite-volume Gibbs measures
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do not exist. The first step will be to find a sequence {γN}N∈N ⊂Mf contradicting the
stability assumption Hs. In the second step, we show that we can modify these config-
urations (under some mild assumptions on the mark distribution Q) to form a sequence
of subsets AΛ,N ⊂Mf for some Λ ∈ B2

b , such that πzΛ(AΛ,N ) > 0, ∀N ∈ N, and Hs does
not hold on

⋃
N∈NAΛ,N . In the final step, we use sets AΛ,N to show that the partition

function ZΛ is infinite.

Step 1)
Consider the following lemma.

Lemma 4.4. The energy function of a facet process in R2 (i. e., (8)) does not satisfy
the stability assumption Hs for a2 < 0.

P r o o f . Take N ∈ N even, n1, n2 ∈ S1
+ and R > 0 and γN ∈Mf satisfying

i) supp γN = {(x1, n1, R), . . . , (xN
2
, n1, R), (xN

2 +1, n2, R), . . . , (xN , n2, R)},

ii) normal vectors n1, n2 ∈ S1
+ satisfy n1 6= n2,

iii) the location points satisfy xi = (x1
i , 0)T , where 1 = x1

1 > x1
2 > · · · > x1

N
2

> 0 and

−1 = x1
N
2 +1

< x1
N
2 +2

< · · · < x1
N < 0,

iv) R > 0 is a sufficiently large constant (depending on n1, n2) such that the facets
x1 + V (n1, R) and xN

2 +1 + V (n2, R) intersect.

It holds for these configurations that each facet given by the points (xi, n1, R),
i ∈ {1, . . . , N2 }, intersects all facets given by the second half of the points and there
are no intersections within the first half and within the second half. So, we have that

H(γN ) = −
∑ 6=

K1,K2∈A(γN )

H0 (K1 ∩K2) · 1∞,2 = −N
2
· N

2
.

At the same time
〈
γN , 1 + ‖m‖2+δ

〉
=
∑N
i=1(1 + (1 +R2)1+ δ

2 ) = N · (1 + (1 +R2)1+ δ
2 ).

Denote by b := (1 + (1 + R2)1+ δ
2 ) < ∞ the constant, which does not depend on N .

Assume for contradiction that Hs holds, i. e., there exists c > 0 such that ∀γ ∈ Mf we
have H(γ) ≥ −c

〈
γ, 1 + ‖m‖2+δ

〉
. Then we get that ∀N ∈ N even −N2 ·

N
2 ≥ −c ·N · b,

which is clearly a contradiction. �

Step 2)
From now on, we assume that there exist vectors u, v ∈ S1

+, some constants 0 < a ≤
b <∞ and ε > 0 such that

Q(U(u± ε)× (a, b)) > 0, Q(U(v ± ε)× (a, b)) > 0 and U(u± ε) ∩ U(v ± ε) = ∅, (9)

where U(u ± ε) = {w ∈ S1
+ : |^(u,w)| ≤ ε} (here ^(u,w) denotes the angle between

the vectors u and w). We are able to find a set Λ such that if two facets have centres
inside Λ, their normal vectors do not differ too much from u and v, respectively, and
their length is at least a, then they must intersect at one point.
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Lemma 4.5. For given constants a, ε > 0 and two different vectors u, v ∈ S1
+ there

exists a set Λ ∈ B2
b such that

|(x+ V (n,R)) ∩ (y + V (m,T ))| = 1

holds for all x, y ∈ Λ, x 6= y, n ∈ U(u± ε), m ∈ U(v ± ε) and R > a, T > a.

P r o o f . Set Λ0 = [−1, 1]
2

and take x, y ∈ Λ0, n ∈ U(u ± ε), n = (n1, n2)T , and
m ∈ U(v ± ε), m = (m1,m2)T . We will denote by 〈x, y〉 the standard dot product
on R2. Denote by p(x, n) = {z ∈ R2 : 〈z, n〉 = 〈n, x〉} the line given by a point x and a
normal vector n and analogously the line p(y,m) given by a point y and a normal vector
m. Then, due to the assumption (9), n 6= ±m and these two lines intersect at one point
P (x, y, n,m) = A−1b, where b = (〈n, x〉 , 〈m, y〉)T and

A =

(
n1 n2

m1 m2

)
.

Then we can define a function f1 as the distance from point x to the intersection
P (x, y, n,m),

f1(x, y, n,m) = ‖x− P (x, y, n,m)‖.

This is a continuous function on Λ0×Λ0×U(u±ε)×U(v±ε), which is a compact subset
of R8. Therefore, the function f1 has a maximum M1 on this set. Analogously, we can
define f2 as the distance from point y to the intersection P (x, y, n,m) and there exists
its maximum M2 on Λ0 × Λ0 × U(u ± ε) × U(v ± ε). Now, we only need the following
observation. Take any s > 0, then

f1(sx, sy, n,m) = ‖sx− P (sx, sy, n,m)‖ = ‖sx−A−1(〈n, sx〉 , 〈m, sy〉)T ‖
= s‖x−A−1b‖ = sf1(x, y, n,m).

Therefore, the maximum of f1 on sΛ0×sΛ0×U(u±ε)×U(v±ε) is sM1 and analogously
the maximum of f2 on sΛ0 × sΛ0 × U(u ± ε) × U(v ± ε) is sM2. Now it is enough to

find s > 0 small enough such that max{sM1, sM2} < a and take Λ = sΛ0 = [−s, s]2. �

Now we take Λ from Lemma 4.5 and denote

Gu = Λ× U(u± ε)× (a, b) and Γu = (zλΛ ⊗ Q) (Gu),

Gv = Λ× U(v ± ε)× (a, b) and Γv = (zλΛ ⊗ Q) (Gv),

D = Λ× S \ (Gu ∪Gv) and ∆ = (zλΛ ⊗ Q) (D).

Then we define, ∀k ∈ N, the following set of configurations

AΛ,2k = {γ ∈Mf : |γ| = 2k, γ(Gu) = k, γ(Gv) = k} ⊂ MΛ. (10)

Due to the assumption (9), it holds that

πzΛ(AΛ,2k) = e−∆ · e−Γu · Γku
k!
· e−Γv · Γkv

k!
> 0 (11)
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and thanks to Lemma 4.5 we have that ∀k ∈ N and ∀γ ∈ AΛ,2k

H(γ) = −
∑ 6=

K1,K2∈A(γ)

H0 (K1 ∩K2) · 1∞,2 = −k · k. (12)

Step 3)

So far, we have only shown that the assumption Hs (and consequently Hl) is not
satisfied for negative a2 and therefore we cannot use Theorem 3.3. Now we prove that
the finite-volume Gibbs measures do not exist.

Theorem 4.6. Let a2 < 0 and assume that the mark distribution Q satisfies (9). Then
it holds that ZΛ̃ = +∞, ∀Λ̃ ∈ B2

b , and therefore the finite-volume Gibbs measures do
not exist.

P r o o f . Take Λ from Lemma 4.5 and AΛ,2k, k ∈ N, defined in (10). Then ∀k ∈ N

ZΛ =

∫
MΛ

e−H(γ)πzΛ(dγ) ≥
∫
AΛ,2k

e−H(γ)πzΛ(dγ) =

= ek
2

· πzΛ(AΛ,2k) = ek
2

· e−∆ · e−Γu · (Γu)k

k!
· e−Γv · (Γv)

k

k!
.

We have used (11) and (12). Thanks to Stirling’s formula the right side converges to ∞
with k → ∞ and therefore ZΛ = ∞. Now take any Λ̃ ∈ Bdb . Since H is assumed to
be translation invariant, we can, without loss of generality, assume that there exists
a constant 1 ≥ t > 0 such that tΛ ⊂ Λ̃. Returning to the proof of Lemma 4.5, we could
have used the approach from Step 2) for tΛ and everything would have worked in the
same way, so we can assume, without loss of generality, that Λ ⊂ Λ̃.

Now denote D̃ = Λ̃× S \ (Gu ∪Gv) and ∆̃ = (zλΛ̃ ⊗ Q)(D̃). Then we can write

ZΛ̃ =

∫
MΛ̃

e−H(γ)πz
Λ̃

(dγ) ≥
∫
AΛ,2k

e−H(γ)πz
Λ̃

(dγ) =

= ek
2

· πz
Λ̃

(AΛ,2k) = ek
2

· e−∆̃ · e−Γu · (Γu)k

k!
· e−Γv · (Γv)

k

k!
,

and we can again use Stirling’s formula to get that ZΛ̃ =∞. �

5. GIBBS–LAGUERRE TESSELLATIONS

In this section, we consider Gibbs–Laguerre processes, which present a model for random
tessellations of R2. Since it is not possible to use the existence theorem from [9] to
prove that an infinite-volume Gibbs–Laguerre process exists, we considered a particular
energy function, and, using some parts of the proof from [9], we were able to derive
a new existence theorem under the assumption that we almost surely see a point.
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5.1. Tessellations and Laguerre geometry

We say that a set T = {Ci : i ∈ N}, where Ci ⊂ R2, is a tessellation of R2, if

i) int(Ci) ∩ int(Cj) = ∅ for i 6= j,

ii)
⋃
i Ci = R2 (it is space filling),

iii) |{Ci ∈ T : Ci ∩B 6= ∅}| <∞ for all B ⊂ R2 bounded (T is locally finite),

iv) the sets Ci (called cells) are convex compact sets with interior points.

The cells of a tessellation are convex polytopes (see Lemma 10.1.1 in [12]). We
define an edge of cell C as a 1-dimensional intersection of C with its supporting hyper-
planes, and we define a vertex of cell C as a 0-dimensional intersection of C with its
supporting hyperplanes3. We denote the set of all edges of C by ∆1(C) and the set
of all vertices of C by ∆0(C). We also define the set of edges of a tessellation T as
S1(T ) =

{
F (y) : dim(F (y)) = 1, y ∈ R2

}
, where F (y) is the intersection of all cells of T

containing the point y, F (y) =
⋂
C∈T : y∈C C. Analogously, we could define S0(T ), the

set of vertices of a tessellation T. It always holds that
⋃
C∈T ∆0(C) = S0(T ), but it can

happen that
⋃
C∈T ∆1(C) 6= S1(T ). However, we will not consider such tessellations.

A tessellation T is called normal if it satisfies that
⋃
C∈T ∆1(C) = S1(T ), every edge

is contained in the boundary of exactly two cells and every vertex is contained in the
boundary of exactly three cells.

We will now focus on Laguerre diagrams (see [6] for general theory), which are based
on the power distance from some fixed set of weighted points. For x, z ∈ R2 and u ≥ 0
define the power distance of z and weighted point (x, u) as ρ(z, (x, u)) = |x− z|2 − u2.
Denote for points x, y ∈ R2 and weights u, v ≥ 0

HP ((x, u), (y, v)) =
{
z ∈ R2 : ρ(z, (x, u)) = ρ(z, (y, v))

}
=
{
z ∈ R2 : 2 〈y − x, z〉 = |y|2 − |x|2 + u2 − v2

}
the line (called radical axis) separating R2 into two half-planes and

P ((x, u), (y, v)) =
{
z ∈ R2 : ρ(z, (x, u)) ≤ ρ(z, (y, v))

}
=
{
z ∈ R2 : 2 〈y − x, z〉 ≤ |y|2 − |x|2 + u2 − v2

} (13)

the closed half-plane, whose points are closer to (x, u) than to (y, v) w. r. t. to the power
distance.

Now take at most countable subset γ ⊂ R2 × (0,∞) of weighted points, which will
be called the set of generators. We will use the notation x = (x′, x′′) for x ∈ γ, where x′

denotes the location and x′′ the weight of the point. Assume that γ satisfies assumption
(R0): ∀z ∈ R2 there exists min

x∈γ
ρ(z, x).

We define the Laguerre diagram of γ as

L(γ) = {L(x, γ) : x ∈ γ, L(x, γ) 6= ∅},
3See [11], Section 2.4., for the theoretical background.



144 M. PETRÁKOVÁ

where L(x, γ) is the Laguerre cell of x in γ defined as

L(x, γ) = {z ∈ R2 : ρ(z, x) ≤ ρ(z, y) ∀y ∈ γ}.

We call x′ the nucleus of the cell L(x, γ) and denote by γ′ = {x′ : (x′, x′′) ∈ γ} the
set of nuclei of γ. The set of points from γ, whose cells are empty, is denoted by
E(γ) = {x ∈ γ : L(x, γ) = ∅}. Clearly from the definition, the (possibly empty)
Laguerre cell can be written as

L(x, γ) =
⋂
y∈γ

P (x, y). (14)

The following conditions were derived in [6] for L(γ) to be a tessellation. We say that
γ ⊂ R2 × (0,∞) fulfils regularity conditions if it satisfies

(R1) for all (z, t) ∈ R2 × R only finitely many x ∈ γ satisfy |z − x′|2 − (x′′)2 ≤ t,

(R2) conv{x′ : (x′, x′′) ∈ γ} = R2.

We say that γ ⊂ R2 × (0,∞) is in general position if the following conditions hold

(GP1) no 3 nuclei are contained in a 1-dimensional affine subspace of R2,

(GP2) no 4 points have equal power distance to some point in R2.

The following can be shown (see [6], Theorem 2.2.8.). Let γ satisfy (R1) and (R2).
Then every cell L(x, γ), x ∈ γ, is compact, L(γ) is locally finite and space filling and
L̃(γ) = {L(x, γ) ∈ L(γ) : int(L(x, γ)) 6= ∅} is a face-to-face tessellation. If γ satisfies
(R1),(R2), (GP1) and (GP2), then all cells of L(γ) have dimension 2 and the Laguerre
diagram L(γ) is a normal tessellation.

A finite set of generators will not satisfy condition (R2), but this case can be eas-
ily treated separately. Assume that γ ⊂ R2 × (0,∞) is finite, γ = {x1, . . . , xN} for
some N ∈ N. Then assumption (R0) holds and therefore the Laguerre cells L(x, γ)
are well defined. We see from (14) that each cell is an intersection of finitely many
closed hyperplanes, i. e., bounded L(x, γ) are convex polytopes. L(γ) is space filling
and for two points xi, xj ∈ γ such that their cells have non-empty interiors, we get
that int (L(xi, γ)) ∩ int (L(xj , γ)) = ∅. Let ∆i(x, γ) denote the set of i-dimensional
intersections of the cell L(x, γ) with the hyperplanes HP (x, y), y ∈ γ, and define
∆i(γ) =

⋃
x∈γ ∆i(x, γ), i = 0, 1. The following can easily be proved.

Proposition 5.1. The diagram L(γ) is well defined for a finite set of generators γ.
Assume that γ satisfies (GP1) and (GP2). Then it holds that the cell L(x, γ), x ∈ γ, is
either empty or has dimension 2, each vertex v ∈ ∆0(γ) lies in the boundary of exactly
three cells and each edge e ∈ ∆1(γ) lies in the boundary of exactly two cells.

For finite γ in general position we say that L(γ) is a generalized normal tessellation.
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5.2. Gibbs–Laguerre measures

To model a random Laguerre diagram L(Ψ), we consider a Laguerre diagram with
random set of generators Ψ, where Ψ is a marked point process in the space R2× (0,∞).
Our aim was to consider Ψ to be an infinite-volume marked Gibbs point process with
energy function depending on the geometric properties of L(Ψ) and to use Theorem 3.3
to show that there exists an infinite-volume Gibbs–Laguerre measure with unbounded
weights. Unfortunately, the range assumption Hr turned out to be an insurmountable
obstacle, and our approach needed to be adjusted.

5.2.1. The energy function and finite-volume Gibbs measures

Let the state space be R2×R with mark space (R, ‖ · ‖) and take a mark distribution Q
such that Q((0,∞)) = 1 and such that Hm holds. We will work with energy function

H(γ) =

{∑
x∈γ |∆0(x, γ)| if E(γ) = ∅,

+∞ if E(γ) 6= ∅,
γ ∈Mf . (15)

We sum the number of vertices for each Laguerre cell and we forbid the configurations
for which there exists an empty cell. Clearly, H is non-negative. Therefore, the stability
assumption Hs is satisfied and the finite-volume Gibbs measure PΛ(dγ) (see (2)) in
Λ ∈ B2

b with energy function (15) and activity z > 0 is well defined.

It holds (see Proposition 3.1.5 in [6], or [14]) that

πzΛ ({γ ∈M : γ is in general position}) = 1, ∀Λ ∈ B2
b , ∀z > 0. (16)

Therefore, also PΛ({γ ∈ M : γ is in general position}) = 1, particularly the Laguerre
diagram L(γ) is a generalized normal tessellation for PΛ-a.a. γ. Since configurations
with empty cells are forbidden, we also get that

PΛ({γ : E(γ) = ∅}) = 1. (17)

In the following proposition, we present the key observation for the energy function
H from (15). This observation will later allow us to show that the conditional energy
HΛ is attained as soon as all cells belonging to the points in Λ are bounded.

Proposition 5.2. Let H be the energy function defined in (15) and take γ ∈Mf such
that it satisfies (GP1), (GP2) and E(γ) = ∅. Assume that the Laguerre cell L(x, γ) of
a point x ∈ γ is bounded. Then we have that H(γ)−H(γ \ {x}) = 6.

P r o o f . Let γ and x be as assumed. Then L(γ) (and also L(γ\x) thanks to Lemma 7.1)

is a generalized normal tessellation, and we know that L(x, γ) =
⋂k
i=1 P (x, yxi ) for yxi ∈ γ

such that L(x, γ)∩L(yxi , γ) 6= ∅, k ∈ N. In particular, since L(x, γ) is bounded, we have
|∆0(x, γ)| = k. The Laguerre cells of points y ∈ γ \ {yx1 , . . . , yxk} do not change by
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Fig. 1. Comparison of a Laguerre diagram with and without a point

x. The Laguerre cell L(x, γ) is the grey pentagon, full lines are its

edges, the edges of the neighbouring cells in L(γ) are the dashed lines,

circular points are the vertices in L(γ). Triangular points are the

additional vertices in L(γ \ {x}) and dotted lines are the additional

edges of the cells L(yxi , γ \ {x}) arising from the removal of the

point x.

removing the point x, and therefore we can write

H(γ)−H(γ \ {x}) = |∆0(x, γ)|+
k∑
i=1

|∆0(yxi , γ)| − |∆0(yxi , γ \ {x})|

= k +

k∑
i=1

|∆0(yxi , γ)| − |∆0(yxi , γ \ {x})| .

(18)

By removing the point x, the neighbours of x partition the cell L(x, γ) into k non-
empty bounded convex polytopes K1, . . . ,Kk such that L(yxi , γ \ {x}) = Ki ∪ L(yxi , γ).
Denote by vi the number of new vertices attained by the nucleus yxi and realize that
each neighbour yxi shares two vertices with the nucleus x. Therefore

H(γ)−H(γ \ {x}) (18)
= k +

k∑
i=1

2− vi = 3k −
k∑
i=1

vi. (19)

The partition of the cell L(x, γ) by its neighbours defines a graph structure (see Figure 1)
with vertices V = ∆0(x, γ) ∪ V2, where V2 is the set of new vertices, which appear after
the removal of the point x, V2 = ∆0(γ \ {x}) \ ∆0(γ). The set of edges is defined as
E = ∆1(x, γ) ∪ E2, where E2 is the set of new edges (intersected with L(x, γ)), which
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appear after the removal of the point x. Since both L(γ) and L(γ \ {x}) are normal, all
vertices have degree 3. Thus, we have that

3 · |V | = 2 · |E| =⇒ 3(k + |V2|) = 2(k + |E2|). (20)

Since we assume that there are no empty cells, the graph (V,E2) is a connected graph
without cycles (i. e., a tree), and we know that

|V | = |E2|+ 1 =⇒ k + |V2| = |E2|+ 1. (21)

Putting together (20) and (21), we get that |V2| = k − 2. From normality we also get

that
∑k
i=1 vi = 3 · |V2| and that, together with (19), completes the proof. �

5.2.2. The existence of the limit measure and its support

In what follows, we present the definitions and results directly taken from Section 3 in [9].
All of these results hold under the two assumptions Hs and Hm and the proofs can be
found in [9]. Denote by Pn = PΛn the finite-volume Gibbs measure on Λn = [−n, n)

2
,

n ∈ N. For n ∈ N and κ ∈ Z2 set Λκn = Λn + 2nκ. Then {Λκn}κ∈Z2 is a disjoint partition
of the space R2.

For all n ∈ N let P̃n be the probability measure onM under which the configurations
in disjoint sets Λκn are independent and identically distributed according to the finite-
volume Gibbs measure Pn. For κ ∈ Z2 denote the shift operator on R2 by ϑκ(x) = x+κ.
Let n ∈ N, Λ ∈ B2

b and define the empirical field P̄n associated to the probability measure

P̃n and the estimating sequence P̂n:

P̄n =
1

|Λn|
∑

κ∈Λn∩Z2

P̃n ◦ ϑ−1
κ and P̂n =

1

|Λn|
∑

κ∈Z2∩Λn:Λ⊂ϑκ(Λn)

Pn ◦ ϑ−1
κ . (22)

Denote by P(M) the space of probability measures on M. Function F on M is
called tame if there exists a > 0 such that |F (γ)| ≤ a

(
1 +

〈
γ, 1 + ‖m‖2+δ

〉)
. Denote

by L the set of all tame local functions F :M→ R. We define the topology τL of local
convergence on P(M) as the smallest topology such that the mapping P →

∫
FdP is

continuous for all F ∈ L.

Lemma 5.3. (Proposition 1 in [9]) Let (P̄n)n∈N be the stationarised sequence de-

fined in (22). Then there exists a subsequence (P̄nk)k∈N such that P̄nk
τL→ P̄, where P̄ is

a probability measure on M invariant under translations by κ ∈ Z2.

In the following text, we w.l.o.g. assume that (P̄n)n∈N
τL→ P̄.

Lemma 5.4. (Propositions 2 and 3 in [9]) The measures P̄n and P̄ defined in (22)
satisfy that P̄n(Mtemp) = 1, n ∈ N, and P̄(Mtemp) = 1. Furthermore, for all ε > 0 there
exists l ∈ N such that P̄n(Ml) ≥ 1− ε,∀n ∈ N.
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5.2.3. The set of admissible configurations

We would like to show that for the energy function H defined in (15) the measure P̄
satisfies Definition 2.2. First, we need to prepare some preliminary results. We will show
that P̄-a.a. configurations satisfy that L(γ) is a normal tessellation with no empty cells.
We know, thanks to Lemmas 5.4 and 7.5 (see Appendix), that P̄-a.a. γ satisfy (R0) and
(R1). Condition (R2) is satisfied, since P̄ is stationary under translations by κ ∈ Z2.

Lemma 5.5. If Ψ is a simple marked point process whose distribution is invariant under
translation by κ ∈ Z2 then it almost surely satisfies the assumption (R2) or it is empty,
i. e., P(conv{x′ : (x′, x′′) ∈ Ψ} ∈ {R2, ∅}) = 1.

The proof of this lemma is just a slight modification of the proof of Theorem 2.4.4. in [12].
For assumptions (GP1) and (GP2) and the non-emptiness of the cells, we use the con-
vergence in the τL topology.

Lemma 5.6. It holds that P̄-a.a. γ are in general position and satisfy E(γ) = ∅.

P r o o f . Define for k ∈ N the sets Mk
gp = {γ ∈ M : γΛk is in general position} and

Mgp = {γ ∈ M : γ is in general position}. Then we have that Mgp =
⋂
k∈NMk

gp and

also that Mk
gp ⊂ Mk−1

gp and therefore any probability measure P on M satisfies that

limk→∞ P(Mk
gp) = P(Mgp).

Now fix k ∈ N. Then according to (16) we have for all Λ ∈ B2
b and for all z > 0 that

πzΛ(Mgp) = 1, so also πzΛ(Mk
gp) = 1. Therefore, for n ≥ k we have that

Pn(Mk
gp) =

∫
Mk

gp

1

ZΛn

e−H(γΛn )πzΛn(dγ) = 1

and since Λk ⊂ Λn we also have P̃n(Mk
gp) = 1. Now take P̄n = 1

(2n)2

∑
κ∈Λn∩Z2 P̃n◦ϑ−1

κ .

It holds that if Λk + κ ⊂ Λn then P̃n ◦ ϑ−1
κ (Mk

gp) = 1. It also holds that for all
κ ∈ Λn−k−1 ∩ Z2 we have Λk + κ ⊂ Λn, so we can write ∀n ≥ k + 1

P̄n(Mk
gp) =

1

(2n)2

∑
κ∈Λn∩Z2

P̃n ◦ ϑ−1
κ (Mk

gp)

=
(2(n− k − 1))2

(2n)2
+

1

(2n)2

∑
κ∈Λn\Λn−k−1∩Z2

P̃n ◦ ϑ−1
κ (Mk

gp).

Therefore, limn→∞ P̄n(Mk
gp) = 1. Since P̄ is a limit of {P̄n}n∈N in the τL topology and

1
[
γ ∈Mk

gp

]
is a tame and local function, we get that 1 = limn→∞ P̄n(Mk

gp) = P̄(Mk
gp).

This holds ∀k ∈ N and therefore P̄(Mgp) = 1. For the second part, we define sets

Mz = {γ ∈M : E(γ) = ∅}, and Mk
z = {γ ∈M : E(γΛk) = ∅}, k ∈ N, Λk = [−k, k)

2
.

Due to Lemma 7.3 and the fact that P̄-a.a. γ ∈M satisfy the regularity conditions and
are in general position, we can write limk→∞ P̄(Mk

z) = P̄(Mz). Fix k ∈ N, then (17)
together with the implication E(γΛn) = ∅ =⇒ E(γΛk) = ∅ imply that Pn(Mk

z) = 1 for
all n ≥ k. The rest of the proof follows analogously as in the previous case. �
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Definition 5.7. The set of admissible configurations is defined as

M = {γ ∈Mtemp : γ satisfies (R1), (R2), (GP1), (GP2) and E(γ) = ∅} ∪ {ō}. (23)

Using Lemmas 5.5 and 5.6 together with Lemma 7.5 from Appendix, we have the
following proposition.

Proposition 5.8. Consider the set of admissible configurations M defined in (23). It
holds that P̄(M) = 1. Particularly for P̄-a.a. γ 6= ō we have that L(γ) is a normal
tessellation.

5.2.4. An infinite-volume Gibbs–Laguerre measure

Recall formula (3) for the conditional energy of a configuration γ in Λ. Thanks to
Proposition 5.2, we know how this function looks for admissible configurations.

Lemma 5.9. Take γ ∈M and recall that our energy function is of the form (15). Then
we have that HΛ(γ) = 6 · |γΛ|, ∀Λ ∈ B2

b .

P r o o f . If γ = ō, then it clearly holds. For γ 6= ō we have that γΛ = {x1, . . . , xM} for
some M ∈ N. Denote γiΛ = {x1, . . . , xi}. From the definition of the conditional energy

HΛ(γ) = lim
n→∞

H(γΛn)−H(γΛn\Λ) =

M∑
i=1

lim
n→∞

H(γΛn\Λγ
i
Λ)−H(γΛn\Λγ

i−1
Λ ).

Thanks to the assumptions on γ we get that L(γ) is a normal tessellation with no empty
cells and therefore for all i = 1, . . . ,M there exists n large enough so that L(xi, γΛn\Λγ

i
Λ)

is bounded. Proposition 5.2 implies limn→∞H(γΛn\Λγ
i
Λ) − H(γΛn\Λγ

i−1
Λ ) = 6, which

finishes the proof. �

Recall that Ma = {γ ∈ M : m(γ) ≤ a}, a ∈ N, is the set of configurations whose
marks are at most a. We define an increasing sequence of local sets (i. e., subsets of M
whose indicator is a local function). Take Λ ∈ B2

b and l, n, a ∈ N and define

C(Λ, a, l, n) = {ξ ∈M : ξ satisfies assumptions (C1) and (C2)} , where

(C1) : there exists u ∈ ξΛn\Λ : u′ ∈ U
(

0,
1

2
l

)
,

(C2) : ∀γ ∈Ma, ∀x ∈ γΛ we have L(x, ξΛn\Λ ∪ {x}) ⊂ U
(

0,
1

2
l

)
.

(24)

Put B(Λ, a, l) =
⋃
n∈N C(Λ, a, l, n), and A(Λ, a) =

⋃
l∈NB(Λ, a, l), then ∀Λ ∈ B2

b and
∀a, l, n ∈ N it holds that C(Λ, a, l, n) ⊂ C(Λ, a, l+1, n), C(Λ, a, l, n) ⊂ C(Λ, a, l, n + 1 ),
B(Λ, a, l) ⊂ B(Λ, a, l+1), and A(Λ, a) ⊃ A(Λ, a+1). We also have the following equality.

Lemma 5.10. Take Λ ∈ B2
b , then we have that

M =
⋂
a∈N

⋃
l∈N

⋃
n∈N
M∩ C(Λ, a, l, n) ∪ {ō}.
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P r o o f . The relation ⊃ clearly holds. Take ξ ∈ M, ξ 6= ō. We would like to show
that ∀a ∈ N there exist l, n ∈ N such that ξ ∈ C(Λ, a, l, n). Fix a ∈ N and consider
n ≥ n0 = min{n ∈ N : ∃u ∈ ξΛn\Λ} and l ≥ l0 = min{l ∈ N : Λn0

⊂ U(0, 1
2 l)}. This will

ensure that assumption (C1) is satisfied.
Now w. l. o. g. assume that Λ is closed (otherwise, work with clo(Λ)). We will use

the observation that L((x′, x′′), γ) ⊂ L((x′, a), γ), whenever x′′ ≤ a. Therefore, to prove
(C2), it is enough to prove that for some n, l ∈ N and ∀x′ ∈ Λ we have that

L
(
(x′, a), ξΛn\Λ ∪ {(x

′, a)}
)
⊂ U

(
0,

1

2
l

)
.

It holds (since ξ ∈M) that ∀x′ ∈ Λ there exist nx, lx such that

L
(
(x′, a), ξΛnx\Λ ∪ {(x

′, a)}
)
⊂ U

(
0,

1

2
lx

)
.

Then, because of the representation (14) and the openness of U
(
0, 1

2 lx
)
, there exists

εx > 0 such that also ∀y′ ∈ U(x′, εx) we have that

L
(
(y′, a), ξΛnx\Λ ∪ {(y

′, a)}
)
⊂ U

(
0,

1

2
lx

)
.

Therefore, we have an open cover of Λ, Λ ⊂
⋃
x′∈Λ U(x′, εx) and since Λ is a compact

set, there exists a finite cover Λ ⊂
⋃N
i=1 U(x′i, εxi). To finish the proof, it is enough to

take n = max{n0, nx1
, . . . , nxN } and l = max{l0, lx1

, . . . , lxN }. �

Recall formula (4) for Gibbs kernel ΞΛ(ξ,dγ) = e−HΛ(γΛξΛc )

ZΛ(ξ) πzΛ(dγ). We need to make

sure that this quantity is well defined, at least for almost all configurations. To do
that, we need the following observation which can be proven similarly as (16) in [6],
Proposition 3.1.5. (see also [7], Proposition 4.1.2.).

Lemma 5.11. Take ξ ∈M such that it is in general position. Then for all Λ ∈ B2
b and

for all z > 0 we get that for πzΛ-a.a. γ ∈M also ξΛcγΛ is in general position.

Now we can show that the Gibbs kernel is well defined for all ξ ∈M∪Mf .

Lemma 5.12. Let ξ ∈ M or ξ ∈ Mf such that it is in general position and E(ξ) = ∅,
then we have that 0 < ZΛ(ξ) <∞, ∀Λ ∈ B2

b , ∀z > 0.

P r o o f . At first take ξ ∈ M. Then we know that ξ is in general position, satisfies
the regularity conditions, and also E(ξ) = ∅. Thanks to Lemma 7.1 we have that also
ξΛcγΛ, γ ∈M, satisfies the regularity conditions and according to Lemma 5.11 we have
that for πzΛ-a.a. γ ∈M it holds that ξΛcγΛ is in general position. If E(ξΛcγΛ) 6= ∅, then
HΛ(ξΛcγΛ) = +∞. Otherwise, thanks to Lemma 5.9 we get that HΛ(ξΛcγΛ) = 6 |γΛ|.
Altogether HΛ(ξΛcγΛ) ≥ 0 for πzΛ-a.a. γ, and hence ZΛ(ξ) =

∫
e−HΛ(γΛξΛc )πzΛ(dγ) <∞.

Now take ξ ∈ Mf , which is in general position and has no empty cells, and denote
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M = |ξΛc |. Then we can write HΛ(ξΛcγΛ) = H(ξΛcγΛ)−H(ξΛc) ≥ −H(ξΛc) ≥ −3 ·
(
M
3

)
,

since L(ξΛc) can have at most
(
M
3

)
vertices. Hence ZΛ(ξ) =

∫
e−HΛ(γΛξΛc )πzΛ(dγ) <∞.

�

Particularly, ΞΛ (recall formula (4)) is well defined for all ξ ∈M and ξ ∈Mf which
are in general position and satisfy E(ξ) = ∅. Define the cut-off kernel

Ξn,aΛ (ξ,dγ) =
1{γΛ ∈Ma} · e−HΛ(γΛξΛn\Λ)

Zn,aΛ (ξΛn\Λ)
πzΛ(dγ).

Using the second part of the proof of Lemma 5.12, we can see that Ξn,aΛ is well defined
for all ξ in general position with E(ξ) = ∅.

Recall sets Ml from Section 2.1. The following final auxiliary lemma justifies the
definition (24) of the sets C(Λ, a, l, n). These sets are chosen so that the conditional
energy depends only on the boundary condition inside Λn.

Lemma 5.13. Let Λ ∈ B2
b , and take a, n, l ∈ N such that U (0, 2l + 1) ⊂ Λn and

Λ⊕B(0, a) ⊂ U(0, 1
2 l). Then for all ξ ∈ C(Λ, a, l, n)∩Ml and for all γ ∈Ma such that

ξΛcγΛ are in general position and E(ξΛc) = ∅ we have that

i) E(ξΛcγΛ) 6= ∅ ⇐⇒ E(ξΛn\ΛγΛ) 6= ∅,

ii) HΛ(ξΛcγΛ) = HΛ(ξΛn\ΛγΛ).

P r o o f . First, we assume i) and prove ii).
Take ξ, γ satisfying the assumptions. We have γΛ = {x1, . . . , xM} for some M ∈ N.

Denote by γiΛ = {x1, . . . , xi}, i = 1, . . . ,M . If E(ξΛcγΛ) 6= ∅ then according to i) also
E(ξΛn\ΛγΛ) 6= ∅ and we have HΛ(ξΛcγΛ) = +∞ = HΛ(ξΛn\ΛγΛ).

If E(ξΛcγΛ) = E(ξΛn\ΛγΛ) = ∅, then thanks to the definition of the set C(Λ, a, l, n)
we have that the cells L(xi, ξΛn\Λγ

i
Λ) are bounded ∀i ∈ {1, . . . ,M}. Recalling Proposi-

tion 5.2 for our energy function H, we can write

HΛ(ξΛn\ΛγΛ) = H(ξΛn\ΛγΛ)−H(ξΛn\Λ)

=

M∑
i=1

H(ξΛn\Λγ
i
Λ)−H(ξΛn\Λγ

i−1
Λ )

P.5.2
=

M∑
i=1

6 = 6 · |γΛ| .

Using Lemma 5.9 we also have that HΛ(ξΛcγΛ) = 6 · |γΛ|.
Now, it remains to prove i). Take ξ, γ satisfying the assumptions. The implication

⇐= always holds, so we only have to prove that if there exists an empty cell for ξΛcγΛ,
then it is already empty in ξΛn\ΛγΛ (remember that E(ξΛc) = ∅).

Let there exist x ∈ ξΛcγΛ such that L(x, ξΛcγΛ) = ∅ and assume for contradiction
that E(ξΛn\ΛγΛ) = ∅. This means that either x ∈ ξΛcn or L(x, ξΛn\ΛγΛ) 6= ∅. Recall
Lemma 7.4 and consider the three possible locations of the point x:

1) x ∈ γΛ: Then ∀z ∈ L(x, ξΛn\ΛγΛ) there exists y ∈ ξΛcn such that ρ(z, y) ≤ ρ(z, x).
However, from the choice of n and l and from the definition of the set C(Λ, a, l, n) we
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know that y′ ∈ U(0, 2l + 1)c, x′ ∈ U(0, 1
2 l) and z ∈ U(0, 1

2 l). Using Lemma 7.4 we get
that

ρ(z, y) ≤ ρ(z, x) ≤ l2
L.7.4
< ρ(z, (y′, |y′| − l)) ≤ ρ(z, y),

which is clearly a contradiction.
2) x ∈ ξΛn\Λ: We know that L(x, ξΛcγΛ) = ∅ but L(x, ξΛn\ΛγΛ) 6= ∅ and also

L(x, ξΛc) 6= ∅. Therefore,

∀z ∈ L(x, ξΛc)∃u ∈ γΛ such that z ∈ L(u, ξΛcγΛ),

∀z ∈ L(x, ξΛn\ΛγΛ)∃y ∈ ξΛcn such that z ∈ L(y, ξΛcγΛ).
(25)

If ∃z ∈ L(x, ξΛc) ∩ L(x, ξΛn\ΛγΛ), then there exist u ∈ γΛ and y ∈ ξΛcn such that
ρ(z, y) = ρ(z, u) and again we get a contradiction with Lemma 7.4.

Therefore L(x, ξΛc) ∩ L(x, ξΛn\ΛγΛ) = ∅. Then there exists z ∈ L(x, ξΛn\ΛγΛ) such
that ∃u ∈ γΛ such that ρ(z, x) = ρ(z, u), i. e., z ∈ L(u, ξΛn\ΛγΛ). Since by (25) there also
exists y ∈ ξΛcn such that z ∈ L(y, ξΛcγΛ), we again get the contradiction ρ(z, y) ≤ ρ(z, u).

3) x ∈ ξΛcn : We know that L(x, ξΛcγΛ) = ∅ and L(x, ξΛc) 6= ∅. Therefore for all
z ∈ L(x, ξΛc) there exists u ∈ γΛ such that ρ(z, u) < ρ(z, x). Particularly, we can
assume that ρ(z, u) ≤ ρ(z, v) for all v ∈ γΛ and therefore z ∈ L(u, ξΛcγΛ) ⊂ U(0, 1

2 l).
Therefore L(x, ξΛc) ⊂ U(0, 1

2 l). Notice that x′ ∈ U(0, 2l+1)c. From the definition of the
set C there exists y ∈ ξΛn\Λ such that y′ ∈ U(0, 1

2 l), which implies that ∀z ∈ L(x, ξΛc)
we have that

ρ(z, x) ≤ ρ(z, y) ≤ l2
L.7.4
< ρ(z, (x′, |x′| − l)) ≤ ρ(z, x),

which is the final contradiction and the proof is finished. �

We are now ready to prove our main result.

Theorem 5.14. Consider the probability measure P̄ from Lemma 5.3 and assume that
it satisfies P̄({ō}) = 0. Then the DLRΛ equations hold for all Λ ∈ B2

b and for all mea-
surable bounded local functions F . Particularly P̄ is an infinite-volume Gibbs measure
with energy function H defined in (15) and activity z > 0.

P r o o f . Take Λ ∈ B2
b , measurable bounded Λ-local function F , We will show that

δ0 =

∣∣∣∣∫ F (γ)P̄(dγ)−
∫ ∫

F (γΛ)ΞΛ(ξ,dγ)P̄(dξ)

∣∣∣∣ < ε, ∀ε > 0.

Fix ε > 0. Find i0 smallest such that Λ ⊂ Λi0 . We will w. l. o. g. assume that i0 = 1
(otherwise work with n ≥ i0 in the whole proof). Then there exists a ∈ N such that

1. πzΛ(Ma) ≥ 1− ε.

For this a find l ∈ N such that

2. Λ⊕B(0, a) ⊂ U(0, 1
2 l),

3. P̄(Ml) ≥ 1− ε, P̄n(Ml) ≥ 1− ε for all n ∈ N (from Lemma 5.4),
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4. P̄(B(Λ, a, l)) ≥ 1− ε (from Proposition 5.8, Lemma 5.10 and P̄({ō}) = 0).

For these a and l we can find k ∈ N such that

5. U(0, 2l + 1),⊂ Λk,

6. P̄(C(Λ, a, l, k)) ≥ 1− 2ε.

Fix a, l, k and recall measures P̂n defined in (22). It holds that P̂n satisfy (DLR)Λ and
they are asymptotically equivalent to P̄n in the sense that for any G ∈ L we get that

limn→∞

∣∣∣∫ G(γ)P̂n(dγ)−
∫
G(γ)P̄n(dγ)

∣∣∣ = 0 (see [9], page 988).

In particular, there exists n0 such that ∀n ≥ n0 we get that P̂n(M) ≥ 1− ε. It also

holds that P̄n((Ml)c) ≥ P̂n((Ml)c). Therefore there exists n1 ≥ n0 such that

7. P̂n(Ml) ≥ 1− 2ε for all n ≥ n1,

8. P̂n(C(Λ, a, l, k)) ≥ 1− 3ε for all n ≥ n1.

Now we have everything we need to estimate δ0. Assume w. l. o. g. that |F | ≤ 1 and
recall that P̄(M) = 1.

δ0 =

∣∣∣∣∫ F (γ)P̄(dγ)−
∫ ∫

F (γΛ)ΞΛ(ξ,dγ)P̄(dξ)

∣∣∣∣ ≤ P̄((C(Λ, a, l, k) ∩Ml)c)

+

∣∣∣∣∣
∫
F (γ)P̄(dγ)−

∫
C(Λ,a,l,k)∩Ml

∫
F (γΛ)ΞΛ(ξ,dγ)P̄(dξ)

∣∣∣∣∣
3.,6.

≤ 3ε+

∣∣∣∣∣
∫
F (γ)P̄(dγ)−

∫
C(Λ,a,l,k)∩Ml

∫
F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
C(Λ,a,l,k)∩Ml

[∫
Ma

F (γΛ)Ξk,aΛ (ξ,dγ)−
∫
Ma

F (γΛ)ΞΛ(ξ,dγ)

]
P̄(dξ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
C(Λ,a,l,k)∩Ml

∫
(Ma)c

F (γΛ)ΞΛ(ξ,dγ)P̄(dξ)

∣∣∣∣∣ .
Now we have for some b <∞:∣∣∣∣∣

∫
C(Λ,a,l,k)∩Ml

∫
(Ma)c

F (γΛ)ΞΛ(ξ,dγ)P̄(dξ)

∣∣∣∣∣
≤
∫ ∫

(Ma)c

1

ZΛ(ξ)
πzΛ(dγ)P̄(dξ) ≤ πzΛ((Ma)c) · 1

πzΛ({ō})
1.
≤ b · ε.

(26)
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Now for P̄-a.a. ξ ∈ C(Λ, a, l, k) ∩Ml we can use Lemma 5.13 to show that∣∣∣∣∫
Ma

F (γΛ)Ξk,aΛ (ξ,dγ)−
∫
Ma

F (γΛ)ΞΛ(ξ,dγ)

∣∣∣∣
=

∣∣∣∣∣
∫
Ma

F (γΛ)e−HΛ(ξΛcγΛ)

(
ZΛ(ξ)− Zk,aΛ (ξ)

ZΛ(ξ) · Zk,aΛ (ξ)

)
πzΛ(dγ)

∣∣∣∣∣
≤
∫
Ma

∣∣∣ZΛ(ξ)− Zk,aΛ (ξ)
∣∣∣

πzΛ({ō})2
πzΛ(dγ) ≤ b2 ·

∣∣∣ZΛ(ξ)− Zk,aΛ (ξ)
∣∣∣ 1.
≤ b2 · ε.

(27)

Therefore, we can estimate

δ0 ≤ c · ε+

∣∣∣∣∣
∫
F (γ)P̄(dγ)−

∫
C(Λ,a,l,k)∩Ml

∫
F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)

∣∣∣∣∣ =: c · ε+ δ1,

where c = 3 + b+ b2. We continue with δ1:

δ1 ≤ P̄((C(Λ, a, l, k) ∩Ml)c) +

∣∣∣∣∫ F (γ)P̄(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)

∣∣∣∣
3.,6.

≤ 3ε+

∣∣∣∣∫ F (γ)P̄(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)

∣∣∣∣ =: 3ε+ δ2.

Now we use the asymptotic equivalence for P̂n and P̄n and the fact that F (γ) and

G(γ) =
∫
F (ν)Ξk,aΛ (γ,dν) are bounded (and therefore tame) local functions. Let n ≥ n1,

then we have the following estimate for δ2:

δ2 =

∣∣∣∣∫ F (γ)P̄(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)

∣∣∣∣
≤
∣∣∣∣∫ F (γ)dP̄−

∫
F (γ)dP̂n

∣∣∣∣+

∣∣∣∣∫ F (γ)P̂n(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣
+

∣∣∣∣∫ ∫ F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣ .
We can choose n2 ≥ n1 so that ∀n ≥ n2 we have∣∣∣∣∫ F (γ)P̄(dγ)−

∫
F (γ)P̂n(dγ)

∣∣∣∣ ≤ ε,∣∣∣∣∫ ∫ F (γΛ)Ξk,aΛ (ξ,dγ)P̄(dξ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣ ≤ ε.
Therefore, for n ≥ n2 we can write

δ2 ≤ 2ε+

∣∣∣∣∫ F (γ)P̂n(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣ =: 2ε+ δ3.
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Now for our last estimate. Since P̂n satisfies DLRΛ, we can write

δ3 =

∣∣∣∣∫ F (γ)P̂n(dγ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣
≤ 0 +

∣∣∣∣∫ ∫ F (γΛ)ΞΛ(ξ,dγ)P̂n(dξ)−
∫ ∫

F (γΛ)Ξk,aΛ (ξ,dγ)P̂n(dξ)

∣∣∣∣
≤

∣∣∣∣∣
∫
C(Λ,a,l,k)∩Ml

[∫
F (γΛ)ΞΛ(ξ,dγ)−

∫
F (γΛ)Ξk,aΛ (ξ,dγ)

]
P̂n(dξ)

∣∣∣∣∣
+ 2 · P̂n((C(Λ, a, l, k) ∩Ml)c)

7.,8.

≤

∣∣∣∣∣
∫
C(Λ,a,l,k)∩Ml

[∫
Ma

F (γΛ)ΞΛ(ξ,dγ)−
∫
Ma

F (γΛ)Ξk,aΛ (ξ,dγ)

]
P̂n(dξ)

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∫

(Ma)c
F (γΛ)ΞΛ(ξ,dγ)P̂n(dξ)

∣∣∣∣∣+ 10 · ε.

Now analogously as in (26) and (27) we can estimate∣∣∣∣∣
∫ ∫

(Ma)c
F (γΛ)ΞΛ(ξ,dγ)P̂n(dξ)

∣∣∣∣∣ ≤ b · ε∣∣∣∣∣
∫
C(Λ,a,l,k)∩Ml

∫
Ma

F (γΛ)
[
ΞΛ(ξ,dγ)− Ξk,aΛ (ξ,dγ)

]
P̂n(dξ)

∣∣∣∣∣ ≤ b2 · ε.
Putting everything together, we get that (recall that c = 3 + b+ b2)

δ0 ≤ c · ε+ δ1 ≤ (c+ 3)ε+ δ2 ≤ (c+ 5)ε+ δ3 ≤ (2c+ 12)ε.

This finishes the proof. �

6. CONCLUDING REMARKS

In this paper, we have commented on the recent existence result from [9] for the Gibbs
marked point processes. We provided a new formulation of the range assumption and
applied the general theorem to the family of Gibbs facet processes with repulsive in-
teractions in Rd, d ≥ 2. We also proved that the finite-volume Gibbs facet processes
with attractive interactions do not exist in R2. We believe that it should be possible
to show that the finite-volume Gibbs facet processes with attractive interactions do not
exist in any dimension. In the last section, we considered the Gibbs–Laguerre tessella-
tions of R2 and proved that, under the assumption that P̄({ō}) = 0, the infinite-volume
Gibbs–Laguerre process exists for the energy function given in (15).

It is natural to ask, whether the result of the last section can be generalized to
random tessellations of R2 with some other energy function or to higher dimensions (we
thank the referee for raising these questions). Regarding the first one (some other energy
function in R2), the key ingredients here are the definition of the sets C(Λ, a, l, n) in (24)
and Proposition 5.2, which lead to Lemma 5.13. Therefore we would need for the other
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energy function to either satisfy that H(γ) −H(γ \ {x}) is equal to a constant (which
does not seem probable) or we would need an analogy of Lemma 5.13 to be true. At this
moment, we are not aware of any such energy function. Regarding the generalization
to higher dimensions for energy function given by (15), both [9] and [6] are formulated
for general d ≥ 2 and it is true that it should be possible to formulate several of the
results of Section 5 for d ≥ 2. However the proof of Proposition 5.2 does not work for
higher dimensions, since cycles appear in the graph structure even if we forbid empty
cells and therefore the result for trees cannot be used. Considering generalizations to
other energy functions in higher dimensions, the same remarks as for d = 2 apply.

7. APPENDIX

This appendix contains several technical lemmas about Laguerre diagram and its cells
and the connection between tempered configurations and Laguerre theory. These results
are used in Section 5.2. Although we formulate them for d = 2, since the approach of
Section 5.2 cannot be easily generalised to higher dimensions, it should be possible
to reformulate the results in this section for d ≥ 2 (provided we consider the general
formulation of conditions (R1), (R2), (GP1) and (GP2) from [6]).

Let γ ⊂ R2 × (0,∞), then the following lemma can be easily shown.

Lemma 7.1. If γ satisfies (R1), (R2), (GP1) and (GP2) and E(γ) = ∅. Then, for all
x ∈ γ also E(γ \ x) = ∅ and γ \ x satisfies (R1), (R2), (GP1) and (GP2).

It holds that Laguerre cells can be represented as a finite intersection of the closed
half-planes P (x, y). The proof of the following claim is just a slight modification of the
proof of Lemma 10.1.1. in [12].

Lemma 7.2. Let γ ⊂ R2 × (0,∞) be such that L(γ) is a tessellation. Then for all
L(x, γ) ∈ L(γ) there exist kx ∈ N and yxi ∈ γ \ E(γ), i = 1, . . . , kx, such that

L(x, γ) =

kx⋂
i=1

P (x, yxi ). (28)

The points {yx1 , . . . , yxkx} can be chosen as those points whose cells intersect the cell
L(x, γ) and we call them neighbours of the point x. The same holds if γ is finite and in
general position. If we take into consideration the definition of tempered configurations,
we can get a similar result for empty Laguerre cells.

Lemma 7.3. Let γ ⊂ R2 × (0,∞) be such that γ ∈ Mtemp, it satisfies the regular-
ity conditions and is in general position. Then ∀x ∈ E(γ) there exist kx ∈ N and

yx1 , . . . , y
x
kx
∈ γ such that L(x, γ) =

⋂kx
i=1 P (x, yxi ).

P r o o f . Let x ∈ E(γ). Then it must hold that B(x′, x′′) ⊂
⋃
y∈γ,y 6=xB(y′, y′′). The

set B(x′, x′′) is bounded and γ is tempered, therefore, there exists l such that l ≥ l(t),
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where l(t) is from (1), and B(x′, x′′) ⊂ U(0, l). Therefore, we know that ∀y ∈ γU(0,2l+1)c

we have that B(x′, x′′) ∩B(y′, y′′) = ∅. So we can write

B(x′, x′′) ⊂
⋃

y∈γU(0,2l+1), y 6=x

B(y′, y′′).

Let ϕ = γU(0,2l+1)c ∪ {x}, then according to Lemma 7.1 it holds that ϕ satisfies
the regularity conditions and is in general position. Particularly L(ϕ) is a (normal)
tessellation. Furthermore it holds that B(x′, x′′) 6⊂

⋃
y∈ϕ,y 6=xB(y′, y′′) and therefore

∅ 6= L(x, ϕ) ∈ L(ϕ). This allows us to use Lemma 7.2 and we get that there exist
yx1 , . . . , y

x
nx ∈ ϕ such that L(x, ϕ) =

⋂nx
i=1 P (x, yxi ). Altogether we get that

L(x, γ) =
⋂
y∈γ

P (x, y) =
⋂

y∈γU(0,2l+1)

P (x, y) ∩
⋂

y∈γU(0,2l+1)c

P (x, y) =

=
⋂

y∈γU(0,2l+1)

P (x, y) ∩ L(x, ϕ) =
⋂

y∈γU(0,2l+1)

P (x, y) ∩
nx⋂
i=1

P (x, yxi ).

There are only finitely many points in γU(0,2l+1), which completes the proof. �

What follows now is an auxiliary lemma for the proof that tempered configurations
satisfy (R0) and (R1).

Lemma 7.4. Let l ∈ N. Then ∀z ∈ U
(
0, 1

2 l
)

and ∀y′ ∈ U(0, 2l + 1)c the following
inequalities hold

ρ(z, (y′, |y′| − l)) > l2 ≥ sup
w∈U(0, 12 l)

|w − z|2 .

P r o o f . Clearly the second inequality holds. For the first one, we can simply write

ρ(z, (y′, |y′| − l)) = |z − y′|2 − (|y′| − l)2 = |z|2 + |y′|2 − 2 〈z, y′〉 − |y′|2 + 2l |y′| − l2

≥ |z|2 − 2 |z| |y′|+ 2 |y′| l − l2 = |z|2 + l(|y′| − l) + |y′| (l − 2 |z|) ≥ l2 + l > l2.

�

Lemma 7.5. It holds that all γ ∈Mtemp satisfy (R0) and therefore the Laguerre cells
L(x, γ) are well defined. Furthermore, it holds that all γ ∈ Mtemp satisfy the first
regularity condition (R1).

P r o o f . Take z ∈ R2 and γ ∈ Mt, t ∈ N. We want to show that there exists
minx∈γρ(z, x). Clearly, if γ ∈ Mf , the assumption is satisfied. Consider an infinite
configuration γ. We will use the property of tempered configurations given by (1),
which states that there exists l(t) such that ∀l ≥ l(t) the following implication holds

(x′, x′′) ∈ γ(U(0,2l+1))c =⇒ B(x′, x′′) ∩ U(0, l) = ∅. (29)

Choose l large enough so that
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i) l ≥ l(t) and ii) z ∈ U
(
0, 1

2 l
)

and there exists x ∈ γU(0, 12 l)
.

Clearly, such l can be chosen. Lemma 7.4 states that ∀y′ ∈ U(0, 2l + 1)c

ρ(z, (y′, |y′| − l)) ≥ sup
w∈U(0, 12 l)

|w − z|2 . (30)

We know, because of property (29), that

y′′ ≤ |y′| − l, ∀y = (y′, y′′) ∈ γ(U(0,2l+1))c ,

and therefore ρ(z, y) = |y′ − z|2 − (y′′)2 ≥ |y′ − z|2 − (|y′| − l)2 = ρ(z, (y′, |y′| − l)).
Then, using (30) together with point ii) above, we get that ∀y ∈ γ(U(0,2l+1))c

ρ(z, y) ≥ sup
w∈U(0, 12 l)

|w − z|2 ≥ |x′ − z|2 ≥ ρ(z, x)

and this completes the proof as then minx∈γρ(z, x) = minx∈γU(0,2l+1)
ρ(z, x), which exists

thanks to the local finiteness of γ.
Now consider (R1). We want to show that for every z ∈ R2 and t ∈ R only finitely

many elements y ∈ γ satisfy |z − y′|2 − (y′′)2 ≤ t. But this is a clear consequence of the
derivations above. Take z ∈ R2 and t ∈ R. Then there exists l large enough such that
l2 > t and such that it satisfies i) and ii). Then we have that ∀y ∈ γ(U(0,2l+1))c

|z − y′|2 − (y′′)2 ≥ |z − y′|2 − (|y′| − l)2 ≥ l2 > t,

and therefore only the points y ∈ γU(0,2l+1) (and there are finitely many of them) can

satisfy |z − y′|2 − (y′′)2 ≤ t. �
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