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AN EFFICIENT HP SPECTRAL COLLOCATION METHOD
FOR NONSMOOTH OPTIMAL CONTROL PROBLEMS

Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi,
Mohammad Hadi Noori Skandari, Dumitru Baleanu

One of the most challenging problems in the optimal control theory consists of solving the
nonsmooth optimal control problems where several discontinuities may be present in the control
variable and derivative of the state variable. Recently some extended spectral collocation
methods have been introduced for solving such problems, and a matrix of differentiation is
usually used to discretize and to approximate the derivative of the state variable in the particular
collocation points. In such methods, there is typically no condition for the continuity of the state
variable at the switching points. In this article, we propose an efficient hp spectral collocation
method for the general form of nonsmooth optimal control problems based on the operational
integration matrix. The time interval of the problem is first partitioned into several variable
subintervals, and the problem is then discretized by considering the Legendre-Gauss-Lobatto
collocation points. Here, the switching points are unknown parameters, and having solved
the final discretized problem, we achieve some approximations for the optimal solutions and
the switching points. We solve some comparative numerical test problems to support of the
performance of the suggested approach.
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1. INTRODUCTION

Bang-Bang and singular optimal control problems [17, 25] are the most exciting prob-
lems in the optimal control (OC) theory. These problems are also called nonsmooth OC
problems. The existence of a bound on the state variable and, or control variable and the
presence of state path constraints and, or control path constraints in the OC problems
usually cause non-smoothness in the optimal solution of such problems. Hence, the usual
computational techniques for smooth OC problems may not apply to the optimal solu-
tions for nonsmooth OC problems. Generally, nonsmooth OC problem occurs in a wide
range of field of sciences which we can point out the following typical application areas:
medicine (timing and dosage of medication [37, 38]), modern engineering (power sys-
tems [16]), hydraulics (hydraulic turbine [15]), financial mathematics (regime-switching
models [33]), and many other dynamical systems which are nonsmooth.
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Since the second half of the nineteenth century, nonsmooth OC problems have been
raised and studied by many researchers.Because of the difficulty in nonsmooth OC prob-
lems, the numerical solution to these problems has received attention. Computational
approaches and schemes to numerically solve the nonsmooth optimal control problems
can divide into direct and indirect methods. Direct methods deal only with the dynam-
ical system, constraints, and objective functional (or performance index). However, in
indirect methods, the necessary optimal conditions and initial and boundary conditions
are utilized to achieve a solution. Some indirect methods in [26, 11] are presented based
on dynamic programming. Moreover, some methods directly transform the nonsmooth
(bang-bang or singular) OC problem into a discrete-time (DT) problem or nonlinear
programming (NLP) problem [14, 35]. In [2], Aly and Chen applied a modified quasi-
linearization to singular OC problems. In [29], a multiple shooting method is given
numerically for solving the singular OC problem. Several other advanced methods have
been proposed to solve some particular nonsmooth OC problems or general forms of
these problems. Graichen and Petit [18] solved the Goddard problem [17, 34, 44] based
on saturation functions. Sun [41] applied a method for solving the singular OC prob-
lems using the modified lin-up competition algorithm with a region-relaxing strategy.
In [12], a new hp-adaptive scheme is extended for the OC problems, including discontin-
uous control. In [35], a modified Legendre pseudospectral approach for bang-bang OC
problems is investigated where control is considered piecewise constant, and the state
is assumed piecewise continuous polynomials. In [28], a hybrid non-uniform finite dif-
ference method is presented using Chebyshev polynomials and block-pulse functions for
solving nonlinear OC problems. In [3], a shooting algorithm for a class of singular OC
problems is proposed. In [14], a pseudospectral scheme is presented for the numerical
solutions of continuous-time optimization problems, including the singular arc. In [45], a
pseudospectral method to solve OC problems via the integration matrix is given. Hager
et al. in [19] have introduced a Gauss orthogonal collocation method to OC problems
with control constraints. In [42], a composite pseudospectral method using the compos-
ite interpolation operator and operational matrix of the derivative is presented. In [20],
Pontryagins maximum principle (PMP) and discontinuous Galerkin (DG) method are
applied to solve OC problems.

Generally, the methods for nonsmooth OC problems are classified into h-methods
and hp-methods. In h-methods, the time-domain of the problem is parted into several
fixed sub-domains. A polynomial with a fixed low-degree is utilized to estimate the
solutions on each sub-domain. To achieve good approximations in these methods, we
must increase the number of subdomains [4, 9]. But, in hp-methods, the problem is
first divided into several segments. The solutions are then approximated on each part
or subinterval by some basic functions such as Legendre, Chebyshev, and Lagrange
polynomials [12]. The length of subintervals (marked by h) and degree of polynomials
(marked by p) can be determined simultaneously, leading to solutions with high accuracy.
A spectral or pseudospectral method, called the p-method, approximates the solution on
each sub-interval. In p-methods, the three types of collocation points are used: Gauss
points, Gauss-Radou (GR) points, and Gauss-Lobatto (GL) points [36]. By p-methods,
we can achieve an accurate solution for smooth OC problems if we use a large-degree
polynomial.
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Notice that, in nonsmooth OC problems, it is possible to be available several dis-
continuities in the control variable (for bang-bang OC problems) and derivative of the
state variable (for bang-bang and singular OC problems). Hence, applying p-methods
for nonsmooth OC problems may be led to the Gibbs phenomenon [7], and increas-
ing the number of collocation points causes an increase in the error of approximations.
Thus, p-methods (for example, see [46]) cannot be singly utilized to solve nonsmooth
OC problems, and these methods must be composited by an h-method to obtain an
accurate solution.

In the hp-methods for nonsmooth OC problems, the matrix of differentiation is usu-
ally utilized on each interval to approximate the derivative of the state variable in the
collocation points, and we do have not usually any condition for the continuity of the
state variable at the boundary of subintervals which is called switching (or breaking)
point. For example, in hp-method given by Darby et al. [12], there is not any condition
on the continuity of the state variable of the OC problem. Also, in Agamawi et al. [1],
there exist some constraints on the continuity of state variables at switching points. Still,
conditions increase the complexity of the method and the time of implementation of the
program. But, if we use the equivalent integral forms of the differential dynamics in the
nonsmooth OC problem, we can enforce the continuity conditions of state variables in
the switching points. This can be led to more accurate solutions.
Here, we use the equivalent integral form of the dynamical equation and apply the Leg-
endre GL (LGL) points on each subinterval to achieve the integration matrix. The
variables of obtained NLP problem are the switching points and coefficients of the ap-
proximations of control and state variables. In numerical and practical examples, we
compare our results with those of other methods and show the efficiency and capabil-
ity of the presented process. The proposed approach is easy to implement and has an
excellent convergent rate. Also, this method needs fewer mesh points to improve the
accuracy of the approximate solutions. Notice that our method differs from methods in
[12, 35] because in [12] the matrix of differentiation is utilized, while in our method, we
apply matrix of integration. Also, in [35], the method can only apply for bang-bang OC
problems, while our method covers all smooth, bang-bang, and singular OC problems.

2. PROBLEM STATEMENT

The general form of nonsmooth OC problems is stated as

Minimize J = Φ(x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t) dt, (1)

subject to

ẋ(t) = f(x(t),u(t), t), t0 ≤ t ≤ tf , (2)

and mixed state-control path constraints

h(x(t),u(t), t) ≤ 0, t0 ≤ t ≤ tf , (3)
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and box constraints

xmin ≤ x(t) ≤ xmax , t0 ≤ t ≤ tf , (4)

umin ≤ u(t) ≤ umax , t0 ≤ t ≤ tf , (5)

with the initial and terminal conditions

x(t0) = x0, (6)

x(tf ) = xf , (7)

where Φ : Rr×R→ R, g : Rr×Rs×R→ R, f : Rr×Rs×R→ Rr and h : Rr×Rs×R→ Rp
are given continuously differentiable functions, x0, xf , xmin, and xmax are given vectors
in Rr and, umin, and umax are given vectors in Rs. Notice that the optimal solution of
the OC problem (1) – (7) has a nonsmooth nature because of the existence of constraints
(3) – (5). Hence, some switching points may appear in the optimal solutions to such
problems. We assume that there are finite number of switching points for the problem
(1) – (7), and they are unknown. Here, we suggest a new and efficient hp method to
solve the nonsmooth OC problem (1) – (7).

3. IMPLEMENTATION OF THE METHOD

We assume that the problem (1) – (7) has m indeterminate switching times t1, . . . , tm and

[t0, tf ] =
⋃m+1
k=1 [tk−1, tk] where tm+1 = tf . We represent the state and control variables

in the kth subinterval by xk(t) and uk(t), respectively. We express the equations 2 – 7
as follows

ẋk(t) = f(xk(t),uk(t), t), tk−1 ≤ t ≤ tk, k = 1, 2, . . . ,m+ 1, (8)

h(xk(t),uk(t), t) ≤ 0, tk−1 ≤ t ≤ tk, k = 1, 2, . . . ,m+ 1, (9)

xmin ≤ xk(t) ≤ xmax, tk−1 ≤ t ≤ tk, (10)

umin ≤ uk(t) ≤ umax, tk−1 ≤ t ≤ tk, (11)

xk(tk−1) = xk−1(tk−1), k = 2, 3, . . . ,m+ 1, (12)

x1(t0) = x0, (13)

xm+1(tm+1) = xf . (14)

Notice that relations (12) guarantee the continuity of state variables. By utilizing these
points and integrating from both sides of equation (8), we can get

xk(t) = ck−1 +

∫ t

tk−1

f(xk(τ),uk(τ), τ) dτ , tk−1 ≤ t ≤ tk, (15)

k = 1, 2, . . . ,m+ 1,

where

ck =

{
x0 , k = 0,
xk(tk), k = 1, . . . ,m.

(16)
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Now, we select {τi}ni=0 are the LGL points on [−1, 1] where they are the roots of
polynomial Qn+1(τ) = (1 − τ2)Ṗn(τ), and Pn(τ) is the Legendre polynomial of degree
n defined by

(n+ 1)Pn+1(τ) = (2n+ 1)τPn(τ)− nPn−1(τ), n ≥ 1,

where P0(τ) = 1 and P1(τ) = τ .

Also, this polynomial satisfies the Rodrigues’ formula

Pn(τ) =
1

2nn!
[
dn

dτn
(τ2 − 1)n].

The analytical form of Legendre polynomial Pn(·) is as follows

Pn(τ) =
1

2n

[n2 ]∑
l=0

(−1)l
(2n− 2l)!

2nl!(n− l)!(n− 2l)!
τn−2l.

We allot the LGL points {τi}ni=0 correspondingly to points {τ̂ki }ni=0 (for i = 0, 1, . . . , n
and k = 1, 2, . . . ,m+ 1) by transformation

τ̂ki = ψk(τi) =
(tk − tk−1)(τi + 1)

2
+ tk−1. (17)

To approximate the control and state variables on [tk−1, tk], we use the following
interpolating polynomials

xk(τ) '
n∑
i=0

x̂ki L̂
k
i (τ), uk(τ) '

n∑
i=0

ûki L̂
k
i (τ), k = 1, 2, . . . ,m+ 1, (18)

where x̂ki = xk(τ̂ki ), ûki = uk(τ̂ki ) and L̂ki (·) is defined according to the nodes {τ̂ki }ni=0,
as

L̂ki (τ) =

n∏
j=0,i6=j

τ − τ̂kj
τ̂ki − τ̂kj

.

Now, replacing approximations (18) into (15), we get

n∑
i=0

x̂ki L̂
k
i (t) = ck−1 +

∫ t

tk−1

n∑
i=0

f(x̂ki , û
k
i , τ̂

k
i )L̂ki (τ) dτ , (19)

tk−1 ≤ t ≤ tk, k = 1, 2, . . . ,m+ 1.

Also based on the approximation x(t), relation (16) is converted as follows

ck =

{
x̂0
n , k = 0,

x̂kn, k = 1, 2, . . . ,m+ 1.
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By exchanging integral and summation, transformation τ̂ = 2(τ−tk−1)
tk−tk−1

−1, and replacing

t in (19) by τ̂ki , i = 0, 1, . . . , n, we get

x̂ki = x̂k−1n +

n∑
j=0

f(x̂kj , û
k
j , τ̂

k
j )

∫ τ̂k
i

tk−1

L̂kj (τ) dτ

= x̂k−1n +

n∑
j=0

f(x̂kj , û
k
j , τ̂

k
j )
tk − tk−1

2

∫ τi

−1
Lj(τ̂) dτ̂ , k = 1, 2, . . . ,m+ 1,

where {τi}ni=0 are the LGL points on [−1, 1] and

Li,j =

∫ τi

−1
Lj(τ̂) dτ̂ , i, j = 0, 1, . . . , n. (20)

Here, L for i, j = 0, 1, . . . , n are the components of the operational matrix of integration
L = (Lij) which is in [45] as

Li,j =
ωj
2
{1 + τi +

n∑
k=1

Pk(τj)[Pk+1(τi)− Pk−1(τi)]}, i, j = 0, 1, . . . , n,

where weights ωj ’s, j = 0, 1, . . . , n satisfy

ωj =
2

n(n+ 1)[Pn(τj)]2
, j = 0, 1, . . . , n. (21)

This matrix for n = 4, 6 has the following form

L4 =


0 0 0 0 0

0.1354 0.2394 −0.0434 0.0212 −0.0074
0.0812 0.6063 0.3555 −0.0619 0.0187
0.1074 0.5231 0.7545 0.3049 −0.0354

0.1 0.5444 0.7111 0.5444 0.1

 ,

L6 =



0 0 0 0 0 0 0
0.0656 0.1186 −0.0215 0.0111 −0.0069 0.0044 −0.0016
0.0360 0.3154 0.2047 −0.0369 0.0191 −0.0113 0.0041
0.0550 0.2555 0.4749 0.2438 −0.0432 0.0212 −0.0074
0.0434 0.2881 0.4125 0.5245 0.2270 −0.0385 0.0116
0.0492 0.2723 0.4387 0.4764 0.4532 0.1581 −0.0180
0.0476 0.2768 0.4317 0.4876 0.4317 0.2768 0.0476


.

Now, by the following lemma, we estimate the objective functional (1).

Lemma 3.1. (Shen et al. [36]) Assume that {τi}ni=0 (on interval [−1, 1] ) and {ωi}ni=0

(defined by (21)) are the LGL points and weights, respectively. Then for any polynomials
η(·) of degree at most 2n− 1 we achieve∫ 1

−1
η(τ) dτ =

n∑
i=0

ωiη(τi).
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By Lemma (3.1), we have

∫ tf

t0

g(x(t),u(t), t) dt =

m+1∑
k=1

∫ tk

tk−1

g(x(t),u(t), t) dt

=

m+1∑
k=1

tk − tk−1
2

∫ 1

−1
g(x(ψ(τ)),u(ψ(τ)), ψ(τ)) dt

'
m+1∑
k=1

tk − tk−1
2

n∑
i=0

ωig(x(ψk(τi)),u(ψk(τi)), ψk(τi))

=

m+1∑
k=1

tk − tk−1
2

n∑
i=0

ωig(x̂ki , û
k
i , τ̂

k
i ),

where ψk(τi) is defined in (17).
Hence, the problem is converted into the following NLP problem:

Minimize J = Φ(x̂m+1
n , tm+1) +

m+1∑
k=1

tk − tk−1
2

n∑
i=0

ωig(x̂ki , û
k
i , τ̂

k
i ), (22)

subject to

x̂ki = x̂k−1n +
tk − tk−1

2

n∑
j=0

Lijf(x̂kj , û
k
j , τ̂

k
j ), (23)

h(x̂ki , û
k
i , τ̂

k
i ) ≤ 0, (24)

xmin ≤ x̂ki ≤ xmax, (25)

umin ≤ ûki ≤ umax, (26)

x̂m+1
n − xf = 0, (27)

ti − ti−1 ≥ ε, (28)

i = 0, 1, . . . , n; k = 1, 2, . . . ,m+ 1,

where x̂m+1
n = xm+1(tf ) and ε has a small value. Relation (28) is a guarantee to

prevent the overlapping of sub-intervals. The variables of problem are
(
x̂ki , û

k
i , tk

)
for

i = 0, 1, . . . , n and k = 1, 2, . . . ,m+ 1.

Remark 3.2. Related to the selection of value of m, we first consider m = 1 and solve
the problem in the main interval. According to the obtained results and the drawn
graph if needed, we increase m. In the following, consider m = k and solve the problem.
In the next step, consider m = k + 1 and solve the problem again. If the results and
trajectories obtained for m = k and m = k + 1 are very similar, then we can conclude
that the number of switching points is equal to m = k, and we do not need to increase m.
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4. NUMERICAL SIMULATION

Here, we implement our approach for five test problems to show its superiority compared
with other methods. Here, we utilize the FMINCON command in MATLAB software to
solve the NLP problem (22) – (28). We use a Core i3 PC Laptop with a 2.5 GHz CPU
and 4 GB RAM for computations. We also use the sequential quadratic programming
(SQP) algorithm in the option of fmincon command.

Example 4.1. Influence of the gravitational field and atmospheric drag on a vertically
ascending rocket and maximizing its final altitude, is known as Goddard problem [17, 18].
This problem is formulated as the following nonsmooth OC problem

Maximize J = h(tf ), (29)

subject to

ḣ = v, (30)

v̇ =
u−D(h, v)

m
− 1

h2
, (31)

ṁ = −u
c
, (32)

m(tf ) = 0.6, (33)

q(h, v) ≤ 10, (34)

h(0) = 1, v(0) = 0, m(0) = 1, (35)

where states m, v and h show the mass, speed and altitude of the rocket, respectively.
Here, the final time tf is free and control u is thrust. Function D(h, v) is formulated as

D(h, v) = q(h, v)
CDA

m0g
, (36)

where g is the earth’s gravitational acceleration and q(h, v) shows the dynamic pressure
defined as

q(h, v) =
1

2
ρ0v

2exp(β(1− h)). (37)

In the equations (32) – (37), CD is drag coefficient, A is reference area, m0 is initial
mass, ρ0 is air density at sea level, β is the density decay rate and c is exhaust velocity.
According to [18], we take the constants as follows

β = 500, c = 0.5,
ρ0CDA

m0g
= 620.

Notice that, inequality (34) is suggested in [34] on the dynamic pressure.
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We solve the NLP problem for m = 2 and arbitrary values of n. The corresponding
NLP problem (22) – (28) can be written as follow

Maximize J = x̂m+1
1n

(tm+1),

subject to

x̂k1i = x̂k−11n
− tk − tk−1

2

n∑
j=0

Lij x̂k2j , k = 1, 2, i = 1, . . . , n,

x̂k2i = x̂k−12n
− tk − tk−1

2

n∑
j=0

Lij
[
ûkj −D(x̂k1j , x̂

k
2j )− 1

(x̂k1j )2
]
,

x̂k3i = x̂k−13n
− tk − tk−1

2

n∑
j=0

Lij
[
−
ûkj
c

]
,

q(x̂k1i , x̂
k
2i)− 10 ≤ 0, k = 1, 2; i = 1, . . . , n,

x̂m+1
3n
− 0.6 = 0,

ti − ti−1 ≥ 10−3,

where x1(t) = h(t), x2(t) = v(t) and x3(t) = m(t), for 0 ≤ t ≤ tf . Having solved above
NLP problem, Table 1 show the obtained optimal values for J and tf . The achieved
results, comparing with those of work [18], show that the presented method acts more
accurate and more effective to solve these nonsmooth OC problem. The optimal solutions
are illustrated in Figure 1.

tf J

Presented method
m = 2 n = 4 0.1998 1.01289034

n = 5 0.1990 1.01284797

n = 6 0.1994 1.01284672

n = 7 0.1990 1.01284423

n = 10 0.1989 1.01283742

n = 14 0.1988 1.01283695

Method [18]
0.2040 1.01271727

Tab. 1. The gained values of tf and J for Example 1.
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Fig. 1. The gained approximate solutions with m = 2 and n = 8, for

Example 1.

Example 4.2. In this example, the aim is to minimize the following performance index
(see [19])

J =
1

2

∫ 1

0

(x2(t) + u2(t)) dt, (38)

subject to

ẋ(t) = u(t), 0 ≤ t ≤ 1, (39)

x(0) =
1 + 3e

2(1− e)
, (40)

u(t) ≤ 1, 0 ≤ t ≤ 1. (41)

The exact solutions are

J∗ = 2.7939778112

x∗(t) =


t+ 1+3e

2(1−e) , 0 ≤ t ≤ 1
2 ,

et+e2−t
√
e(1−e) ,

1
2 ≤ t ≤ 1.

, u∗(t) =

 1, 0 ≤ t ≤ 1
2 ,

et−e2−t
√
e(1−e) ,

1
2 ≤ t ≤ 1.

We apply the corresponding NLP (22) – (28) to solve the problem (38) – (41) for ε =
10−1. In Table 2, the results are given for switching point t1, index J , and CPU Time.
The achieved approximate optimal solutions and the absolute errors are illustrated in
Figures 2 and 3, respectively. Numerical solutions approve that our method is convergent
and stable, and errors go to zero as n increases.



An efficient hp spectral collocation method 853

t1 J | J∗ − J | CPU Time(Sec)

m = 1 n = 3 0.542 2.79386315 1.14× 10−4 0.63

n = 5 0.536 2.79396047 1.73× 10−5 3.44

n = 7 0.511 2.79397624 1.56× 10−6 5.36

n = 8 0.509 2.79397696 1.07× 10−6 5.98

n = 9 0.507 2.79397723 5.79× 10−7 6.01

n = 11 0.500 2.79397781 1.21× 10−9 6.28

Tab. 2. The results of t1, J and CPU Time for Example 2.

Fig. 2. The obtained solutions with m = 1 and n = 11 for

Example 2.

Fig. 3. The absolute error of obtained solution for Example 2.
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Example 4.3. Consider the following OC problem [42]

Minimize J =

∫ 5
4

− 5
4

√
1 + u(t)2 dt, (42)

subject to

ẋ(t) = u(t), −5

4
≤ t ≤ 5

4
, (43)

x(−5

4
) = x(

5

4
) = 0, (44)

x(t) + t2 ≥ 1, −5

4
≤ t ≤ 5

4
. (45)

The obtained value of performance is

J∗ = 2
√

2− 1

2
ln(
√

2− 1) = 3.2691139282 . . . ,

and optimal solutions are as

x∗(t) =


t+ 5

4 , − 5
4 ≤ t ≤ −

1
2 ,

1− t2, − 1
2 ≤ t ≤

1
2 ,

−t+ 5
4 ,

1
2 ≤ t ≤

5
4 .

, u∗(t) =


1, − 5

4 ≤ t ≤ −
1
2 ,

−2t, − 1
2 ≤ t ≤

1
2 ,

−1, 1
2 ≤ t ≤

5
4 .

We utilize the corresponding NLP (22) – (28) for solving (42) – (45) for ε = 10−1.
Table 3 gives the switching points t1, t2, and performance index J . Also, the achieved
results are compared with the method [42], which shows the superiority of the suggested
method. Moreover, the approximate and exact solutions are illustrated in Figure 4. We
observe, by increasing n, obtained solutions approach to the exact solutions, and our
method has a stable treatment.

Fig. 4. The obtained approximate solutions with m = 2 and n = 11

for Example 3.
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t1 t2 J | J∗ − J |
Presented method

m = 0 n = 4 − − 3.24236754 2.67× 10−2

n = 8 − − 3.26540696 3.70× 10−3

n = 9 − − 3.26910596 7.96× 10−6

Method[42] n = 16 − − 3.26918101 6.70× 10−5

Presented method
m = 1 n = 4 −0.502 − 3.26339021 5.72× 10−3

n = 8 −0.750 − 3.26925501 1.41× 10−4

n = 10 −0.750 − 3.26917897 6.50× 10−5

n = 11 −0.665 − 3.26912968 1.57× 10−5

Method[42] n = 16 −0.001 − 3.26915219 3.80× 10−5

Presented method
m = 2 n = 4 −0.540 0.540 3.26902079 9.13× 10−5

n = 8 −0.534 0.534 3.26910945 4.46× 10−6

n = 10 −0.533 0.533 3.26911159 2.33× 10−6

n = 11 −0.512 0.512 3.26911395 3.00× 10−8

Method[42] n = 16 −0.523 0.523 3.26911301 9.10× 10−7

Tab. 3. The results of switching points t1, t2 and performance index

J for Example 3.

Example 4.4. Consider the following OC problem [39]

Minimize J =

∫ 1

0

1

2
(e−t − 2t)x(t) dt, (46)

subject to

ẋ(t) = −tx(t) + ln(u(t) + t+ 3), 0 ≤ t ≤ 1, (47)

x(0) = 0, x(1) = 0.8, (48)

− 1 ≤ u(t) ≤ 1, 0 ≤ t ≤ 1. (49)

We solve the problem for ε = 10−3. In Table 4, the results are given for switching
points t1, t2, and performance index J . Moreover, comparing results with those of
the method [39] is observed in this Table. The approximate and exact solutions are
illustrated in Figure 5.
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t1 t2 J

Presented method
m = 2 n = 3 0.1942 0.5057 −0.183061

n = 5 0.1951 0.5125 −0.183056
n = 7 0.1957 0.5151 −0.183052
n = 9 0.1959 0.5152 −0.183050
n = 10 0.1972 0.5161 −0.183044

Method [39]
m = 0 n = 100 − − −0.1830

Tab. 4. The results of switching points t1, t2 and cost functional J

for Example 4.

Fig. 5. The gained approximate solutions with m = 2 and n = 8, for

Example 4.

Example 4.5. In this example, we solve the Robot Arm problem [1, 13]. In this exam-
ple, the aim is to minimize.

J = tf , (50)

subject to

ẋ1(t) = x2(t), ẋ2(t) =
u1(t)

L
, ẋ3(t) = x4(t), (51)

ẋ4(t) =
u2(t)

Iθ
, ẋ5(t) = x6(t), ẋ6(t) =

u3(t)

Iφ
, (52)

x1(0) =
9

2
; x2(0) = 0; x3(0) = 0, (53)

x4(0) = 0; x5(0) =
π

4
; x6(0) = 0, (54)
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x1(tf ) =
9

2
; x2(tf ) = 0; x3(tf ) =

2π

3
, (55)

x4(tf ) = 0; x5(tf ) =
π

4
; x6(tf ) = 0, (56)

− 1 ≤ ui(t) ≤ 1, i = 1, 2, 3, (57)

where L = 5 and

Iθ =
((L− x1(t))3 + x1(t)3)

3
sin2(x5(t)),

Iφ =
(L− x1(t))3 + x1(t)3

3
.

We solve the problem for ε = 0.3. In Table 5, the gained values for J = tf with
different is shown. The achieved solutions are represented in Figures 6, 8 and 7. Also,
the gained switching points are

t1 = 2.1716, t2 = 2.8298, t3 = 4.5652, t4 = 6.4366, t5 = 6.9437,

for n = 11. Comparing our results with those of work [13], shows that we achieve to
tf = 9.1413 with n = 11 while this value in work [13] is given for n = 200. So, presented
work is more accurate and more effective.

tf

Presented method
m = 5 n = 4 9.13556016

n = 6 9.13982078

n = 8 9.14093774

n = 10 9.14126867

n = 11 9.14136236

n = 12 9.14138462

Method [13]
m = 0 n = 200 9.14138

Tab. 5. The obtained values of tf for Example 5.
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Fig. 6. The approximate solutions x1(t), x3(t), x5(t) with m = 5 and

n = 10, for Example 5.

Fig. 7. The approximate solutions x2(t), x4(t), x6(t) with m = 5 and

n = 10, for Example 5.

5. CONCLUSIONS AND SUGGESTIONS

In this article, we extended a highly accurate and efficient hp spectral collocation method
via the operational integration matrix to numerically solve the general form of the non-
smooth control problems. Utilizing the integration matrix instead of the differentiation
matrix reduces the method’s complexity. Unlike methods based on the operational ma-
trix of differentiation, the condition of continuity of the state variable is considered in the
proposed method, and the interpolating polynomials of the control and state variables
on the considered sub-intervals, especially at the switching points, provide high accu-
racy of the method compared with other methods. We showed the proposed approach
could be utilized for both bang-bang and singular optimal control problems. Moreover,
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Fig. 8. The approximate control variables with m = 5 and n = 10,

for Example 5.

the switching points are unknown parameters, and they can be gained having solved
a nonlinear programming problem. Further, the numerical simulation showed that our
method for nonsmooth OC problems has a higher convergence rate than other methods,
such as methods given in [13, 39, 42].

For future works, we suggest the given method for nonsmooth fractional and non-
fractional delay optimal control problems. Also, we can extend the current approach
for optimal control problems under delay or non-delay partial differential equations with
nonsmooth treatment.
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