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The cyclicity index of a matrix is the cyclicity index of its critical subgraph, namely, the sub-
graph of the adjacency graph which consists of all cycles of the maximal average weight. The
cyclicity index of a graph is the least common multiple of the cyclicity indices of all its maximal
strongly connected subgraphs, and the cyclicity index of a strongly connected graph is the least
common divisor of the lengths of its (directed) cycles. In this paper we obtain the character-
ization of linear, possibly non-surjective, transformations of tropical matrices preserving the
cyclicity index. It appears that non-bijective maps with these properties exist and all maps are
exhausted by transposition, renumbering of vertices, Hadamard multiplication with a matrix
of a certain special structure, and certain diagonal transformation. Moreover, only diagonal
transformation can be non-bijective.
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1. INTRODUCTION

We recall that a semiring is a set S together with two binary operations, addition
and multiplication, such that S is a commutative monoid under addition (with identity
denoted by 0S); S is a semigroup under multiplication (with identity, if any, denoted by
1S); multiplication is distributive over addition on both sides; and s ·0S = 0S ·s = 0S for
all s ∈ S. The semiring S is said to be commutative if the multiplication is commutative.
It is said to be anti-negative if a + b = 0S implies that both a and b are equal to 0S .
It is a semifield if S \ {0S} is an abelian group under multiplication. A semiring S is
called idempotent if a + a = a for all a ∈ S. An idempotent semiring is necessarily
anti-negative; indeed if a+ b = 0S then 0S = a+ b = a+ a+ b = a+ 0S = a and a dual
argument gives 0S = b.

Here we consider the tropical semifield Rmax := R ∪ {−∞} together with addition
given by taking the maximum and multiplication given by extending addition of real

DOI: 10.14736/kyb-2022-5-0691

http://doi.org/10.14736/kyb-2022-5-0691


692 A. GUTERMAN, E. KREINES, AND A. VLASOV

numbers so as to make −∞ a zero element. Rmax is an idempotent and hence anti-
negative semifield.

Let S be a semiring. We write Si×j for the set of i× j matrices over S, which forms
an S-module in the obvious way. We write Mn(S) for Sn×n viewed as a semigroup under
the matrix multiplication induced by the operations in S. If S contains a multiplicative
identity element 1S , then Mn(S) is a monoid, with obvious identity element.

There is a number of works on tropical linear algebra and its applications, see for
example [11] and references therein.

Given an invariant defined on a certain algebraic system, it is natural to ask: what
are the transformations that can be performed on the system that leave this invariant
unchanged? In the case where the algebraic system under consideration is a matrix
algebra over a field, the investigation of such transformations dates back to the following
result of Frobenius [4], which gives a characterization of the bijective complex linear
transformations preserving the determinant:

Theorem 1.1. [4, Frobenius, 1897] Let C be the field of complex numbers, and let
T : Mn(C) → Mn(C) be a bijective linear transformation such that detT (X) = detX
for all matrices X ∈ Mn(C). Then there exist invertible matrices U, V ∈ Mn(C),
with det(UV ) = 1, such that either T (X) = UXV for all matrices X ∈ Mn(C), or
T (X) = UXTV for all X ∈Mn(C), where XT denotes the transposed matrix.

This result was generalized by Schur [16], who characterized the maps preserving all
subdeterminants of any fixed order r. Later Dieudonné [3] obtained a characterization
of bijective linear maps preserving the set of singular matrices over arbitrary fields.
The approaches of Frobenius and Schur were combinatorial and in some sense ad-hoc,
Dieudonné proposed a new approach based on the fundamental theorem of projective
geometry.

Starting from these initial investigations, many authors have studied the structure of
linear operators on the n × n matrix algebra Mn(F ) over a field F that leave certain
matrix relations, subsets, or properties invariant (see the surveys [14, 15] for the details).
In the last two decades much attention has been paid to the investigation of maps
preserving different invariants for matrices over various semirings, where completely
different techniques are necessary to obtain a classification of linear transformations
with certain preserving properties; see [14, Section 9.1] for more details and [8, 10] and
references therein for more recent results.

A cycle is a simple closed path (i.e. it does not have repeated edges) and a dicycle
is a cycle in digraph. Further we consider only directed cycles, so by cycle we mean a
dicycle. In the present paper we consider linear maps of tropical matrices preserving
cyclicity index which is an important invariant in combinatorial matrix theory and its
applications and is defined as follows.

Definition 1.2. [11, Definition 2.3] Let G be a directed graph. We define the cyclicity
index (or just cyclicity) σG as follows:

1. If G is strongly connected and it contains 2 vertices at least, then σG is the greatest
common divisor of lengths of all cycles in G.

2. If G contains only 1 vertex, then σG = 1.
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3. If G is not strongly connected, then σG is the least common multiple of cyclicity
indices of all maximal strongly connected subgraphs of G.

Definition 1.3. Let G be a weighted digraph, C be a cycle in G. The average weight of
C is the geometric mean of the weights of its edges in the tropical sense or, equivalently,
the usual arithmetic mean. Namely, if the length of C equals l and the weights of its
edges are a1, a2, . . . , al, then:

w(C) = ⊗l
√
a1 ⊗ a2 ⊗ . . .⊗ al =

a1 + a2 + . . .+ al
l

Definition 1.4. Let G be a weighted digraph. A cycle C in the graph G is called a
critical cycle if w(C) is equal to the maximal average weight among all cycles in G. The
critical subgraph Gc is the union of all critical cycles in G.

Definition 1.5. [11, Definition 3.5] Let A ∈ Mn(Rmax) and G be its adjacent graph.
The cyclicity index σ(A) of the matrix A is defined by: σ(A) = σGc , if G contains at
least one cycle, and σ(A) = 1 otherwise.

For detailed and self-contained information on the cyclicity index we refer the reader
to [1, 2, 6, 7, 11]. Below we mention just a few applications of this invariant.

The cyclicity index is usually applied to investigate periodic behavior of solutions of
max-linear systems of type x(k + 1) = A⊗ x(k) for k ≥ 0, where A is an n× n tropical
matrix and x(0) = x0 is the initial condition. In particular, it is used for determination of
regular regimes in scheduling and other network problems, see [11, 12, 13, 17]. Namely,
it is well known that according to the celebrated cyclicity theorem, see [11, Theorem
3.9], if A is an irreducible tropical n × n matrix with the eigenvalue λ and cyclicity σ,
then there is a positive integer N such that A⊗(k+σ) = λ⊗σ⊗A⊗k for all integers k ≥ N ,
where λ⊗σ = λ⊗ . . .⊗ λ︸ ︷︷ ︸

σ times

.

In [12, 13] the authors unify and extend existing techniques for deriving upper bounds
on the transient behaviour of max-plus matrix powers and the cyclicity index plays an
important role in these considerations as well.

The cyclicity index is applied in [5] to prove certain properties of matrix roots of
tropical matrices.

To investigate the properties of the cyclicity index and to produce new matrices with
a given value of cyclicity index, it is important to find out various classes of maps pre-
serving the cyclicity. In this paper we deal with linear, possibly non-surjective, cyclicity
preserving maps.

We remark that in the paper [9] bijective linear maps preserving the cyclicity index
have been studied for the first time and partially characterized. It was shown there that
non-bijective linear maps preserving cyclicity do exist by providing a concrete example
for n = 2. However, this example does not admit a generalization for bigger dimensions
and an existence problem for such examples was posed, see [9, Section 5 and Abstract].
Here we provide an example of a non-surjective linear map T : Mn → Mn preserving
the cyclicity index for each n ≥ 2, which solves this problem. Moreover, we obtain a
complete characterization for possibly non-surjective linear maps preserving the cyclicity
index that clarify and generalize the original characterization in [9, Theorem 4.1].
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Our paper is organized as follows. In Section 2 we investigate some general properties
of linear (possibly non-bijective) transformations preserving the cyclicity index. Then
in Section 3 we characterize these transformations. In Section 4 we discuss additional
properties of maps under consideration.

2. MAPS PRESERVING CYCLICITY

Below we consider only the matrices with tropical entries. Thus to shorten the notations
we denote Mn = Mn(Rmax). By Eij we denote the (i, j)-th matrix unit, i.e. the matrix
with 0 in (i, j)-th position and −∞ everywhere else. By ν(A) we denote the number of
finite entries of A ∈Mn. Further we need the following sets:
En = {α ⊗ Eij ∈ Mn|1 ≤ i, j ≤ n, α ∈ R} is the set of matrices whose adjacency

graph contains exactly one edge.
Nn = {α⊗ Eij ∈ Mn|1 ≤ i, j ≤ n, i 6= j, α ∈ R} is the subset of matrices En whose

adjacency graph isn’t a loop.
Dn = {α⊗Eii ∈Mn|1 ≤ i ≤ n, α ∈ R} is the subset of matrices En whose adjacency

graph is a loop.
We begin with an example of a non-bijective cyclicity index preserver in each dimen-

sion. For n = 2 an example of such a map is provided in [9, Section 5] but that example
does not allow a straightforward generalization to higher dimensions.

Example 2.1. Let the map T : Mn →Mn be defined for any i, j, 1 ≤ i, j ≤ n, as:

T (Eij) =

{
Eij , if (i, j) 6= (1, 1)

(−1)⊗ E22 ⊕ E11, if (i, j) = (1, 1)

and extended by linearity, i.e., T (
⊕n

i=1

⊕n
j=1 aij ⊗ Eij) =

⊕n
i=1

⊕n
j=1 aij ⊗ T (Eij).

Then T is a non-surjective linear map and preserves cyclicity index.

To prove that the map T in Example 2.1 indeed satisfies the required properties we
verify the following more general statement:

Lemma 2.2. Let k be fixed, 1 ≤ k ≤ n, and let c1, . . . , cn ∈ Rmax be such that ci < 0
for all i = 1, . . . , n, and there exists l, 1 ≤ l ≤ n such that cl 6= −∞. Assume that the
map T0 : Mn →Mn is defined for any i, j, 1 ≤ i, j ≤ n, by the formula

T0(Eij) =

{
Eij , if (i, j) 6= (k, k)

Ekk ⊕
⊕n

l=1 cl ⊗ Ell, if (i, j) = (k, k)

and extended by the linearity. Then the transformation T0 is a non-surjective linear
map and preserves the cyclicity index.

P r o o f . 1. Up to the renumeration of indices, without loss of generality, we assume
that k = 1.

2. Note that T0 acts on any matrix in the following way. Let A = (aij) ∈Mn. Then
by definition we have that if T0(A) = A′ = (a′ij) then a′ll = all ⊕ cl ⊗ a11, l = 2, . . . , n,
and a′ij = aij for all other (i, j). Indeed, since c1 < 0 we have a′11 = c1⊗a11⊕a11 = a11.
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3. T0 is linear by definition. Let us show that T0 is non-surjective. Indeed, assume
that B = (bij) ∈ Mn lies in the image of T0. Then there is A = (aij) ∈ Mn such that
T0(A) = B. From a11 = b11 and the existence of cl 6= −∞ it follows that if b11 6= −∞
then bll = cl ⊗ a11 ⊕ all 6= −∞. Therefore E11 does not lie in the image of T0.

4. Let us show that T0 preserves the cyclicity index. We denote by G(X) a graph,
adjacent to a matrix X = (xij) ∈ Mn and by λX the average weight of each critical
cycles of G(X). Note that λX ≥ xll for all l since a loop is a cycle of length 1. Let
A ∈ Mn be arbitrary, and B = T0(A). For each l, 2 ≤ l ≤ n, such that cl 6= −∞ the
following two cases appear:

a) all < λA. Then bll = cl ⊗ a11 ⊕ all = max{cl ⊗ a11, all} < λA. Indeed, cl ⊗ a11 ≤
cl ⊗ λA < λA since cl < 0. Hence in both graphs G(A) and G(B) the loop in the
vertex l does not belong to the critical subgraph.

b) all = λA. Then a11 ≤ λA = all. Therefore, bll = cl⊗a11⊕all = max{cl⊗a11, all} =
all since cl < 0. Hence in both graphs G(A) and G(B) the loop in the vertex l
belongs to the critical subgraph.

If l = 1 or cl = −∞, then bll = all. Since T0(Eij) = Eij for all (i, j) 6= (1, 1), all cycles of
G(A) and G(B) coincide and have the same average weights, except the loops. For each
l, 1 ≤ l ≤ n, the loop in the vertex l either belongs to critical subgraphs of both graphs
G(A) and G(B) or does not belong to any of them by Items a) and b), correspondingly.
It follows that Gc(B) = Gc(A) and λB = λA. So in both cases T0 preserves cyclicity
index. �

Corollary 2.3. For any integer n ≥ 2 there exists a non-surjective linear map T :
Mn →Mn preserving cyclicity index.

Lemma 2.4. Let n ≥ 3, T : Mn → Mn be linear and preserve cyclicity. Then for all
α, β ∈ R and all 1 ≤ i, j, k, l ≤ n the equality T (α ⊗ Eij) = T (β ⊗ Ekl) implies that
i = k, j = l, and α = β.

P r o o f . Note that if i = k and j = l, then α = β by linearity. Hence, the converse to
the statement of the lemma means that either i = k or j = l.

So, suppose the converse, namely, there are α, β ∈ R and the indices i, j, k, l, 1 ≤
i, j, k, l ≤ n and either i 6= k or j 6= l such that T (α ⊗ Eij) = T (β ⊗ Ekl). The general
situation splits into the following two cases.

Case 1: i = j and k = l. Without loss of generality we assume that α ≥ β.
Consider an integer 0 < m ≤ n, m /∈ {i, k}. Then

T (α⊗ (Eii ⊕ Eim ⊕ Emi)) = T (α⊗ Eii)⊕ T (α⊗ (Eim ⊕ Emi)) =
= T (β ⊗ Ekk)⊕ T (α⊗ (Eim ⊕ Emi)) = T (β ⊗ Ekk ⊕ α⊗ (Eim ⊕ Emi)).

(1)

Note that σ(α⊗ (Eii ⊕ Eim ⊕ Emi)) = 1, since the graph G(α⊗ (Eii ⊕ Eim ⊕ Emi)) is
strongly connected. At the same time σ(β⊗Ekk⊕α⊗(Eim⊕Emi)) = 2 since α ≥ β and
the graph G(β ⊗ Ekk ⊕ α⊗ (Eim ⊕ Emi)) is not connected. Since T preserves cyclicity
we obtain a contradiction with (1).
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Case 2: either i 6= j or k 6= l. Without loss of generality we consider the case i 6= j.
Then

T (α⊗ (Eij ⊕ Eji)) = T (α⊗ Eij)⊕ T (α⊗ Eji) = T (β ⊗ Ekl ⊕ α⊗ Eji). (2)

Similar to the previous case we note that σ(α ⊗ (Eij ⊕ Eji)) = 2 since this matrix
corresponds to the cycle of length 2. Also σ(β ⊗ Ekl ⊕ α⊗ Eji) = 1, since the graph of
this matrix does not contain a cycle. Since T preserves cyclicity we obtain a contradiction
with (2). Thus, T does not preserve cyclicity, a contradiction. �

Lemma 2.5. Let T : Mn → Mn, n ≥ 3, be a non-surjective linear map preserving
cyclicity. Then there exist i, j, 1 ≤ i, j ≤ n, such that for all A ∈ Mn it holds that
T (A) 6= Eij .

P r o o f . Assume the converse. Then for any k,m, 1 ≤ k,m ≤ n there exists Akm ∈Mn

such that T (Akm) = Ekm. Then for all B ∈Mn

B =
⊕

1≤k,m≤n

bkm ⊗ Ekm =
⊕

1≤k,m≤n

bkm ⊗ T (Akm) = T (
⊕

1≤k,m≤n

bkm ⊗Akm)

Hence, T is surjective, a contradiction. �

Corollary 2.6. Let n ≥ 3, T : Mn → Mn be a non-surjective linear map preserving
cyclicity. Then there exist i, j, 1 ≤ i, j ≤ n, such that for all α ∈ R and for all A ∈ Mn

it holds that T (A) 6= α⊗ Eij , i.e., {α⊗ Eij |α ∈ R} ∩ Im(T ) = ∅.

P r o o f . Follows immediately from Lemma 2.5 by linearity of T . �

Corollary 2.7. Let n ≥ 3, T : Mn → Mn be a non-surjective linear map preserving
cyclicity. Then there exist i, j, 1 ≤ i, j ≤ n, such that T (Eij) /∈ En.

P r o o f . Assume the converse, i.e., for any pair i, j, 1 ≤ i, j ≤ n we have T (Eij) ∈ En.
By Corollary 2.6 there is a pair (p, q), 1 ≤ p, q ≤ n such that the matrices α ⊗ Epq
are not in the image of T for all α ∈ R. Then by pigeonhole principle there exist
pairs (i, j), (k, l), (s, t), 1 ≤ i, j, k, l, s, t ≤ n and α, β ∈ R such that (i, j) 6= (k, l) but
T (Eij) = α⊗ Est and T (Ekl) = β ⊗ Est.

Therefore, T (α−1 ⊗ Eij) = T (β−1 ⊗ Ekl), which contradicts Lemma 2.4. �

Lemma 2.8. Let T : Mn →Mn be a linear map preserving cyclicity. Assume that the
matrix A ∈ Mn is such that the graph G(A) does not contain cycles. Then G(T (A))
does not contain cycles.

P r o o f . 1. If A = 0, i.e., the matrix with all entries −∞, then T (A) = 0 by linearity.
So, T (A) does not contain cycles either.

2. Assume now that A 6= 0. Suppose, the graph G1 = G(T (A)) contains at least one
cycle, and the maximal average weight of the cycles in G1 is λ. Since there are no cycles
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in G(A) and A 6= 0, there is a vertex, say i, such that there is an edge outgoing from
i and there is no edge ingoing to i. Let the outgoing edge be from i to j. Then i 6= j
since there is no cycle in G(A) and A ⊕ Eji contains a cycle i − j − i of length 2. So,
σ(G(A⊕ Eji)) = 2. We want to construct two additional graphs now.

3. Let us denote D = (dkl) = T (Eji) and B = (bkl) = T (A). We consider

α0 = min
1≤k,l≤n
bkl 6=−∞
dkl 6=−∞

{bkl − dkl} ∈ R,

here we use usual subtraction, i.e. tropical division. Let α ∈ R, α ≤ α0. Let e be an
edge in G1 from s to t of the weight we = bst. Then the weight of e in G(T (A⊕α⊗Eji))
equals w′e = bst ⊕ α⊗ dst = bst = we for all 1 ≤ s, t ≤ n.

4. Let M =
⊕

1≤k,l≤n
bkl ⊕ dkl be the maximum weight of the edges in the graphs

G(D) and G(B). Consider β < λ − M . Then for any cycle C1 which belongs to
G(T (A⊕ β ⊗ Eji)) and does not belong to G1 we obtain that w(C1) ≤ β ⊗M < λ.

5. Let γ = min{α, β} and G2 = G(T (A ⊕ γ ⊗ Eji)). Then from Items 3 and 4 it
follows that the average weight of any cycle of G2 is at most λ.

6. Therefore, the maximal average weight of cycles in G2 is λ, since by the linearity
of T the graph G1 is a subgraph of the graph G2.

7. Let us consider the cycles of G2 which are not contained in G1. By Item 4 the
average weight of any such cycle is less than λ.

8. Consider a cycle C2 in G2. If C2 belongs to the critical subgraph of G1, then
w(C2) = λ by Item 6. Thus C2 is contained in the critical subgraph of G2. If C2 does
not belong to the critical subgraph of G1, then w(C2) < λ by the Item 7. Hence C2 is
not contained in the critical subgraph of G2. Hence, critical subgraphs of G1 and G2

are the same.
9. Consider the graph G3 = G(A⊕ γ⊗Eji). Then σG1 = σG(A) = 1, σG3 = σG2 = 2.

From Item 8 it follows that the graphs G1 and G2 have the same critical subgraph.
Hence, σG1

= σG2
, a contradiction. Thus G1 does not contain a cycle. �

Corollary 2.9. Let T : Mn → Mn be a linear map preserving cyclicity. Then the
following properties hold:

1. G(T (Eij)) does not contain loops, if i 6= j,

2. if G(A) does not contain a loop, then G(T (A)) does not contain a loop.

P r o o f . Item 1 follows directly from Lemma 2.8. Item 2 follows from Item 1 by
additivity. �

Lemma 2.10. Let T : Mn →Mn be a linear map preserving cyclicity. Then

1. For each A ∈ Nn the matrix T (A) ∈ Nn, so the restriction map T ∗ = T |Nn is
defined.

2. The map T ∗ : Nn → Nn is bijective.



698 A. GUTERMAN, E. KREINES, AND A. VLASOV

P r o o f . 1. For any A ∈ Nn there exist E1, . . . , En−1 ∈ Nn such that G(E1 ⊕ . . . ⊕
En−1 ⊕ A) is a cycle of length n. We denote En = A, C = E1 ⊕ . . . ⊕ En, and Ci =
E1 ⊕ . . .⊕ Ei−1 ⊕ Ei+1 ⊕ . . .⊕ En, i = 1, . . . , n. Then G(Ci) does not contain a cycle.

2. From σC = σT (C) = n it follows that the graph G(T (C)) contains at least 1 cycle.
3. Consider any cycle in G(T (C)) and denote it by γ. By Lemma 2.8 we know that

G(T (Ci)) does not contain a cycle. In particular, G(T (Ci)) does not contain the cycle
γ. So, for each i, 1 ≤ i ≤ n, there is an edge ei of γ which is not an edge of G(T (Ci)).
Since ei is an edge of G(T (C)), it follows that ei is an edge of G(T (Ei)) and ei is not
an edge of G(T (Ej)) for all j 6= i. Therefore the number of edges |γ| ≥ n. Then |γ| = n
since there are no cycles of length greater than n on n vertices.

4. Assume, G(T (C)) 6= γ. Since |γ| = n, the vertex sets of G(T (C)) and γ coincide.
Then there exists an edge e of G(T (C)) which is not an edge of γ. It follows that either
e is a loop or e divides γ into two cycles of smaller length. This is a contradiction with
Item 3. Hence, G(T (C)) = γ.

5. It follows from Item 3 that |G(T (Ei))| = 1, i.e., ν(T (Ei)) = 1 for each i = 1, . . . , n.
Hence, ν(T (A)) = 1, i.e., T (A) ∈ Nn as desired. This proves the first part of the lemma.

6. Transformation T is linear, so it is sufficient to prove the bijectivity of T ∗ on the
set of matrix units E = {Eij |1 ≤ i 6= j ≤ n}. At first, consider the case n = 2. The
cycle of length 2 is mapped to the cycle of length 2, and 2 distinct edges are mapped
to 2 distinct edges, so T ∗ is bijective. Now, let n ≥ 3. Then it follows from Lemma 2.4
that T ∗ is injective. Since the set E is finite, T ∗ is bijective. �

Corollary 2.11. Let n ≥ 3, T : Mn →Mn be a linear map preserving cyclicity. Assume
that T is non-surjective. Then there exists i, 1 ≤ i ≤ n, such that for all A ∈ Mn it
holds that T (A) 6= Eii.

P r o o f . By Lemma 2.5 there is a matrix X ∈ En which is not in the image of T . By
Lemma 2.10 X /∈ Nn. Then X = αEii for some α ∈ R and i, 1 ≤ i ≤ n. Hence by
linearity of T we have that Eii /∈ Im(T ). �

Corollary 2.12. Let n ≥ 3, T : Mn →Mn be a linear map preserving cyclicity. Assume
that T is non-surjective. Then there exists Eii such that T (Eii) /∈ En.

P r o o f . By Corollary 2.7 there exist indices i, j, 1 ≤ i, j ≤ n such that T (Eij) /∈ En.
By Lemma 2.10 it follows that i = j. �

Lemma 2.13. Let T : Mn → Mn be a linear map preserving cyclicity and A ∈ Dn.
Then all edges of G(T (A)) are loops.

P r o o f . Assume the converse, i.e. there are i, j, 1 ≤ i 6= j ≤ n, such that the graph
G(T (A)) contains the edge from i to j. By Lemma 2.10 there exists E ∈ Nn such that
T (E) = Eji. Then G(T (A⊕ E)) contains the cycle i→ j → i. We denote this cycle of
the length 2 by C. Let us show that there exists β such that σT (A⊕β⊗E) = 2. In order
to do this we denote the maximal average weight of cycles in the graph G(T (A⊕E)) by
λ and w(C) by µ. Then µ ≤ λ, since C is a cycle of G(T (A ⊕ E)). Hence, the general
situation splits into the following two cases.
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1. Let λ > µ. We consider β = 12(λ− µ), here all operations are usual, not tropical.
Then w(C) = µ+ β/2 = 6λ− 5µ. Other cycles containing Eji have at least 3 edges, so
the average weight of each of them is less than or equal to λ+β/3 = 5λ−4µ. From λ > µ
it follows that 6λ− 5µ > 5λ− 4µ. Thus C is a critical subgraph of G(T (A⊕ β ⊗ E)).

2. Let λ = µ. Then we can take any β > 0. Hence w(C) increases by β/2, the average
weight of each other cycle containing Eji increases by β/3 and the average weight of
other cycles does not change. Thus C is a critical subgraph of G(T (A⊕ β ⊗ E)).

Hence in each case for the chosen value β the critical subgraph of G(T (A⊕ β ⊗ E))
is equal to C, hence, σT (A⊕β⊗E) = 2. But σA⊕β⊗E = 1, which is a contradiction. �

3. CHARACTERIZATION OF MAPS PRESERVING CYCLICITY

The map T ∗ defined in Lemma 2.10 induces the bijection T̂ on the set of edges of the
complete graph without loops. Namely, for any 1 ≤ i 6= j ≤ n if eij is the edge from i

to j, then T̂ (eij) is the unique edge of the graph G(T (Eij)).

Denote by ē the edge with the same vertices as e and such that ē and e have opposite
directions.

Lemma 3.1. Let T : Mn →Mn be a linear map preserving cyclicity. Then T̂ (ē) = T̂ (e)
for each edge e.

P r o o f . Since T preserves cyclicity and T̂ is a bijection on the set of edges, we obtain
that any cycle of the length 2 is mapped to a cycle of the length 2. So, the counter-
directional edges are mapped to counter-directional edges, and the result follows. �

Proposition 3.2. Let T : Mn → Mn be a linear map preserving cyclicity. Then T̂
maps pairs of adjacent edges to pairs of adjacent edges.

P r o o f . By Lemma 3.1 the result follows for pairs of counter-directional edges. Thus we
may further assume that the edges e1, e2 are adjacent and do not constitute a cycle of the
length 2. Then without loss of generality we can assume that there exist 1 ≤ i, j, k ≤ n,
k 6= i, such that e1 = eij and either e2 = ejk or e2 = ekj . In both cases consider
the cycle of the length three G(Eij ⊕ Ejk ⊕ Eki). Then G(T (Eij ⊕ Ejk ⊕ Eki)) =

G(T (Eij) ⊕ T (Ejk) ⊕ T (Eki)) is a cycle of the length 3 with the edges T̂ (e1), T̂ (eki),

and either T̂ (e2) or T̂ (ē2). Therefore, T̂ (e1) and T̂ (e2) are adjacent. �

Lemma 3.3. Let T : Mn →Mn be a linear map preserving cyclicity. Then there exists
a permutation τ ∈ Sn such that either T (Eij) = bij ⊗ Eτ(i)τ(j) for all 1 ≤ i 6= j ≤ n or
T (Eij) = bij ⊗ Eτ(j)τ(i) for all 1 ≤ i 6= j ≤ n. In other words, if G(A) does not contain
loops, then G(T (A)) is obtained from G(A) by renumbering the vertices, changing the
weights of the edges and possibly reversing all edges.

P r o o f . By Proposition 3.2 it is sufficient to prove that one of the following two state-
ments holds:



700 A. GUTERMAN, E. KREINES, AND A. VLASOV

1. For any matrices E1, E2 ∈ Nn it holds that:

a) If the head vertex of G(E1) is the tail vertex of G(E2), then the head vertex of
G(T (E1)) is the tail vertex of G(T (E2)).

b) If G(E1) and G(E2) are outgoing edges from the same vertex, then G(T (E1))
and G(T (E2)) are outgoing edges from the same vertex.

c) If G(E1) and G(E2) are ingoing edges to the same vertex, then G(T (E1)) and
G(T (E2)) are ingoing edges to the same vertex.

2. For any matrices E1, E2 ∈ Nn it holds that:

a) If the head vertex of G(E1) is the tail vertex of G(E2), then the tail vertex of
G(T (E1)) is the head vertex of G(T (E2)).

b) If G(E1) and G(E2) are outgoing edges from the same vertex, then G(T (E1))
and G(T (E2)) are ingoing edges to the same vertex.

c) If G(E1) and G(E2) are ingoing edges to the same vertex, then G(T (E1)) and
G(T (E2)) are outgoing edges to the same vertex.

By Lemma 2.10 and due to the linearity of T it is sufficient to consider the matrix
units only. For each pair Eij , Ejk ∈ Nn by Proposition 3.2 either 1a) or 2a) holds, since
the cycle containing the edges (i, j), (j, k) is mapped to a cycle. Let us prove that for
any two distinct pairs of the edges the same item holds. If n = 2 then the result follows
by Lemma 3.1. So, assume that n ≥ 3 and there are indices i, j, k, i 6= j 6= k 6= i such
that the matrices Eij , Ejk ∈ Nn satisfy 1a). From Lemma 3.1 it follows that the pair
of reversed edges, corresponding to the matrices Ekj , Eji also satisfies 1a). Now for any
Eml ∈ Nn we have the following alternative.

i. If {m, l} ∩ {i, j, k} = ∅ then Eij ⊕ Ejk ⊕ Ekm ⊕ Eml ⊕ Eli is a cycle. Hence its
image is a cycle of the same length, and 1a) is satisfied for any pair of adjacent edges in
the cycle.

ii. If m = i, then Ekj ⊕ Eji ⊕ Eil ⊕ Elk is a cycle showing that Eml and Eji satisfy
the same condition 1a).

iii. If m = j we consider the cycle Ekj ⊕Ejl ⊕Elk showing that Eml and Ekj satisfy
the condition 1a).

iv. If m = k then we similarly consider Eij ⊕ Ejk ⊕ Ekl ⊕ Eli to obtain the desired
result.

v. Similarly the cases l ∈ {i, j, k} and {l,m} ⊆ {i, j, k} can be considered.
Thus all edges Eml satisfy 1a).
Since any cycle of length 2 is mapped to a cycle of length 2, it follows from Lemma 3.1

that in the both cases Items b) and c) follow from Item a). This concludes the proof. �
The following is an immediate consequence:

Corollary 3.4. Let T : Mn → Mn be a linear map preserving cyclicity. Then for each
l > 1 the graph G(T (A)) contains the same number of cycles of length l as A.

Lemma 3.5. Let T : Mn →Mn be a linear map preserving cyclicity. Then there exists
λ ∈ R such that for all C ∈Mn satisfying G(C) is a cycle of length at least two it holds
that w(G(T (C))) = λ⊗ w(G(C)).
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P r o o f . 1. For n = 2 the result follows directly from the fact that there is only one cycle
of length at least 2. So, further we assume that n ≥ 3. We prove this lemma by induction
on cycle length. We are going to prove the lemma for cycles with all edges having the
weight 0, then consider the general case. Let us at first show that there exists λ ∈ R such
that for all cycles C ∈Mn of the length two it holds that w(G(T (C))) = λ⊗ w(G(C)).

2. The base of induction. We consider two cycles of length 2 having one vertex in
common. Up to the renumbering of vertices without loss of generality we can assume
that these cycles are 1 → 2 → 1 and 1 → 3 → 1. Let us denote them by C1 and C2,
correspondingly. Denote by C3 the cycle 1 → 2 → 3 → 1. Let A1 = E12 ⊕ E21, A2 =
E13⊕E31 and A3 = E12⊕E23⊕E31. Then C1 = G(A1), C2 = G(A2), and C3 = G(A3).
We set the weight of each edge in these cycles to be equal to 0. From Lemma 3.3 it
follows that G(T (E12 ⊕E21 ⊕E23 ⊕E31)) also consists of two cycles of lengths 2 and 3,
correspondingly. Since T preserves the cyclicity index, σ(T (E12⊕E21⊕E23⊕E31)) = 1.
Therefore both cycles G(T (A1)) and G(T (A3)) are contained in the critical subgraph of
G(T (E12 ⊕E21 ⊕E23 ⊕E31)), i.e. w(G(T (A1))) = w(G(T (A3))). Similarly for A2 and
A3. Therefore, w(G(T (A1))) = w(G(T (A2))). Since w(C1) = w(C2), they are increased
by the same λ ∈ R. Thus, for all cycles C of length 2 with a common vertex there is
λ ∈ R such that w(G(T (C))) = λ⊗ w(G(C)).

Now consider two arbitrary cycles of length 2. Without loss of generality we can
assume that these cycles are 1 → 2 → 1 and 3 → 4 → 3. Then average weight of both
of them increase by the same number as a cycle 1→ 3→ 1. Hence, the statement holds
for any two cycles of length 2.

3. The induction step. Assume that the result holds for all cycles of length less than
or equal to k. Consider an arbitrary cycle of length k + 1 with the edges of zero weight
and denote it Ck+1. Up to the renumbering of vertices without loss of generality we may
assume that Ck+1 = 1 → 2 → . . . → k → (k + 1) → 1. Then Ck+1 = G(Ak+1), where
Ak+1 = E12 ⊕ E23 ⊕ . . .⊕ Ek k+1 ⊕ Ek+1 1 ∈Mn.

Let us consider two auxiliary graphs Ck = 1 → 2 → . . . → k → 1 = G(Ak) and
C = G(E12⊕E23⊕ . . .⊕Ek−1 k⊕Ek k+1⊕Ek+1 1⊕Ek 1) = G(A), where A,Ak ∈Mn are
(0,−∞)-matrices uniquely determined by their graphs. Then C is a cycle of the length
k + 1 with the chord between k and 1. Hence σ(C) = 1. Since all edges have the same
weight, C is the critical subgraph of G(A), and thus σ(A) = 1. Therefore, σ(T (A)) = 1.
By Lemma 3.3 the graphs G(T (Ak)) and G(T (Ak+1)) are cycles of the lengths k and
k + 1, respectively.

Recall that eij denotes the edge from i to j. Since T is linear and the edges
e12, . . . , ek−1 k are the common edges of Ck+1 and Ck, by Lemma 3.1 it follows that
T̂ (e12), . . . , T̂ (ek−1 k) are the common edges of G(T (Ak)) and G(T (Ak+1)), both of which
are subgraphs of the graph G(T (A)) with k + 2 edges. By the induction hypothesis
w(G(T (Ak))) = λ⊗w(Ck) = λ. Since σ(T (A)) = 1, it follows that the critical subgraph
of G(T (A)) contains at least two cycles. Hence, w(G(T (Ak))) = w(G(T (Ak+1))), and
therefore w(G(T (Ak+1))) = λ = λ⊗w(Ck+1). This proves the induction step, therefore,
the lemma holds for all cycles of length at least 2, in which all edges have weight 0.

4. Let us consider an arbitrary cycle C. Let C = G(A) and C ′ = G(A′), where
A = α1⊗E12⊕α2⊗E23⊕· · ·⊕αk−1⊗Ek−1 k⊗αk⊗Ek 1 and A′ = E12⊕E23⊕· · ·⊕Ek−1 k.
By Lemma 3.3 G(T (A)) and G(T (A′)) are cycles. They have common vertices and
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edges, but different weights. Let T (Ei i+1) = bi ⊗ Eji ji+1 for 1 ≤ i ≤ k − 1 and
T (Ek 1) = bk ⊗ Ejk−1 j1 . By Item 3, w(T (A′)) = 1

k

∑
1≤i≤k

bk = λ. Note that T (A) =⊕
1≤i≤k−1

(αi⊗T (Ei i+1))⊕αk⊗T (Ek 1) =
⊕

1≤i≤k−1
(αi⊗bi⊗Eji ji+1

)⊕αk⊗bk⊗Ejk 1. Then

w(T (A)) = 1
k

∑
1≤i≤k

(αk + bk) = 1
k

∑
1≤i≤k

αk + 1
k

∑
1≤i≤k

bk = w(C) + λ. Hence, w(T (A)) =

λ⊗ w(C), and the lemma follows. �

By linearity Lemma 3.5 immediately implies

Corollary 3.6. Let T : Mn → Mn be a linear map preserving cyclicity. Then there
exists λ ∈ R such that for all A ∈Mn for each cycle C of length at least 2 in the graph
G(A) it holds that w(C) = λ⊗w(C ′), where C ′ is the corresponding cycle in G(T (A)).

Let us remind that by Lemma 2.13 the image of a diagonal matrix is diagonal, i.e.,
there are cij ∈ R such that T (Eii) =

⊕
1≤j≤n

cij ⊗ Ejj for all i, 1 ≤ i ≤ n.

Lemma 3.7. Let n ≥ 3 and T : Mn → Mn be a linear map preserving cyclicity.
Let λ = λ(T ) ∈ R be the value determined in Lemma 3.5 and τ = τ(T ) ∈ Sn be
the permutation determined in Lemma 3.3. Then ciτ(i) = λ and ciτ(j) < λ for all
1 ≤ j 6= i ≤ n.

P r o o f . Up to renumbering of vertices without loss of generality we assume that τ = id.
1. Let us prove that max

1≤j≤n
cij = λ for all i.

Let X = E12 ⊕ E23 ⊕ . . .⊕ En−1n ⊕ En1 ∈Mn and Ai = Eii ⊕X. Then σ(Ai) = 1,
and hence σ(T (Ai)) = 1. By Lemma 3.3 it follows that G(T (X)) is a cycle of length
n and by Lemma 3.5 w(G(T (X)) = λ. By Lemma 2.13 all edges of T (Eii) are loops.
If an average weight of each of these loops is less than λ, then the critical subgraph of
G(T (Ai)) contains only one cycle G(T (X)) and σ(T (Ai)) = n, which is a contradiction.
Therefore the average weight of at least one loop in G(T (Eii)) is bigger than or equal
to λ. So, max

1≤j≤n
cij ≥ λ. If α = max

1≤j≤n
cij > λ, then there exists β ∈ R, λ − α < β < 0.

Consider B = β ⊗ Eii ⊕ X. Observe that σ(B) = n and σ(T (B)) = 1, which is a
contradiction. Hence, max

1≤j≤n
cij = λ.

2. Let us show that cij < λ for all 1 ≤ j 6= i ≤ n.
For each 1 ≤ i ≤ n we consider

Y = E12 ⊕ . . .⊕ Ei−2 i−1 ⊕ Ei−1 i+1 ⊕ Ei+1 i+2 ⊕ . . .⊕ En−1n ⊕ En 1 ∈Mn,

where the indices of the matrix units are taken module n, i.e., the cycle, containing all
vertices except i-th, where 1 ≤ i ≤ n. Let D = Eii⊕Y . If there exists j, 1 ≤ j ≤ n, j 6= i
such that cij ≥ λ then σ(T (D)) = 1, as far as σ(D) = n−1, since G(D) is not connected.
This contradiction concludes the proof of this step.

3. From max
1≤j≤n

cij = λ and cik < λ for all k 6= i it follows that cii = λ. �
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Definition 3.8. Let A = (aij), B = (bij) ∈ Mn. Let us say A � B if for all i, j, 1 ≤
i, j ≤ n the inequality bij 6= −∞ implies the inequality aij 6= −∞. Otherwise A � B.

Corollary 3.9. Let T : Mn → Mn, n ≥ 3, be a linear map preserving cyclicity. Then
for each matrix E ∈ En there exists A ∈ En such that T (A) � E, i.e. G(T (A)) contains
the edge G(E).

P r o o f . It follows from Lemma 2.10 for E ∈ Nn and from Lemma 3.7 for E ∈ Dn. �
Let A ◦B denote entrywise product of matrices (also known as the Schur product or

Hadamard product), i.e. (A ◦B)ij = aij ⊗ bij .

Theorem 3.10. Let n ≥ 3 and T : Mn → Mn be a linear map. Then T preserves the
cyclicity index if and only if there exist

1. a permutation matrix P ∈Mn,

2. a matrix B = (bij) ∈Mn such that bij 6= −∞ for all 1 ≤ i, j ≤ n and the average
weight of each cycle in G(B) is 0,

3. diagonal matrices Ci = diag(ci1, . . . , cin) ∈ Mn, 1 ≤ i ≤ n, such that cij < 0 for
all 1 ≤ i, j ≤ n,

4. λ ∈ R,

such that T is a composition of the following transformations:

• T1(A) = AT for all A ∈Mn,

• T2(A) = P ⊗A⊗ PT for all A ∈Mn,

• T3(A) = λ⊗A for all A ∈Mn,

• T4(A) = A ◦B for all A ∈Mn,

• T5(A) = A⊕
n⊕
i=1

(aii ⊗ Ci) for all A = (aij) ∈Mn.

P r o o f . The “if” part holds because each of these transformations preserves cyclicity.
It is obvious for T1, T2, and T3. The map T4 preserves the average weight of each cycle
and does not add new edges, therefore, it also preserves the cyclicity index. The map
T5 is a composition of the maps T0k(A) = A ⊕ akk ⊗ Ck. Since each of them preserves
cyclicity by Lemma 2.2, it follows that T5 preserves cyclicity.

Now we are going to prove the second part of the theorem.
By Lemma 2.13 we have T (Dn) is a subset of the set of diagonal matrices, i.e., lies

in the linear span of Dn and by Lemma 3.3 T (Nn) ⊂ Nn. Thus by linearity we may
consider the action of T on the set of diagonal matrices and on the set Nn separately.
From Lemma 3.3 it follows that any linear map preserving cyclicity acts on the set
Nn of scalar multiples of non-diagonal matrix units as a composition of T1, T2 and
scalar multiplication by certain constants. Let us consider a map T ′ such that T is
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a composition T = T1 ◦ T2 ◦ T ′. Then T ′(α⊗Eij) = α⊗ αij ⊗Eij for all 1 ≤ i 6= j ≤ n,
all α ∈ R and appropriate αij ∈ R. By Corollary 3.6, the average weight of each cycle
is increased by the same value λ ∈ R. Hence, T ′ is a composition of T3 and T4.

By Lemma 3.7 and linearity of T for each i, 1 ≤ i ≤ n there exists Ci = diag(ci1, . . . , cin),
such that T (Eii) = λ ⊗ Eii ⊕

⊕
j 6=i cij ⊗ Ejj , where cij < λ. Then for any A ∈ Dn it

holds that

T (A) = λ⊗A⊕
n⊕
i=1

(aii ⊗
⊕
j 6=i

cij ⊗ Ejj) = λ⊗A⊕
n⊕
i=1

(aii ⊗ Ci).

By applying a bijective cyclicity preserving map T2 we may consider the case λ = 0.
Therefore, cij < 0 for all j 6= i. We can assume that also cii < 0, since the map T does
not depend on them. The required form is obtained. �

Theorem 3.11. Let T : M2 → M2 be a linear map. Then T preserves the cyclicity
index if and only if T is a composition of the following transformations

1. T1

(
a11 a12
a21 a22

)
=

(
c11 ⊗ a11 ⊕ c21 ⊗ a22 α⊗ a12

β ⊗ a21 c12 ⊗ a11 ⊕ c22 ⊗ a22

)
,

where α, β 6= −∞ and c11 ⊕ c12 = c21 ⊕ c22 = ⊗2
√
α⊗ β = α+β

2 ,

2. T2(A) = AT , for all A ∈M2.

P r o o f . It is obvious that the transformation T2 preserves cyclicity index. Now we are
going to prove that T1 preserves cyclicity too. Note that (c11⊗ a11⊕ c21⊗ a22)⊕ (c12⊗
a11 ⊕ c22 ⊗ a22) = (c11 ⊕ c12) ⊗ a11 ⊕ (c21 ⊕ c22) ⊗ a22 = ⊗2

√
α⊗ β ⊗ (a11 ⊕ a22) and

⊗2
√
α⊗ a12 ⊗ β ⊗ a21 = ⊗2

√
α⊗ β⊗ ⊗2

√
a12 ⊗ a21. It follows that the maximum weight of

loops and weight of the cycle of length 2 increase by the same number and T1 preserves
cyclicity. Therefore the “if” part holds.

Let us prove the “only if” part of the theorem.

By Lemma 2.10 T (E12) = α ⊗ E12 and T (E21) = β ⊗ E21 or T (E12) = β ⊗ E21 and
T (E12) = α ⊗ E21. From Lemma 2.13 it follows that T (E11) = c11 ⊗ E11 ⊕ c12 ⊗ E22

and T (E22) = c21 ⊗E11 ⊕ c21 ⊗E22. By linearity T has the same form as T1 or T2 ◦ T1.

Now we want to show that c11 ⊕ c12 = c21 ⊕ c22 = ⊗2
√
α⊗ β. We consider matrices

A = E11 ⊕ E12 ⊕ E22 and B = γ ⊗ E11 ⊕ E12 ⊕ E21, where γ < 0. Since σT (G(A)) =
σG(A) = 1, c11⊕ c12 ≥ ⊗2

√
α⊗ β. Suppose that (c11⊕ c12)⊗λ = ⊗2

√
α⊗ β, where λ < 0.

Then we take γ = λ/2. From σT (G(B)) = σG(B) it follows that γ⊗(c11⊕c12) < ⊗2
√
α⊗ β.

But λ
2 ⊗ (c11 ⊕ c12) > λ ⊗ (c11 ⊕ c12), a contradiction. Hence, c11 ⊕ c12 = ⊗2

√
α⊗ β.

Similarly, c21 ⊕ c22 = ⊗2
√
α⊗ β. �

4. ADDITIONAL PROPERTIES

Lemma 4.1. Let n ≥ 3, T5 : Mn → Mn be defined in Theorem 3.10. Then T5 is
bijective if and only if cij = −∞ for all i, j, 1 ≤ i 6= j ≤ n. If T5 is not bijective, then
T5 is both non-injective and non-surjective.
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P r o o f . Let us consider T5 as a composition of the following maps.
Fix an index i, 1 ≤ i ≤ n, and define the transformation T5i by T5i(A) = A⊕(aii⊗Ci),

where Ci = diag(ci1, . . . , cin) ∈ Mn, i = 1, . . . , n. If cij = −∞ for all j 6= i, then the
map T5i is identity and hence bijective.

If T5i is bijective for all i = 1, . . . , n, then T5 is bijective as a composition of bijective
maps.

If there exists i, j, 1 ≤ i 6= j ≤ n, with cij 6= −∞, then consider the map T5i. We have
T5i is non-injective, since T5i(Eii) = Eii⊕

⊕n
k=1 cik⊗Ekk = T5i(Eii⊕

⊕n
k=1 cik⊗Ekk),

but Eii 6= Eii ⊕
⊕n

k=1 cik ⊗ Ekk since cij 6= −∞. Also T5i is non-surjective, since
T5i(A) 6= Eii for all A ∈Mn.

This proves the lemma. �

Corollary 4.2. Let T : Mn → Mn be a linear map preserving cyclicity. Then T is
injective if and only if T is surjective.

P r o o f . By Theorem 3.10 if n ≥ 3 then T is a composition of the maps T1, T2, T3, T4, T5
introduced in Theorem 3.10. Note that the maps Tk, k = 1, 2, 3, 4, are bijective. So, it
remains to consider the bijectivity of T5. By Lemma 4.1 the map T5 is either bijective
or both non-injective and non-surjective.

Similarly to the proof of Lemma 4.1, we can define the transformation T1i by T1i(A) =
A⊕ (aii ⊗ Ci), where Ci = diag(ci1, ci2). Consideration of this map conclude the proof
for n = 2. �

Corollary 4.3. Let n ≥ 3, T : Mn → Mn be a bijective linear map. Then T pre-
serves cyclicity if and only if it is a composition of transformations T1, T2, T3, T4 from
Theorem 3.10.

P r o o f . The transformations T1, T2, T3, T4 defined in Theorem 3.10 are bijective. By
Lemma 4.1 the transformation T5 is bijective if and only if cij = −∞ for all 1 ≤ j 6= i ≤
n, and in this case T5 is the identity. �

Corollary 4.4. Let n ≥ 3, T : Mn → Mn be a non-surjective linear map of tropical
matrices. Then T preserves cyclicity index if and only if it is a composition of trans-
formations T1, T2, T3, T4, T5 from Theorem 3.10, and there exist 1 ≤ j 6= i ≤ n with
cij 6= −∞.

P r o o f . This statement is a direct consequence of Corollary 4.3. �

Lemma 4.5. Let B = (bij) ∈ Mn, bij 6= −∞ for all i, j. Then the average weight
of each cycle in G(B) is 0 if and only if there exist d1, . . . , dn ∈ R and the vectors
x = (d1, . . . , dn)T and y = (−d1, . . . ,−dn)T such that B = xyT .

P r o o f . Let J = (0) ∈ Mn be the matrix with all zero entries. We are going to prove
that the matrix B is obtained from J by several tropical multiplications of the i-th
column by βi and the i-th row by β⊗−1i , i.e. the matrix B is of the form bij = di − dj ,
where di ∈ R, i = 1, 2, . . . , n, which is equivalent to the desired condition.
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Consider a graph G(B). The tropical multiplications of the i-th column by βi and
the i-th row by β⊗−1i increase the weights of edges outgoing from i-th vertex by βi, and
decrease the weights of edges ingoing to i-th vertex by βi. Therefore, the average weight
of each cycle does not change. This proves the “if” part of the lemma.

Now let the average weight of each cycle in G(B) be 0. We prove the “only if” part
of the lemma by induction.

The base of induction is n = 2. In this case the conditions of the lemma imply that

B =

(
0 β
−β 0

)
, and the result follows.

The induction step. Let us show that if the statement holds for n = k, then it also
holds for n = k+ 1. Let B ∈Mk+1. Consider the graph G = G(B) and its subgraph G∗

induced by the vertices 1, . . . , k of G. Let B∗ ∈Mk be the adjacency matrix of G∗. By
the induction hypothesis, B∗ is obtained from J ∈Mn by several tropical multiplications
of the i-th column by βi and the i-th row by β⊗−1i . Applying inverse multiplications in
the reversed order to the matrix B, we get the matrix B′. The average weight of each
cycle does not change, hence, B′ is of the form

B′ =


0 . . . 0 b′1,k+1

. . . . . . . . . . . .
0 . . . 0 b′k,k+1

−b′1,k+1 . . . −b′k,k+1 0


Consider the cycle i→ k+1→ j → i. The average weight of it equals

b′i,k+1−b
′
j,k+1+0

3 = 0,
hence, b′i,k+1 = b′j,k+1 for all i, j. Then, multiplying the last column by −b′1,k+1, and the
last row by b′1,k+1, we obtain the matrix J ∈ Mn+1. Since this operation is invertible,
the lemma is proved. �
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