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STABILITY AND STABILIZATION OF ONE CLASS
OF THREE TIME-SCALE SYSTEMS WITH DELAYS

Valery Y. Glizer

A singularly perturbed linear time-invariant time delay controlled system is considered. The
singular perturbations are subject to the presence of two small positive multipliers for some of
the derivatives in the system. These multipliers (the parameters of singular perturbations) are
of different orders of the smallness. The delay in the slow state variable is non-small (of order
of 1). The delays in the fast state variables are proportional to the corresponding parameters
of singular perturbations. Three much simpler parameters-free subsystems are associated with
the original system. It is established that the exponential stability of the unforced versions of
these subsystems yields the exponential stability of the unforced version of the original system
uniformly in the parameters of singular perturbations. It also is shown that the stabilization of
the parameters-free subsystems by memory-free state-feedback controls yields the stabilization
of the original system by a memory-free state-feedback control uniformly in the parameters of
singular perturbations. Illustrative examples are presented.

Keywords: linear controlled system, time delay system, three time-scale singularly per-
turbed system, exponential stability, memory-free state-feedback stabilization
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1. INTRODUCTION

Singularly perturbed differential systems, i. e., the systems with small positive multipliers
(parameters of singular perturbations) for some of the highest order derivatives, serve as
mathematical models for various real-life processes with multi-time-scale dynamics (see
e. g. [6, 18, 31, 32, 36, 43] and references therein). Two classes of singularly perturbed
systems are mostly studied in the literature: (I) the systems perturbed by a single
small parameter (one-parameter or two time-scale systems); (II) the systems perturbed
by multiple small parameters (multi-parameter systems). For the second class, three
important cases of relationships between the small parameters are considered: (II1) the
ratios between the small parameters tend either to zero, or to positive infinity, i. e., the
parameters are of different orders of the smallness (see e. g. [7, 8, 23, 26, 33, 34]), such
singularly perturbed multi-parameter systems also are called three, four, e.t.c., time-scale
ones; (II2) the ratios between the small parameters are bounded from below and above
by positive numbers, i. e., the parameters are of the same order of the smallness (see
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e. g. [27, 29, 30, 40]); (II3) the small parameters are independent of each other (see e. g.
[1, 3, 24]). Note that most of the works, devoted to analysis of singularly perturbed multi-
parameter systems, deal with a delay-free version of the systems. Singularly perturbed
multi-parameter time delay systems are studied much less.

In this paper, we consider one class of singularly perturbed two-parameter linear
time-invariant controlled systems with state delays. We study the exponential stability
of the unforced version of this system where the control function is identical zero. Also,
we study the memory-free state-feedback stabilization of the original system. Stability is
one of the basic properties of an uncontrolled system, as well as stabilization is one of the
basic properties of a controlled system. Stability of linear time-invariant uncontrolled
systems with delays, as well as stabilization of linear time-invariant controlled time delay
systems, were extensively studied in the literature (see e. g. [12, 17, 21, 35, 37, 39, 41]
and references therein). One can directly apply the results of these studies to a sin-
gularly perturbed system for any specified values of the small parameters. However, a
stiffness of the system and its high Euclidean dimension considerably complicate such an
application. Moreover, this application depends on the values of the small parameters,
while in various real-life problems these values are unknown, i. e., these problems are un-
certain with respect to the parameters. Thus, for singularly perturbed systems, another
(than the aforementioned) conditions of their stability/stabilization, uniform (robust)
with respect to the small parameters, should be derived. More precisely, these conditions
should be independent of these parameters, while provide the stability/stabilization for
all their sufficiently small values. Such conditions can be derived using the separation
of time-scales concept (see e. g. [31]). Thus in [4, 28, 31] and references therein, the
stability/stabilization conditions for standard and nonstandard single-parameter singu-
larly perturbed systems without delays were derived. In [16, 19, 20, 25, 38] (see also
references therein), the stability/stabilization analysis for various single-parameter sin-
gularly perturbed systems with delays was carried out using the separation of time-scales
approach. In [2, 12, 19, 42] (see also references therein), the stability/stabilization of
various single-parameter singularly perturbed systems with delays was studied using the
Linear Matrix Inequality method. Stability and stabilization issues for singularly per-
turbed multi-parameter systems also were studied in the literature although less. Thus
in [1] and references therein, various types of stability for singularly perturbed multi-
parameter linear time-invariant systems without delays were studied using the spectrum
analysis. In [26], a singularly perturbed multi-parameter linear time-dependent system
without delays was considered. Stability analysis of this system was carried out by
its diagonalization. One class of singularly perturbed three time-scale nonlinear time-
invariant systems without delays was considered in [5]. Based on some approximation
of the original system by three simpler systems in different intervals of the indepen-
dent variable, its asymptotic stability is established. In [10], a singularly perturbed
two-parameter Itô differential system without delays was analyzed. For this system, a
stabilizing composite control was designed using the Linear Matrix Inequality approach.
In [3], a singularly perturbed multi-parameter linear time-invariant system with a sin-
gle point-wise non-small (of order of 1) delay was studied. Sufficient condition of its
asymptotic stability was derived in the terms of linear matrix inequality.

The motivation of the present, rather theoretical, paper is to extend the separa-
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tion of time-scales concept to analysis of the stability/stabilization for one nontrivial
class of two-parameter systems with state delays of different scales. Namely, the sin-
gularly perturbed two-parameter system, considered in the present paper, is assumed
to be of the three time-scale type, i. e., its two small parameters are of different orders
of the smallness. The delay in the slow state variable of this system is non-small (of
order of 1), while the delays in the fast state variables are proportional to the corre-
sponding small parameters of singular perturbations. To the best of our knowledge,
such a type of systems has not been considered yet in the literature, and it essentially
differs from the singularly perturbed systems studied in the literature. The stability
analysis of the unforced version of the original system and the stabilization analysis of
this system are based on a proper extension of the separation of time-scales concept.
Since the considered system is a two-parameter three time-scale one, it should be sep-
arated into more than two parameters-free subsystems (like it is done in the classical
case of one-parameter singularly perturbed systems [31]). In the present paper, the
considered system is separated approximately (asymptotically) into three much simpler
parameters-free subsystems (purely slow, mixed slow-fast and purely fast ones). Then,
the validity of the stability/stabilization of the original system uniform with respect to
the small parameters is deduced from the presumed stability/stabilization of these three
parameters-free subsystems. Thus, the main result of the paper consists in the reduction
of the stability/stabilization analysis of the complicated two-parameter three time-scale
system to the stability/stabilization analysis of the three much simpler parameter-free
subsystems. Moreover, this reduction is uniform (robust) with respect to the parameters
of singular perturbations for all their sufficiently small values preserving the order of the
smallness.

The paper is organized of follows. In the next section, the problem formulation is
given in the rigorous form. The objectives of the paper also are stated. Some preliminary
results are presented in Section 3. Section 4 is devoted to the main results. In Section 5
several examples, illustrating the theoretical results of the paper, are considered. Con-
clusions are placed in Section 6. Sections 7–10 are devoted to technically complicated
proofs of some auxiliary lemmas.

The following main notations are applied in the paper:

(1) Rn denotes the n-dimensional real Euclidean space, ‖ · ‖ denotes the norm in this
space;

(2) In denotes the n-dimensional identity matrix;

(3) Reλ denotes the real part of a complex number λ;

(4) col(x1, x2, . . . , xk), where x1 ∈ Rn1 , x2 ∈ Rn2 , . . . , xk ∈ Rnk , denotes a column
block-vector in which x1 is the upper block, x2 in the next block after x1, and so
on, xk is the lower block;

(5) C[a, b;Rn] is the space of continuous functions f(t) : [a, b] → Rn, ‖ · ‖C denotes
the uniform norm in C[a, b;Rn].
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2. PROBLEM FORMULATION

2.1. Original system

The system under the consideration is the following:

dx(t)

dt
= A11x(t) +A12y1(t) +A13y2(t) +G1x(t− g)

+H11y1(t− ε1h1) +H12y2(t− ε2h2) +B1u(t), (1)

ε1
dy1(t)

dt
= A21x(t) +A22y1(t) +A23y2(t) +G2x(t− g)

+H21y1(t− ε1h1) +H22y2(t− ε2h2) +B2u(t), (2)

ε2
dy2(t)

dt
= A31x(t) +A32y1(t) +A33y2(t) +G3x(t− g)

+H31y1(t− ε1h1) +H32y2(t− ε2h2) +B3u(t), (3)

where t ≥ 0; x(t) ∈ Rn, yk(t) ∈ Rmk , (k = 1, 2), u(t) ∈ Rr, (u(t) is a control); εk > 0,
(k = 1, 2) are small parameters; g > 0 and hk > 0, (k = 1, 2) are given numbers
independent of εk, (k = 1, 2); Aij , Gi, Hil, Bi, (i, j = 1, 2, 3; l = 1, 2) are given constant
matrices of corresponding dimensions.

The system (1) – (3) is a singularly perturbed time delay system with two parameters
of singular perturbations ε1 and ε2. It is infinite-dimensional with the state variables(
x(t), x(t+ η)

)
, η ∈ [−g, 0),

(
y1(t), y1(t+ ε1ζ1)

)
, ζ1 ∈ [−h1, 0) and

(
y2(t), y2(t+ ε2ζ2)

)
,

ζ2 ∈ [−h2, 0). The equation (1) and the state variable
(
x(t), x(t+ η)

)
are called a slow

mode and a slow state variable of (1) – (3). The equations (2), (3) and the state variables(
y1(t), y1(t+ ε1ζ1)

)
,
(
y2(t), y2(t+ ε2ζ2)

)
are called fast modes and fast state variables of

(1) – (3). An additional feature of (1) – (3) is that the delays in the fast state variables
are proportional to the small multipliers for the derivatives in the corresponding fast
modes.

In what follows, we assume that the small parameter ε2 > 0 is of a higher order of
smallness than the small parameter ε1 > 0, i. e.,

ε2/ε1 � 1. (4)

For instance, this relation between ε1 and ε2 is fulfilled if ε1 = ε and ε2 = ε2, where
0 < ε� 1 is a small parameter.

Thus, due to (4), the fast state variable
(
y2(t), y2(t + ε2ζ2)

)
is ”faster” than the

fast state variable
(
y1(t), y1(t+ ε1ζ1)

)
. Hence, the system (1) – (3) is a three time-scale

system.
Let us consider the following block vector and block matrices:

z(t)
4
= col

(
x(t), y1(t), y2(t)

)
, t ≥ −g, (5)

A
4
=

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , G
4
=

 G1 0 0
G2 0 0
G3 0 0

 , H1
4
=

 0 H11 0
0 H21 0
0 H31 0

 ,
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H2
4
=

 0 0 H12

0 0 H22

0 0 H32

 , B
4
=

 B1

B2

B3

 , E(ε1, ε2)
4
=

 In 0 0
0 ε1Im1

0
0 0 ε2Im2

 .

(6)

Using these vector and matrices, we can rewrite the system (1) – (3) in the equivalent
form as:

E(ε1, ε2)
dz(t)

dt
= Az(t) +Gz(t− g)

+H1z(t− ε1h1) +H2z(t− ε2h2) +Bu(t), t ≥ 0. (7)

Let

0 < ε∗1 � 1, 0 < ε∗ � 1 (8)

be any given positive numbers. Let

Ω(ε∗1, ε
∗)
4
= {(ε1, ε2) : ε1 ∈ (0, ε∗1], ε2/ε1 ∈ (0, ε∗]}. (9)

Definition 2.1. The unforced system (7) (u(t) ≡ 0) is called exponentially stable uni-
formly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗), if for any such pair of the parameters ε1 and ε2, and any
function ψz(η) ∈ C[−g, 0;Rn+m1+m2 ] the solution z(t), t ≥ 0 of this system with the
initial condition z(η) = ψz(η), η ∈ [−g, 0] satisfies the inequality

‖z(t)‖ ≤ cz exp(−ωzt)‖ψz(η)‖C , t ≥ 0,

where cz > 0 and ωz > 0 are some constants independent of (ε1, ε2) ∈ Ω(ε∗1, ε
∗) and

ψz(η).

For the controlled system (7), let us consider the memory-free state-feedback control

u(t) = u[z(t)] = Kzz(t), t ≥ 0, (10)

where Kz is an r × (n+m1 +m2)-matrix independent of ε1 and ε2.

Definition 2.2. The system (7) is called stabilized by a memory-free state-feedback
control uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗), if there exists the control (10) such that the
closed-loop system (7), (10) is exponentially stable uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗).

Remark 2.3. Since the systems (7) and (1) – (3) are equivalent to each other for any
ε1 > 0 and ε2 > 0, Definitions 2.1 and 2.2 also are valid for the system (1) – (3).

Remark 2.4. For the sake of the further analysis of the original system (1) – (3) (and,
therefore, (7)), we are going to introduce into the consideration three much simpler
parameters-free subsystems (the purely slow, mixed slow-fast and purely fast ones).
The introducing these subsystems is a generalization of the slow-fast decomposition of
one-parameter singularly perturbed systems without delays (see e. g. [14, 31, 43]) and of
the slow-fast decomposition of one-parameter singularly perturbed time delay systems
(see e. g. [9, 18]).
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2.2. Purely slow subsystem

This subsystem has the form

dxs(t)

dt
= A11xs(t) +A12,sy1,s(t) +A13,sy2,s(t) +G1xs(t− g) +B1us(t), (11)

0 = A21xs(t) +A22,sy1,s(t) +A23,sy2,s(t) +G2xs(t− g) +B2us(t), (12)

0 = A31xs(t) +A32,sy1,s(t) +A33,sy2,s(t) +G3xs(t− g) +B3us(t), (13)

where xs(t) ∈ Rn and yk,s(t) ∈ Rmk , (k = 1, 2); us(t) ∈ Rr is a control;

Alj,s = Alj +Hlj−1, l = 1, 2, 3 j = 2, 3. (14)

Remark 2.5. The subsystem (11) – (13) can be obtained from the original system (1) –
(3) by setting there formally ε1 = 0 and ε2 = 0. Note that the purely slow subsys-
tem (11) – (13) is a descriptor (differential-algebraic) system with a delay only in the
state xs(·).

Let us denote

A1s
4
=
(
A12,s , A13,s

)
, A2s

4
=

(
A21

A31

)
,

A3s
4
=

(
A22,s A23,s

A32,s A33,s

)
, G23,s

4
=

(
G2

G3

)
, B23,s

4
=

(
B2

B3

)
.

(15)

If

detA3s 6= 0, (16)

then, using the notations (15), we can reduce the purely slow subsystem (11) – (13) to
the following time delay differential equation with respect to xs(t):

dxs(t)

dt
= Āsxs(t) + Ḡsxs(t− g) + B̄sus(t), t ≥ 0, (17)

where

Ās = A11 −A1sA−13s A2s, Ḡs = G1 −A1sA−13s G23,s, B̄s = B1 −A1sA−13s B23,s. (18)

The equation (17) also is called a purely slow subsystem, associated with the original
system (1) – (3) (and, therefore, with (7)). This purely slow subsystem is of a lower
Euclidean dimension than the original system.

2.3. Mixed slow-fast subsystem

This subsystem is the following:

dy1,sf (ξ1)

dξ1
= A22y1,sf (ξ1) +A23,sy2,sf (ξ1)

+H21y1,sf (ξ1 − h1) +B2usf (ξ1), ξ1 ≥ 0,
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0 = A32y1,sf (ξ1) +A33,sy2,sf (ξ1)

+H31y1,sf (ξ1 − h1) +B3usf (ξ1), ξ1 ≥ 0,

(19)

where ξ1 is a new independent variable; the matrices A23,s and A33,s are given in (14).

Remark 2.6. The subsystem (19) can be derived from the fast modes (2) and (3) of
the original system (1) – (3) by the following formal three steps’ procedure. At the first
step, we remove the slow state x(·) from the fast modes (2) and (3). Thus, we obtain the
differential equations with respect to the fast states yk(·), (k = 1, 2), right-hand sides of
which depend only on these states and the control

ε1
dy1(t)

dt
= A22y1(t) +A23y2(t) +H21y1(t− ε1h1) +H22y2(t− ε2h2) +B2u(t),

ε2
dy2(t)

dt
= A32y1(t) +A33y2(t) +H31y1(t− ε1h1) +H32y2(t− ε2h2) +B3u(t),

(20)

where t ≥ 0.
At the second step, we transform the variables in the equations (20) as: t = ε1ξ1;

yk(ε1ξ1) = yk,sf (ξ1), ξ1 ≥ −h1, (k = 1, 2); u(εξ1) = usf (ξ1), ξ1 ≥ 0. This transformation
yields the system

dy1,sf (ξ1)

dξ1
= A22y1,sf (ξ1) +A23y2,sf (ξ1)

+H21y1,sf (ξ1 − h1) +H22y2,sf
(
ξ1 − (ε2/ε1)h2

)
+B2usf (ξ1), ξ1 ≥ 0,

(ε2/ε1)
dy2,sf (ξ1)

dξ1
= A32y1,sf (ξ1) +A33y2,sf (ξ1)

+H31y1,sf (ξ1 − h1) +H32y2,sf
(
ξ1 − (ε2/ε1)h2

)
+B3usf (ζ1), ξ1 ≥ 0.

(21)

At the third step, taking into account (4), we set formally ε2/ε1 = 0 in the system
(21), which yields the mixed slow-fast subsystem (19). This subsystem is a descriptor
(differential-algebraic) system with a delay only in the state y1,sf (·).

If

detA33,s 6= 0, (22)

the subsystem (19) can be reduced to the following differential equation with state delay:

dy1,sf (ξ1)

dξ1
= Āsfy1,sf (ξ1) + H̄sfy1,sf (ξ1 − h1) + B̄sfusf (ξ1), ξ1 ≥ 0, (23)

where

Āsf = A22 −A23,s(A33,s)
−1A32

H̄sf = H21 −A23,s(A33,s)
−1H31,

B̄sf = B2 −A23,s(A33,s)
−1B3.

(24)

The system (23) also is called the mixed slow-fast subsystem of the system (1) – (3)
(and, therefore, of the system (7)).



600 VALERY Y. GLIZER

2.4. Purely fast subsystem

This subsystem has the form

dy2,f (ξ2)

dξ2
= A33y2,f (ξ2) +H32y2,f (ξ2 − h2) +B3uf (ξ2), ξ2 ≥ 0, (25)

where ξ2 is a new independent variable.

Remark 2.7. The subsystem (25) can be obtained from the fast mode (3) of the original
system (1) – (3) by the following formal two steps’ procedure. At the first step, we remove
the slow state x(·) and the fast state y1(·) (the slower fast state than the fast state y2(·))
from the fast mode (3) (which is the faster mode than the fast mode (2)). Thus, we
obtain the differential equation with respect to fast state y2(·), right-hand side of which
depends only on this state and the control

ε2
dy2(t)

dt
= A33y2(t) +H32y2(t− ε2h2) +B3u(t), t ≥ 0. (26)

At the second step, we transform the variables in the equation (26) as: t = ε2ξ2;
y2(ε2ξ2) = y2,f (ξ2), ξ2 ≥ −h2; u(εξ2) = uf (ξ2), ξ2 ≥ 0. This transformation yields the
purely fast subsystem (25). This subsystem is a time delay differential equation with
respect to y2,f (ξ2).

2.5. Objectives of the paper

The objectives of the paper are:

(I) assuming the exponential stability of the unforced purely slow subsystem, the
unforced mixed slow-fast subsystem and the unforced purely fast subsystem, to
establish the exponential stability of the unforced singularly perturbed system (7)
(and, therefore, (1) – (3)) uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗) for some numbers ε∗1 and
ε∗ satisfying (8);

(II) assuming that the controlled purely slow subsystem, the controlled mixed slow-fast
subsystem and the controlled purely fast subsystem are stabilized by memory-free
state-feedback controls, to established that the controlled singularly perturbed
system (7) (and, therefore, (1) – (3)) is stabilized by a memory-free state-feedback
control uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗) for some numbers ε∗1 and ε∗ satisfying (8).

Note that definitions of the exponential stability and the stabilization of the purely
slow, mixed slow-fast and purely fast subsystems are presented in the next section.

3. PRELIMINARY RESULTS

3.1. Some quasi-polynomial equations: properties of the roots

The characteristic equation with respect to λ of the unforced original system (7) (and,
therefore, (1) – (3)) is

D(λ, ε1, ε2)
4
= detC(λ, ε1, ε2) = 0, (27)
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where

C(λ, ε1, ε2) = A+G exp(−gλ) +H1 exp(−ε1h1λ)

+H2 exp(−ε2h2λ)− λE(ε1, ε2). (28)

Similarly, the characteristic equations of the unforced purely slow subsystem (17),
mixed slow-fast subsystem (23) and purely fast subsystem (25) are, respectively,

Ds(λ)
4
= detCs(λ) = 0, Cs(λ) = Ās + Ḡs exp(−gλ)− λIn, (29)

Dsf (µ)
4
= detCsf (µ) = 0, Csf (µ) = Āsf + H̄sf exp(−h1µ)− µIm1

, (30)

Df (ν)
4
= detCf (ν) = 0, Cf (ν) = A33 +H32 exp(−h2ν)− νIm2 . (31)

Let λs,k, (k = 1, . . . , ks) be all distinct roots of the quasi-polynomial equation (29)
satisfying the inequality

Reλs,k ≥ 0, k = 1, . . . , ks. (32)

By virtue of the results of [22], we have that

0 ≤ ks < +∞. (33)

Lemma 3.1. Let the inequality (16) hold. Let {ε1,α}, {ε2,α}, (α = 1, 2, . . .) be any two
sequences of real numbers and {λα}, (α = 1, 2, . . .) be any sequence of complex numbers
such that:

(i) εl,α > 0, (α = 1, 2, . . . ; l = 1, 2);

(ii) limα→+∞ εl,α = 0, (l = 1, 2);

(iii) limα→+∞ ε2,α/ε1,α = 0;

(iv) Reλα ≥ 0, (α = 1, 2, . . . .);

(v) limα→+∞ ε1,αλα = 0;

(vi) D(λα, ε1,α, ε2,α) = 0, (α = 1, 2, . . .).

Then, the sequence {λα} is bounded. Moreover, ks > 0 and there exists a subsequence
of {λα}, which converges to one of the numbers λs,k, (k = 1, . . . , ks).

Proof of the lemma is presented in Appendix A (see Section 7).

Let µp, (p = 1, . . . , psf ) be all distinct roots of the quasi-polynomial equations in (30)
satisfying the inequality

Reµp ≥ 0, p = 1, . . . , psf .
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Similarly to (33),
0 ≤ psf < +∞. (34)

Consider the block-form matrix

E1(ε1)
4
=

 ε1In 0 0
0 Im1

0
0 0 Im2

 .

Using this matrix and the matrix C(λ, ε1, ε2) (see the equation (28)), we consider the
quasi-polynomial equation with respect to µ

D̃(µ, ε1, ε2)
4
= det

(
E1(ε1)C(µ/ε1, ε1, ε2)

)
= 0. (35)

For a given pair (ε1 > 0, ε2 > 0), µ is a root of (35) if and only if λ = µ/ε1 is a root of
the quasi-polynomial equation (27).

Lemma 3.2. Let the inequalities (16) and (22) hold. Let {ε1,α}, {ε2,α}, (α = 1, 2, . . .)
be any two sequences of real numbers and {µα}, (α = 1, 2, . . .) be any sequence of
complex numbers such that:

(i) εl,α > 0, (α = 1, 2, . . . ; l = 1, 2);

(ii) limα→+∞ εl,α = 0, (l = 1, 2);

(iii) limα→+∞ ε2,α/ε1,α = 0;

(iv) Reµα ≥ 0, (α = 1, 2, . . .);

(v) limα→+∞(ε2,α/ε1,α)µα = 0;

(vi) D̃(µα, ε1,α, ε2,α) = 0, (α = 1, 2, . . .).

Then:

(I) the sequence {µα} is bounded;

(II) either there exists a subsequence of the sequence {µα}, (α = 1, 2, . . .) converging to
zero, or psf > 0 and there exists a subsequence of the sequence {µα}, (α = 1, 2, . . .)
converging to one of the numbers µp, (p = 1, . . . , psf ).

Proof of the lemma is presented in Appendix B (see Section 8).

Let νq, (q = 1, . . . , qf ) be all distinct roots of the quasi-polynomial equation in (31)
satisfying the inequality

Reνq ≥ 0, q = 1, . . . , qf . (36)

Similarly to (33) and (34),

0 ≤ qf < +∞.
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Consider the block-form matrix

E2(ε1, ε2)
4
=

 ε2In 0 0
0 (ε2/ε1)Im1

0
0 0 Im2

 .

Using this matrix, we consider the quasi-polynomial equation with respect to ν

D̂(ν, ε1, ε2)
4
= det

(
E2(ε1, ε2)C(ν/ε2, ε1, ε2)

)
= 0. (37)

For a given pair (ε1 > 0, ε2 > 0), ν is a root of (37) if and only if λ = ν/ε2 is a root of
the quasi-polynomial equation (27).

Similarly to Lemma 3.2, we obtain the following assertion.

Lemma 3.3. Let the inequality (22) hold. Let {ε1,α}, {ε2,α}, (α = 1, 2, . . .) be any two
sequences of real numbers and {να}, (α = 1, 2, . . .) be any sequence of complex numbers
such that: (i) εl,α > 0, (α = 1, 2, . . . ; l = 1, 2); (ii) limα→+∞ εl,α = 0, (l = 1, 2); (iii)

limα→+∞ ε2,α/ε1,α = 0; (iv) Reνα ≥ 0, (α = 1, 2, . . .); (v) D̂(να, ε1,α, ε2,α) = 0, (α =
1, 2, . . .). Then:

(I) the sequence {να} is bounded;

(II) either there exists a subsequence of {να}, (α = 1, 2, . . .) converging to zero, or
qf > 0 and there exists a subsequence of {να}, (α = 1, 2, . . .) converging to one of
the numbers νq, (q = 1, . . . , qf ).

Remark 3.4. Lemmas 3.1, 3.2 and 3.3 show the following. For ε1 → 0, ε2 → 0, such
that ε2/ε1 → 0, the set of roots λ(ε1, ε2) with nonnegative real parts of the character-
istic equation (27) of the unforced original system (7) (and, therefore, (1) – (3)) can be
partitioned into three subsets. The roots of the first subset tend to the roots λs,k of the
characteristic equation (29) of the unforced purely slow subsystem (17). The products
of the roots of the second subset with ε1 tend to the roots µp of the characteristic equa-
tion (30) of the unforced mixed slow-fast subsystem (23). The products of the roots of
the third subset with ε2 tend to the roots νq of the characteristic equation (31) of the
unforced purely fast subsystem (25).

Remark 3.5. Lemmas 3.1, 3.2 and 3.3 are used for a proper estimation of the roots of
the characteristic equation (27) of the unforced original system (7) (and, therefore, (1) –
(3)). Based on this estimation, the exponential stability of the unforced original system
(7) (and, therefore, (1) – (3)), uniformly valid for all sufficiently small (ε1, ε2) ∈ Ω(ε∗1, ε

∗),
is established. These results are presented in Section 4.1 (see Theorem 4.2 and its proof).

3.2. Exponential stability of the unforced purely slow, mixed slow-fast and
purely fast subsystems

In this subsection, we assume that the inequalities (16) and (22) are valid. In such a
case, we call the original three time-scale system (1) – (3) the standard system. Two-time
scale standard systems can be found, for instance, in [14, 31] and references therein.
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Definition 3.6. The unforced purely slow subsystem (17) (us(t) ≡ 0) is called expo-
nentially stable, if for any function ψs(η) ∈ C[−g, 0;Rn] the solution xs(t), t ≥ 0 of this
subsystem with the initial condition xs(η) = ψs(η), η ∈ [−g, 0] satisfies the inequality

‖xs(t)‖ ≤ cs exp(−ωst)‖ψs(η)‖C , t ≥ 0,

where cs > 0 and ωs > 0 are some constants independent of ψs(η).

Definition 3.7. The unforced mixed slow-fast subsystem (23) (usf (ξ1) ≡ 0) is called
exponentially stable, if for any function ψsf (ζ1) ∈ C[−h1, 0;Rm1 ] the solution y1,sf (ξ1),
ξ1 ≥ 0 of this subsystem with the initial condition y1,sf (ζ1) = ψsf (ζ1), ζ1 ∈ [−h1, 0]
satisfies the inequality

‖y1,sf (ξ1)‖ ≤ csf exp(−ωsfξ1)‖ψsf (ζ1)‖C , ξ1 ≥ 0,

where csf > 0 and ωsf > 0 are some constants independent of ψsf (ζ1).

Definition 3.8. The unforced purely fast subsystem (25) (uf (ξ2) ≡ 0) is called expo-
nentially stable, if for any function ψf (ζ2) ∈ C[−h2, 0;Rm2 ] the solution y2,f (ξ2), ξ2 ≥ 0
of this subsystem with the initial condition y2,f (ζ2) = ψf (ζ2), ζ2 ∈ [−h2, 0] satisfies the
inequality

‖y2,f (ξ2)‖ ≤ cf exp(−ωfξ2)‖ψf (ζ2)‖C , ξ2 ≥ 0,

where cf > 0 and ωf > 0 are some constants independent of ψf (ζ2).

Let Ss, Ssf and Sf be the sets of all distinct roots of the quasi-polynomial equations
(29), (30) and (31), respectively.

By virtue of the results of the work [22], we directly have the following three assertions.

Proposition 3.9. The unforced purely slow subsystem (17) (us(t) ≡ 0) is exponentially
stable if and only if the following inequality is satisfied

βs
4
= max
λ∈Ss

Reλ < 0. (38)

Proposition 3.10. The unforced mixed slow-fast subsystem (23) (usf (ξ1) ≡ 0) is ex-
ponentially stable if and only if the following inequality is satisfied

βsf
4
= max
µ∈Ssf

Reµ < 0. (39)

Proposition 3.11. The unforced purely fast subsystem (25) (uf (ξ2) ≡ 0) is exponen-
tially stable if and only if the following inequality is satisfied

βf
4
= max
ν∈Sf

Reν < 0. (40)
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3.3. Stabilization of the controlled purely slow, mixed slow-fast and purely
fast subsystems

In this subsection, we assume that the inequalities (16) and (22) are not, in general, valid.
In such a case, we call the original three time-scale system (1) – (3) the non-standard
system. Two-time scale non-standard systems can be found, for instance, in [14, 31]
and references therein. Since the inequalities (16) and (22) are not, in general, valid,
then the purely slow subsystem (17) and the mixed slow-fast subsystem (23) are not, in
general, exist. Therefore, to study the stabilization of the purely slow subsystem and the
mixed slow-fast subsystem, we consider these subsystems in their differential-algebraic
form (11) – (13) and (19), respectively.

Let us start the stabilization analysis of the purely slow, mixed slow-fast and purely
fast subsystems with such an analysis of the purely fast subsystem (25). For this sub-
system, let us consider the memory-free state-feedback control

uf (ξ2) = uf [y2,f (ξ2)] = Kfy2,f (ξ2), (41)

where Kf is an r ×m2-matrix.

Definition 3.12. The purely fast subsystem (25) is called stabilized by a memory-free
state-feedback control, if there exists the control (41) such that the closed-loop system
(25), (41) is exponentially stable.

Let the control (41), mentioned in Definition 3.12, exists. Substituting this control
into (25), we obtain the corresponding closed-loop system

dy2,f (ξ2)

dξ2
= (A33 +B3Kf )y2,f (ξ2) +H32y2,f (ξ2 − h2), ξ2 ≥ 0. (42)

The characteristic equation with respect to ν of the system (42) has the form

det
(
A33 +B3Kf +H32 exp(−h2ν)− νIm2

)
= 0. (43)

Taking into account Definition 3.12 and applying Proposition 3.11 to the system (42),
we can conclude immediately that the real parts of all the roots of the quasi-polynomial
equation (43) are negative. Hence, the number ν = 0 is not a root of (43), implying the
following inequality:

det
(
A33,s +B3Kf

)
6= 0, (44)

where A33,s is given in (14).

Proceed to the mixed slow-fast subsystem (19). For this subsystem, we consider the
memory-free state-feedback control

usf (ξ1) = usf [y1,sf (ξ1), y2,sf (ξ1)] = Ksfy1,sf (ξ1) +Kfy2,sf (ξ1), (45)

where Ksf is an r ×m1-matrix; Kf is the gain-matrix in the control (41).
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Definition 3.13. The mixed slow-fast subsystem (19) is called stabilized by a memory-
free state-feedback control, if there exists the control (45) such that the closed-loop
system (19), (45) is exponentially stable. The latter means that, for any function
ψsf (ζ1) ∈ C[−h1, 0;Rm1 ], the solution col

(
y1,sf (ξ1), y2,sf (ξ1)

)
, ξ1 ≥ 0 of this system

with the initial condition

y1,sf (ζ1) = ψsf (ζ1), ζ1 ∈ [−h1, 0] (46)

exists, is unique and satisfies the inequality∥∥col
(
y1,sf (ξ1), y2,sf (ξ1)

)∥∥ ≤ asf exp(−κsfξ1)‖ψsf (ζ1)‖C , ξ1 ≥ 0, (47)

where asf > 0 and κsf > 0 are some constants independent of ψsf (ζ1).

Lemma 3.14. Let the control (41) stabilize the purely fast subsystem (25). Then, the
control (45) stabilizes the mixed slow-fast subsystem (19) if and only if the control

vsf (ξ1) = vsf [y1,sf (ξ1)] = Ksfy1,sf (ξ1) (48)

stabilizes the following system:

dy1,sf (ξ1)

dξ1
= Asf (Kf )y1,sf (ξ1) +Hsf (Kf )y1,sf (ξ1 − h1)

+Bsf (Kf )vsf (ξ1), ξ1 ≥ 0, (49)

where

Asf (Kf ) = A22 − (A23,s +B2Kf )(A33,s +B3Kf )−1A32,

Hsf (Kf ) = H21 − (A23,s +B2Kf )(A33,s +B3Kf )−1H31,

Bsf (Kf ) = B2 − (A23,s +B2Kf )(A33,s +B3Kf )−1B3.

(50)

Proof of the lemma is presented in Appendix C (see Section 9).

Corollary 3.15. Let the control (41) stabilize the purely fast subsystem (25). Let the
control (45) stabilize the mixed slow-fast subsystem (19). Then, the following inequality
is valid:

det
(
Asf (Kf ) + Bsf (Kf )Ksf +Hsf (Kf )

)
6= 0. (51)

P r o o f . Based on Lemma 3.14, the validity of the inequality (51) is proven similarly
to the validity of the inequality (44). �

Now, let us treat the purely slow subsystem (11) – (13). For this subsystem, we
consider the memory-free state-feedback control

us(t) = us[xs(t), y1,s(t), y2,s(t)] = Ksxs(t) +Ksfy1,s(t) +Kfy2,s(t), t ≥ 0, (52)

where Ks is an r×n-matrix; Ksf and Kf are the gain-matrices in the controls (45) and
(41).
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Definition 3.16. The purely slow subsystem (11) – (13) is called stabilized by a memory-
free state-feedback control, if there exists the control (52) such that the closed-loop
system (11) – (13), (52) is exponentially stable. The latter means that, for any function
ψs(η) ∈ C[−g, 0;Rn], the solution col

(
xs(t), y1,s(t), y2,s(t)

)
, t ≥ 0 of this system with

the initial condition
xs(η) = ψs(η), η ∈ [−g, 0] (53)

exists, is unique and satisfies the inequality∥∥col
(
xs(t), y1,s(t), y2,s(t)

)∥∥ ≤ as exp(−κst)‖ψs(η)‖C , t ≥ 0, (54)

where as > 0 and κs > 0 are some constants independent of ψs(η).

Lemma 3.17. Let the controls (41) and (45) stabilize the purely fast subsystem (25)
and the mixed slow-fast subsystem (19), respectively. Then, the control (52) stabilizes
the purely slow subsystem (11) – (13) if and only if the control

vs(t) = vs[xs(t)] = Ksxs(t) (55)

stabilizes the following system:

dxs(t)

dt
= As(Ksf ,Kf )xs(t) + Gs(Ksf ,Kf )xs(t− g) + Bs(Ksf ,Kf )vs(t), t ≥ 0, (56)

where

As(Ksf ,Kf ) = A11 −
(
A1s +B1 · (Ksf , Kf )

)(
W (Ksf ,Kf )

)−1A2s,

Gs(Ksf ,Kf ) = G1 −
(
A1s +B1 · (Ksf , Kf )

)(
W (Ksf ,Kf )

)−1G23,s,
Bs(Ksf ,Kf ) = B1 −

(
A1s +B1 · (Ksf , Kf )

)(
W (Ksf ,Kf )

)−1B23,s,
W (Ksf ,Kf ) = A3s + B23,s · (Ksf , Kf ),

(57)

and the matrices A1s, A2s, A3s, G23,s, B23,s are given in (15).

Proof of the lemma is presented in Appendix D (see Section 10).

Remark 3.18. The gain-matrices Kf , Ksf and Ks, which appear in stabilizing controls
(41), (48) and (55), can be derived using various methods (see e. g. [13, 18, 35, 37, 41]
and references therein).

Remark 3.19. Using the stabilizing control (41) for the purely fast subsystem (25),
Lemma 3.14 allows to reduce the stabilization problem for the (m1 + m2)-dimensional
differential-algebraic system (19) (the mixed slow-fast subsystem) to the simpler sta-
bilization problem for the lower dimension (m1-dimensional) differential system (49).
Similarly, using the stabilizing controls (41) and (45) for the purely fast subsystem
(25) and the mixed slow-fast subsystem (19), respectively, Lemma 3.17 allows to reduce
the stabilization problem for the (n+m1+m2)-dimensional differential-algebraic system
(11) – (13) (the purely slow subsystem) to the simpler stabilization problem for the lower
dimension (n-dimensional) differential system (56).
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Remark 3.20. Lemmas 3.14, 3.17 and the corresponding gain-matrices Kf , Ksf , Ks

are used for the design of a memory-free linear state-feedback control, which stabilizes the
original singularly perturbed system (7) (and, therefore, the system (1) – (3)) uniformly
in ε1 and ε2 for all sufficiently small values (ε1, ε2) ∈ Ω(ε∗1, ε

∗). This result is presented
in Section 4.2 (see Theorem 4.4 and its proof).

4. MAIN RESULTS

4.1. Parameters-free conditions for the exponential stability
of the unforced original system

First of all, let us present the parameters-dependent criterion of the exponential stability
of the unforced original system (1) – (3) (u(t) ≡ 0). For a given pair (ε1 > 0 , ε2 > 0),
let S(ε1, ε2) be the set of all distinct roots of the quasi-polynomial equation (27). By
virtue of the results of the work [22], we immediately obtain the assertion.

Proposition 4.1. For a given pair (ε1 > 0 , ε2 > 0), the unforced original system (7)
(and, therefore, the unforced system (1) – (3)) (u(t) ≡ 0) is exponentially stable if and
only if the following inequality is satisfied

β(ε1, ε2)
4
= max
λ∈S(ε1,ε2)

Reλ < 0. (58)

The following theorem presents the parameters-free sufficient conditions for the ex-
ponential stability of the unforced original system (1) – (3) (u(t) ≡ 0).

Theorem 4.2. Let the inequalities (16) and (22) be valid. Let the unforced purely
slow (17), mixed slow-fast (23) and purely fast (25) subsystems be exponentially stable.
Then, there exist numbers ε∗1 and ε∗, satisfying the inequalities in (8), such that for
all (ε1, ε2) ∈ Ω(ε∗1, ε

∗) (see the equation (9)) the unforced original singularly perturbed
system (7) (and, therefore, the unforced system (1) – (3)) is exponentially stable.

P r o o f . We prove the theorem by contradiction. Namely, we suppose that its statement
is wrong. Then, due to Proposition 4.1 and the assumption (4), there exist two sequences
of real numbers {ε1,α}, {ε2,α}, (α = 1, 2, . . .) and the sequence of complex numbers {λα},
(α = 1, 2, . . .) such that:

(a) εl,α > 0, (α = 1, 2, . . . ; l = 1, 2);

(b) limα→+∞ εl,α = 0, (l = 1, 2);

(c) limα→+∞ ε2,α/ε1,α = 0;

(d) Reλα ≥ 0, (α = 1, 2, . . .);

(e) λα ∈ S(ε1,α, ε2,α), (α = 1, 2, . . .).
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Let us consider the sequence {να} = {ε2,αλα}, (α = 1, 2, . . .). Due to the conditions
(a) – (e) on the sequences {ε1,α}, {ε2,α} and {λα}, (α = 1, 2, . . .), the sequences {ε1,α},
{ε2,α} and {να}, (α = 1, 2, . . .) satisfy the conditions (i) – (v) of Lemma 3.3. Hence,
the sequence {να}, (α = 1, 2, . . .) is bounded. Moreover, there exists a subsequence of
this sequence converging to one of the numbers νq, (q = 0, 1, . . . , qf ), where ν0 = 0 and
νq, (q = 1, . . . , qf ) are all distinct roots of the quasi-polynomial equation in (31) satis-
fying the inequality (36). However, due to the assumption on the exponential stability
of the unforced purely fast subsystem (25) and Proposition 3.11, we immediately have
qf = 0. Therefore, the limit of the above mentioned converging subsequence of {να},
(α = 1, 2, . . .) is zero. For the sake of simplicity (but without loss of generality), let us
assume that {να} itself is such a subsequence. Thus limα→+∞ να = 0. Now, we consider
the sequence {µα} = {ε1,αλα}, (α = 1, 2, . . .). Hence, να = (ε2,α/ε1,α)µα, (α = 1, 2, . . .).
The latter yields that Reµα ≥ 0, (α = 1, 2, . . .), and limα→+∞(ε2,α/ε1,α)µα = 0. There-
fore, the sequences {ε1,α}, {ε2,α} and {µα}, (α = 1, 2, . . .) satisfy the conditions (i) – (vi)
of Lemma 3.2. Using this observation, as well as the assumption on the exponential sta-
bility of the unforced mixed slow-fast subsystem (23) and Proposition 3.10, we obtain
(similarly to the analysis of the sequence {να}) that limα→+∞ µα = 0. This implies
the limit equality limα→+∞ ε1,αλα = 0 meaning that the sequences {ε1,α}, {ε2,α} and
{λα}, (α = 1, 2, . . .) satisfy the assumptions (i) – (vi) of Lemma 3.1. By virtue of this
lemma, the quasi-polynomial equation (29) has at least one root with nonnegative real
part. However the latter, along with Proposition 3.9, contradicts the assumption on
the exponential stability of the unforced purely slow subsystem (17). This contradiction
means that the statement of the theorem is correct, which completes its proof. �

Remark 4.3. Due to Definition 2.1, Theorem 4.2 means that the unforced original
singularly perturbed system (7) (and, therefore, the unforced system (1) – (3)) is expo-
nentially stable uniformly with respect to (ε1, ε2) ∈ Ω(ε∗1, ε

∗).

4.2. Parameters-free conditions for the stabilization of the original system
by a memory-free state-feedback control

Consider the control (10) with the following gain matrix:

Kz = (Ks , Ksf , Kf ), (59)

where Ks, Ksf and Kf are the gain-matrices in the controls (52), (45) and (41).

Theorem 4.4. Let the controls (41), (45) and (52) stabilize the purely fast subsystem
(25), the mixed slow-fast subsystem (19) and the purely slow subsystem (11) – (13),
respectively. Then, there exist numbers ε∗1 and ε∗, satisfying the inequalities in (8), such
that the original singularly perturbed system (7) (and, therefore, the system (1) – (3))
is stabilized by the control (10), (59) uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗), where the domain
Ω(ε∗1, ε

∗) is given by the equation (9).
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P r o o f . Substitution of the control (10), (59) into the system (7) yields the closed-loop
system

E(ε1, ε2)
dz(t)

dt
= [A+B · (Ks , Ksf , Kf )]z(t) +Gz(t− g)

+H1z(t− ε1h1) +H2z(t− ε2h2), t ≥ 0. (60)

This system is a three time-scale system with delays similar to the unforced system (7).
Let us construct purely slow, mixed slow-fast and purely fast subsystems, associated
with the system (60). Using the block form of the vector z(t) (see the equation (5)) and
the block forms of the matrices E(ε1, ε2), A, B, G (see the equation (6)), we obtain by a
routine algebra that the purely slow subsystem in the differential form, associated with
the system (60), has the form

dxs(t)

dt
= [As(Ksf ,Kf ) + Bs(Ksf ,Kf )Ks]xs(t) + Gs(Ksf ,Kf )xs(t− g), t ≥ 0.

Similarly, the mixed slow-fast subsystem in the differential form and the purely fast
subsystem, associated with the system (60), are

dy1,sf (ξ1)

dξ1
= [Asf (Kf ) + Bsf (Kf )Ksf ]y1,sf (ξ1) +Hsf (Kf )y1,sf (ξ1 − h1), ξ1 ≥ 0

and (42), respectively. Due to this observation and the results of Subsection 3.3 (see
Definitions 3.12, 3.13, 3.16 and Lemmas 3.14, 3.17), the purely slow subsystem in the
differential form, the mixed slow-fast subsystem in the differential form and the purely
fast subsystem, associated with the system (60), are exponentially stable. Now, the
application of Definition 2.1, Theorem 4.2 and Remark 4.3 to the system (60) directly
yields the existence of numbers ε∗1 and ε∗, satisfying the inequalities in (8), such that this
system is exponentially stable uniformly with respect to (ε1, ε2) ∈ Ω(ε∗1, ε

∗). The latter,
along with Definition 2.2, means the stabilization of the original singularly perturbed
system (7) (and, therefore, the system (1) – (3)) by the control (10), (59) uniformly in
(ε1, ε2) ∈ Ω(ε∗1, ε

∗). This completes the proof of the theorem. �

5. EXAMPLES

5.1. Example 1: exponential stability

Consider the particular case of the unforced original system (1) – (3) (u(t) ≡ 0) with the
following data:

n = 2, m1 = m2 = 1, g = 0.6, h1 = 0.8, h2 = 1,

A11 =

(
−5 2

1 − 6

)
, A12 =

(
1
−1

)
, A13 =

(
4
3

)
, A21 = (2 , −1),

A22 = −5, A23 = −2, A31 = (−4 , 2), A32 = −1, A33 = −4,

G1 =

(
3 1
2 − 4

)
, G2 = (−1 , 1), G3 = (1 , −1),
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H11 =

(
−2

1

)
, H12 =

(
−4
−3

)
, H21 = 4, H22 = 2, H31 = 1, H32 = 3.

(61)

Using the equations (14), (15) and (61), we have by a direct calculation

A33,s = −1, A3s =

(
−1 0

0 − 1

)
.

Thus, the inequalities (16) and (22) are valid, meaning that the unforced original system
(1) – (3) (u(t) ≡ 0) with the data (61) is standard.

Let us construct the purely slow, mixed slow-fast and purely fast subsystems of the
unforced system (1) – (3) with the data (61). Using the results of Subsection 2.2, we
obtain that the purely slow subsystem has the form

dxs(t)

dt
= Āsxs(t) + Ḡsxs(t− 0.6), t ≥ 0, (62)

where xs(t) ∈ R2, t ≥ −g, and

Ās =

(
−7 3

1 − 6

)
, Ḡs =

(
4 0
2 − 4

)
. (63)

Similarly, using the results of Subsections 2.3 and 2.4, we have the scalar mixed
slow-fast subsystem and the scalar purely fast subsystem, respectively,

dy1,sf (ξ1)

dξ1
= −5y1,sf (ξ1) + 4y1,sf (ξ1 − 0.8), ξ1 ≥ 0 (64)

and

dy2,f (ξ2)

dξ2
= −4y2,f (ξ2) + 3y2,f (ξ2 − 1), ξ2 ≥ 0. (65)

Now, let us analyze the exponential stability of the above obtained subsystems. We
start with the subsystem (62) – (63). Using the equations (29) and (63), we obtain the
characteristic equation of this subsystem as:

λ2 + 13λ+ 39− 2 exp(−0.6λ)− 16 exp(−1.2λ) = 0. (66)

Let us show the fulfilment of the inequality (38) for the quasi-polynomial equation (66).
Let us consider the domain Reλ ≥ −0.5 in the complex plane and estimate the functions
|λ2 + 13λ+ 39| and |2 exp(−0.6λ) + 16 exp(−1.2λ)| in this domain. By a routine algebra
we have the following:

min
Reλ≥−0.5

|λ2 + 13λ+ 39| = 32.75,

max
Reλ≥−0.5

|2 exp(−0.6λ) + 16 exp(−1.2λ)| < 31.8537.

These estimates directly yield that the equation (66) does not have roots in the domain
Reλ ≥ −0.5. Therefore, all the roots of this equation satisfy the inequality Reλ < −0.5,
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meaning the fulfilment of the inequality (38). Thus, by virtue of Proposition 3.9, the
subsystem (62) – (63) is exponentially stable.

Proceed to the subsystem (64). Using the equation (30), we have the characteristic
equation of this subsystem in the form

µ+ 5− 4 exp(−0.8µ) = 0. (67)

Direct estimation of the expression in the left-hand side of this equation yields

min
Reµ≥−0.2

Re
(
µ+ 5− 4 exp(−0.8µ)

)
> 0.1059,

meaning that all the roots of the quasi-polynomial equation (67) satisfy the inequality
Reµ < −0.2. Therefore, due to Proposition 3.10, the subsystem (64) is exponentially
stable.

Using the equation (31) and Proposition 3.11, one can show (quite similarly to the
analysis of the subsystem (64)) the exponential stability of the subsystem (65).

Thus, the unforced system (1) – (3) with the data (61) satisfies all the conditions
of Theorem 4.2. The latter implies the existence of numbers ε∗1 and ε∗, satisfying the
inequalities in (8), such that the unforced system (1) – (3), (61) is exponentially stable
uniformly with respect to (ε1, ε2) ∈ Ω(ε∗1, ε

∗).

5.2. Example 2: stabilization

In this example, we consider the particular case of the original system (1) – (3) with the
following data:

n = 2, m1 = m2 = 1, r = 1, g = 1, h1 =
π

2
, h2 = 2,

A11 =

(
1 2
0.8 − 1.6

)
, A12 =

(
1
−1

)
, A13 =

(
4
3

)
, A21 = (2 , −4),

A22 = 3, A23 = −6, A31 = (−1 , 2), A32 = 1, A33 = 1,

G1 =

(
6 − 6

−4.8 4.8

)
, G2 = (−2 , 2), G3 = (1 , −1),

H11 =

(
1
−3

)
, H12 =

(
1
−1

)
, H21 = −4, H22 = 1, H31 = −1, H32 = −1,

B1 =

(
1
−2

)
, B2 = 2, B3 = 1.

(68)

Using the equations (14), (15) and (68), we directly obtain

A33,s = 0, A3s =

(
−1 − 5

0 0

)
. (69)

Thus, the inequalities (16) and (22) are not valid, meaning that the original system
(1) – (3) with the data (68) is nonstandard. Let us establish the stabilization of this
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system by a memory-free state-feedback control uniform with respect to (ε1, ε2). Due to
Theorem 4.4 and Lemmas 3.14, 3.17, to establish such a stabilization, we should show
the stabilization of the purely fast subsystem (25) by the control (41), the stabilization
of the system (49) by the control (48) and the stabilization of the system (56) by the
control (55).

Let us start with the purely fast subsystem (25). In the present example (see the
data (68)), this subsystem becomes the following scalar system:

dy2,f (ξ2)

dξ2
= y2,f (ξ2)− y2,f (ξ2 − 2) + uf (ξ2), ξ2 ≥ 0. (70)

Note, that the unforced system (70) (uf (ξ2) ≡ 0) is not exponentially stable, because
its characteristic equation has a root equals zero. To stabilize the system (70), let us
choose the control (41) as:

uf (ξ2) = uf [y2,f (ξ2)] = −5y2,f (ξ2), ξ2 ≥ 0, (71)

i. e., Kf = −5. The closed-loop system (70), (71) becomes

dy2,f (ξ2)

dξ2
= −4y2,f (ξ2)− y2,f (ξ2 − 2), ξ2 ≥ 0, (72)

and its characteristic equation with respect to ν is

ν + 4 + exp(−2ν) = 0. (73)

Direct estimation of the expression in the left-hand side of this equation yields

min
Reν≥−0.5

Re
(
ν + 4 + exp(−2ν)

)
> 0.2817,

meaning that all the roots of the quasi-polynomial equation (73) satisfy the inequality
Reµ < −0.5. Therefore, due to Proposition 3.11, the system (72) is exponentially stable.
Thus, due to Definition 3.12, the purely fast subsystem (70) is stabilized by the memory-
free control (71).

Proceed to the system (49). Using the equations (15), (50), (69) and the data of the
present example (68), we directly obtain this system as the following scalar one:

dy1,sf (ξ1)

dξ1
= −y1,sf (ξ1 − π/2)− vsf (ξ1), ξ1 ≥ 0. (74)

The unforced system (74) (vsf (ξ1) ≡ 0) is not exponentially stable, because its charac-
teristic equation has the purely imaginary roots ±i (here i denotes the imaginary unit).
To stabilize the system (74), we choose the control (48) in the form

vsf (ξ1) = vsf [y1,sf (ξ1)] = 4y1,sf (ξ1), ξ1 ≥ 0, (75)

i. e., Ksf = 4. The closed-loop system (74), (75) has the form

dy1,sf (ξ1)

dξ1
= −4y1,sf (ξ1)− y1,sf (ξ1 − π/2), ξ1 ≥ 0.
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The exponential stability of this system is shown quite similarly to the exponential
stability of the system (72). Thus, the system (74) is stabilized by the memory-free
state-feedback control (75).

Now, let us treat the system (56). Using the equations (15), (57) and the data of the
present example (68), we directly obtain the matrices of the coefficients in this system
as:

As(Ksf ,Kf ) =

(
7 − 10
−4 8

)
, Gs(Ksf ,Kf ) =

(
0 0
0 0

)
,

Bs(Ksf ,Kf ) =

(
−0.2

0.88

)
.

(76)

Note that in the system (56), (76), the state variable xs(t) is a two-dimensional vector,
while the control vs(t) is scalar.

It is verified by an immediate calculation that the roots of the characteristic equation
of the unforced system (56), (76) (vs(t) ≡ 0) are real positive. Therefore, the unforced
system (56), (76) is not exponentially stable. To stabilize the system (56), (76), we choose
the control (55) as:

vs(t) = vs[xs(t)] = (50 , −25)xs(t), t ≥ 0, (77)

i. e., Ks = (50 , −25). The closed-loop system (56), (76), (77) is

dxs(t)

dt
=

(
−3 − 5

40 − 14

)
xs(t), t ≥ 0. (78)

The eigenvalues of the matrix of the coefficients in this system are complex conjugate
numbers with the real part equals −8.5. Therefore, the system (78) is exponentially
stable, meaning that the system (56), (76) is stabilized by the memory-free state-feedback
control (77).

Based on the gains Kf , Ksf and Ks of the controls (71), (75) and (77), we construct
the following memory-free state-feedback control for the system (1) – (3), (68):

u(t) = u[x(t), y1(t), y2(t)] = (50 , −25)x(t) + 4y1(t)− 5y2(t), t ≥ 0. (79)

Taking into account the above shown stabilization of the systems (70), (74) and
(56), (76) by the controls (71), (75) and (77), respectively, and using Lemmas 3.14 and
3.17, we can conclude that the system (1) – (3) with the data (68) satisfies all the con-
ditions of Theorem 4.4. This implies the existence of numbers ε∗1 and ε∗, satisfying the
inequalities in (8), such that the system (1) – (3), (68) is stabilized by the control (79)
uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗).
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5.3. Example 3: stabilization of car-following model with three scales of
time

In this example, we consider the car-following model (or the vehicular traffic flow model)
(see e. g. [11, 12, 18] and references therein). Here, we treat the case of four vehicles
following each other in one lane, which has the geometric shape of a simple open curve
(for instance, a straight line). For this shape of the lane, the car-following model can be
represent as the following system of time delay differential equations (see e. g. [18]):

dXF1(t)

dt
=
(
XL(t− ηL)−XF1(t− η1)

)
/τ1,

dXF2(t)

dt
=
(
XF1(t− η1)−XF2(t− η2)

)
/τ2,

dXF3(t)

dt
=
(
XF2(t− η2)−XF3(t− η3)

)
/τ3,

(80)

where t ≥ 0; XL(t) is the current speed of the leading vehicle; XF1(t) is the current speed
of the first following vehicle; XF2(t) is the current speed of the second following vehicle;
XF3(t) is the current speed of the third following vehicle; τ1 > 0, τ2 > 0 and τ3 > 0 are
the time constants of the first, second and third following vehicles; ηL > 0 is the delay
in the reaction of the driver of the leading vehicle; η1 > 0, η2 > 0 and η3 > 0 are the
delays in the reaction of the drivers of the first, second and third following vehicles.

In the sequel of this example, we assume the following:

(i) the reaction of the driver of the leading vehicle is instantaneous, i. e., ηL = 0;

(ii) the speed of the leading vehicle XL(t) is a control UL(t) in the system (80) at the
disposal of the driver of this vehicle, i. e., XL(t) = UL(t);

(iii) τ1 � τ3, τ2 � τ3, τ1 � τ2;

(iv) η1/τ1 ∼ O(1), η2/τ2 ∼ O(1), η3/τ3 ∼ O(1).

Based on these assumptions, we are going to make the following transformations of
the independent variable and the unknown functions in the system (80):

t = τ3θ, XF1(τ3θ) = y2(θ), XF2(τ3θ) = y1(θ), XF3(τ3θ) = x(θ), UL(τ3θ) = u(θ), (81)

where θ is a new independent variable (the non-dimensional time); y1(θ), y2(θ) and x(θ)
are new unknown functions; u(θ) is a new control function.

The transformation (81) converts the system (80) to the system

dx(θ)

dθ
= −x(θ − g) + y1(θ − ε1h1),

ε1
dy1(θ)

dθ
= −y1(θ − ε1h1) + y2(θ − ε2h2),

ε2
dy2(θ)

dθ
= −y2(θ − ε2h2) + u(θ),

(82)
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where θ ≥ 0;

ε1 =
τ2
τ3
, ε2 =

τ1
τ3
, g =

η3
τ3
, h1 =

η2
τ2
, h2 =

η1
τ1

;

ε1 > 0 and ε2 > 0 are small parameters; ε2 � ε1.

Thus, the system (82) is a singularly perturbed three time-scale system with delays,
i. e., it is a particular case of the system (1) – (3). We are going to design a memory-free
state-feedback control stabilizing the system (82) uniformly in (ε1, ε2).

First of all, let us note that the unforced system (82) (u(θ) ≡ 0) is not, in general,
exponentially stable. Indeed, for h2 ≥ π/2, the characteristic equation of the third
differential equation in this system has roots with nonnegative real parts.

To establish the stabilization of the system (82) and to design the stabilizing control,
we use (like in the previous example) Theorem 4.4 and Lemmas 3.14, 3.17. Similarly to
Example 2, we start with the purely fast subsystem (25). In the present example, this
subsystem becomes the following scalar system:

dy2,f (ξ2)

dξ2
= −y2,f (ξ2 − h2) + uf (ξ2), ξ2 ≥ 0. (83)

The scalar control (41) with the gain Kf < −1 stabilizes this system for any h2 ≥ 0.

Proceed to the system (49). In the present example, this system becomes the following
scalar one:

dy1,sf (ξ1)

dξ1
= −y1,sf (ξ1 − h1) + (1−Kf )−1vsf (ξ1), ξ1 ≥ 0. (84)

The unforced system (84) (vsf (ξ1) ≡ 0) is not exponentially stable for h1 ≥ π/2. Sim-
ilarly to the system (83), the scalar control (48) with the gain Ksf , satisfying the in-
equality (1−Kf )−1Ksf < −1, stabilizes the system (84) for any h1 ≥ 0.

Now, let us deal with the system (56). In the present example, we obtain this system
as the following scalar one:

dxs(θ)

dθ
= −xs(θ − g) +

(
1− (1−Kf )−1Ksf

)−1
(1−Kf )−1vs(θ), θ ≥ 0. (85)

The unforced system (85) (vs(θ) ≡ 0) is not exponentially stable for g ≥ π/2. How-
ever, the scalar control (55) with the gain Ks, satisfying the inequality

(
1 − (1 −

Kf )−1Ksf

)−1
(1−Kf )−1Ks < −1, stabilizes the system (85) for any g ≥ 0.

Based on the gains Kf , Ksf and Ks of the stabilizing controls for the systems
(83), (84) and (85), we construct the following memory-free state-feedback control for
the system (82):

u(θ) = u[x(θ), y1(θ), y2(θ)] = Ksx(θ) +Ksfy1(θ) +Kfy2(θ), θ ≥ 0. (86)

Thus, by virtue of Lemmas 3.14, 3.17 and Theorem 4.4, there exist numbers ε∗1 and ε∗,
satisfying the inequalities in (8), such that the system (82) is stabilized by the control
(86) uniformly in (ε1, ε2) ∈ Ω(ε∗1, ε

∗).
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6. CONCLUSIONS

In this paper, the three-time scale singularly perturbed linear time-invariant differential
system with point-wise state delays was considered. The three-time scale nature of the
system is due to the presence of two small positive multipliers (the parameters of the
singular perturbations) for part of its derivatives, where one of these parameters is of
a higher order of the smallness then the other. The delay in the slow state variable
is of order of 1 (the non-small delay). The delay in each of the fast state variables
is small of order of the corresponding singular perturbations’ parameter. This system
significantly differs from the singularly perturbed systems studied in the literature. To
the best of our knowledge, such a type of singularly perturbed systems has not been
considered yet in the literature. The exponential stability of the unforced version of
original system and the memory-free state-feedback stabilization of its controlled ver-
sion, uniform with respect to the parameters of singular perturbations, were studied.
This study is based on the asymptotic replacing the three time-scale original system
with three much simpler parameters-free subsystems: the purely slow, mixed slow-fast
and purely fast ones. The purely slow and mixed slow-fast subsystems are descriptor
(differential-algebraic) systems with state delays, while the purely fast subsystem is a
differential system with state delay. The purely fast subsystem is of a lower Euclidean
space dimension than the original system. Subject to some additional assumptions, the
purely slow and mixed slow-fast subsystems can be reduced to differential systems with
state delays, and these systems also are of lower Euclidean space dimensions than the
original system. By spectrum analysis of the unforced version of the original system
and its purely slow subsystem in the differential form, the mixed slow-fast subsystem
in the differential form and the purely fast subsystem, it was established that the ex-
ponential stability of these subsystems yields the exponential stability of the original
system (the unforced version) uniformly (robustly) with respect to the parameters of
singular perturbations. Based on this result, it was established the following. If the
purely fast subsystem, as well as the mixed slow-fast and purely slow subsystems in the
differential-algebraic form, are memory-free state-feedback stabilized, then the original
system also is memory-free state-feedback stabilized uniformly (robustly) with respect
to the parameters of singular perturbations. Using the stabilizing controls of the purely
fast, mixed slow-fast and purely slow subsystems, the stabilizing control of the original
system was designed. Due to the results of the paper, the stability/stabilization analysis
of the complicated parameters-dependent system is reduced to the stability/stabilization
analysis of several much simpler parameter-free subsystems.

Completing this section, we would like to mention several issues of the paper’s topic,
which are interesting ones for future investigations. These issues are the following:
(a) stability/stabilization analysis of two-parameters singularly perturbed systems with
multiple point-wise delays and distributed delays; (b) obtaining estimates of the small
positive numbers ε∗1 and ε∗, mentioned in Theorems 4.2, 4.4; (c) asymptotic solution of
an initial-value problem for the original unforced system, considered in the paper; (d)
asymptotic solution of a linear-quadratic optimal control problem with the dynamics,
described by the original system of the paper.
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7. APPENDIX A: PROOF OF LEMMA 3.1

Let us start with the proof of the boundedness of the sequence {λα}. Assume the
opposite. In this case, there exists a subsequence of {λα}, such that absolute values of
its elements tend to +∞ as α → +∞. For the sake of simplicity (but without loss of
generality), we assume that {λα} itself has such a behavior, i. e., limα→+∞ |λα| = +∞.

Let us partition the matrix C(λ, ε1, ε2) into blocks as:

C(λ, ε1, ε2) =

(
C1(λ) C2(λ, ε1, ε2)
C3(λ) C4(λ, ε1, ε2)

)
, (87)

where

C1(λ) = A11 +G1 exp(−gλ)− λIn,
C2(λ, ε1, ε2) = (A12 , A13) + (H11 , 0) exp(−ε1h1λ) + (0 , H12) exp(−ε2h2λ),

C3(λ) =

(
A21

A31

)
+

(
G2

G3

)
exp(−gλ),

C4(λ, ε1, ε2) =

(
A22 A23

A32 A33

)
+

(
H21 0
H31 0

)
exp(−ε1h1λ)

+

(
0 H22

0 H32

)
exp(−ε2h2λ)− λ

(
ε1Im1

0
0 ε2Im2

)
.

(88)

Due to (14) – (15) and the conditions (iii), (v) on the sequences {ε1,α}, {ε2,α}, {λα},
(α = 1, 2, . . .), we have

lim
α→+∞

C4(λα, ε1,α, ε2,α) = A3s. (89)

The latter, along with the inequality (16), yields the inequality

detC4(λα, ε1,α, ε2,α) 6= 0 (90)

for all sufficiently large α.
Now, using the equations (27), (87), the inequality (90) and the formula for the deter-

minant of a block matrix (see [15]), we obtain the following equality for all sufficiently
large α:

D(λα, ε1,α, ε2,α) = det
(
C1(λα)

−C2(λα, ε1,α, ε2,α)
(
C4(λα, ε1,α, ε2,α)

)−1
C3(λα)

)
detC4(λα, ε1,α, ε2,α).

Thus, for all sufficiently large α, the condition (vi) on the sequences {ε1,α}, {ε2,α}, {λα}
can be rewritten in the form

det
(
C1(λα)− C2(λα, ε1,α, ε2,α)

(
C4(λα, ε1,α, ε2,α)

)−1
C3(λα)

)
= 0. (91)
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Using the above made assumption that limα→+∞ |λα| = +∞, let us divide the equal-
ity (91) by λnα. Thus, we obtain for all sufficiently large α:

1

λnα
det
(
C1(λα)− C2(λα, ε1,α, ε2,α)

(
C4(λα, ε1,α, ε2,α)

)−1
C3(λα)

)
= 0. (92)

Using the expression for C1(λ) (see the equation (88)), the equality (92) can be
rewritten as:

det

(
1

λα

(
A11 +G1 exp(−gλα)

)
− In

− 1

λα

(
C2(λα, ε1,α, ε2,α)

(
C4(λα, ε1,α, ε2,α)

)−1
C3(λα)

))
= 0.

Now, calculating the limit of this equality for α → +∞ and taking into account the
assumption that limα→+∞ |λα| = +∞, as well as the expressions for C2(λ, ε1, ε2) and
C3(λ) (see the equation (88)), the equation (89), and the conditions (iii) – (v) on the
sequences {ε1,α}, {ε2,α}, {λα}, (α = 1, 2, . . .), we obtain the contradiction (−1)n = 0.
This contradiction means that the above made assumption on the unboundedness of
the sequence {λα}, (α = 1, 2, . . .) is wrong, implying the boundedness of this sequence.
Thus, the first statement of the lemma is proven.

Proceed to the proof of the second statement. Since the sequence {λα}, (α = 1, 2, . . .)
is bounded, then there exists a convergent subsequence of this sequence. For the sake
of simplicity (but without loss of generality), we assume that the sequence {λα}, (α =

1, 2, . . .) itself is such a subsequence. Let us denote λ̄
4
= limα→+∞ λα. By virtue of

the condition (iv) on the sequence {λα}, (α = 1, 2, . . .), we have that Reλ̄ ≥ 0. Now,
calculating the limit of the equality (91) for α → +∞ and using the equations (14) –
(15), (18), (29) and the inequality (16), we obtain Ds(λ̄) = 0. The latter means that λ̄ is
a root of the quasi-polynomial equation (29) satisfying the inequality (32), which proves
the second statement of the lemma. Thus, the lemma is proven. �

8. APPENDIX B: PROOF OF LEMMA 3.2

First of all, we represent the matrix E1(ε1)C(µ/ε1, ε1, ε2) in the block form as:

E1(ε1)C(µ/ε1, ε1, ε2) =

(
F1(µ, ε1, ε2) F2(µ, ε1, ε2)
F3(µ, ε1, ε2) F4(µ, ε1, ε2)

)
, (93)

where

F1(µ, ε1) =

(
ε1A11 ε1A12

A21 A22

)
+

(
ε1G1 0
G2 0

)
exp(−gµ/ε1)

+

(
0 ε1H11

0 H21

)
exp(−h1µ)− µ

(
In 0
0 Im1

)
,

(94)

F2(µ, ε1, ε2) =

(
ε1A13

A23

)
+

(
ε1H12

H22

)
exp

(
− (ε2/ε1)h2µ

)
, (95)
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F3(µ, ε1) = (A31 , A32) + (G3 , 0) exp(−gµ/ε1) + (0 , H31) exp(−h1µ), (96)

F4(µ, ε1, ε2) = A33 +H32 exp
(
− (ε2/ε1)h2µ

)
− (ε2/ε1)µIm2

. (97)

Using the condition (v) on the sequences {ε1,α}, {ε2,α}, {µα}, (α = 1, 2, . . .), as well
as the equation (14), we obtain

lim
α→+∞

F4(µα, ε1,α, ε2,α) = A33,s, (98)

which, along with the inequality (22), yields

detF4(µα, ε1,α, ε2,α) 6= 0 (99)

for all sufficiently large α.
Using the equations (35), (93), the inequality (99) and the formula for the determinant

of a block matrix (see [15]), we can rewrite (for all sufficiently large α) the condition
(vi) on the sequences {ε1,α}, {ε2,α}, {µα} in the following form:

det
(
F1(µα, ε1,α)− F2(µα, ε1,α, ε2,α)

(
F4(µα, ε1,α, ε2,α)

)−1
F3(µα, ε1,α)

)
= 0. (100)

Now, based on the equations (93) – (97), (98), (100) and the inequality (99), let us
prove the statement (I) of the lemma. Assume the opposite. In this case, there exists a
subsequence of {µα}, such that absolute values of its elements tend to +∞ as α→ +∞.
For the sake of simplicity (but without loss of generality), we assume that {µα} itself
has such a behavior, i. e., limα→+∞ |µα| = +∞. Dividing the equality (100) by µn+m1

α

and using the expression for F1(µ, ε1) (see the equation (94)), we obtain the following
equality for all sufficiently large α:

1

µn+m1
α

det
(
F1(µα, ε1,α)− F2(µα, ε1,α, ε2,α)

(
F4(µα, ε1,α, ε2,α)

)−1
F3(µα, ε1,α)

)
= det

(
1

µα
F̃1(µα, ε1,α)− In+m1

− 1

µα
F2(µα, ε1,α, ε2,α)

(
F4(µα, ε1,α, ε2,α)

)−1
F3(µα, ε1,α)

)
= 0,

(101)

where

F̃1(µα, ε1,α) =

(
ε1,αA11 ε1,αA12

A21 A22

)
+

(
ε1,αG1 0
G2 0

)
exp(−gµα/ε1,α)

+

(
0 ε1,αH11

0 H21

)
exp(−h1µα).

(102)

Calculating the limit of the equality (101) for α→ +∞, and taking into account the
equations (95), (96), (98), (102), the inequality (99) and the conditions (ii), (iv), (v) on the
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sequences {ε1,α}, {ε2,α}, {µα}, (α = 1, 2, . . .), we obtain the contradiction (−1)n+m1 =
0. This contradiction means that the above made assumption on the unboundedness of
the sequence {µα}, (α = 1, 2, . . .) is wrong. Thus, this sequence is bounded. Using this
conclusion, proceed to the proof of the second statement of the lemma. Since {µα} is
bounded, then there exist its convergent subsequence. For the sake of simplicity (but
without loss of generality), we suppose that {µα} itself is convergent, i. e., limα→+∞ µα =
µ̄. Moreover, by virtue of the condition (iv), Reµ̄ ≥ 0. Furthermore, calculating the limit
of the equality (100) for α → +∞, and using the equations (24), (30), (94) – (97), (98),
the inequality (99) and the conditions (ii) – (v), we obtain by a routine algebra

(−1)nµ̄n
(

detCsf (µ̄)
)

= 0,

which directly yields the second statement of the lemma. Thus, the lemma is proven.�

9. APPENDIX C: PROOF OF LEMMA 3.14

Necessity. First of all, let us note the following. Since the control (41) stabilizes the
purely fast subsystem (25), then the inequality (44) is valid. This means the feasibility of
the system (49). Now, let us assume that the control (45) stabilizes the mixed slow-fast
subsystem (19). The closed-loop system (19), (45) has the form

dy1,sf (ξ1)

dξ
= (A22 +B2Ksf )y1,sf (ξ1) + (A23,s +B2Kf )y2,sf (ξ1)

+H21y1,sf (ξ1 − h1), ξ1 ≥ 0,

0 = (A32 +B3Ksf )y1,sf (ξ1) + (A33,s +B3Kf )y2,sf (ξ1)

+H31y1,sf (ξ1 − h1), ξ1 ≥ 0.

(103)

Since the inequality (44) is valid, the initial-value problem (103), (46) can be transformed
to an equivalent problem consisting of the algebraic expression for y2,sf (ξ1)

y2,sf (ξ1) = −(A33,s +B3Kf )−1[(A32 +B3Ksf )y1,sf (ξ1) +H31y1,sf (ξ1 − h1)], ξ1 ≥ 0,

and the differential equation with respect to y1,sf (ξ1)

dy1,sf (ξ1)

dξ1
= [Asf (Kf ) + Bsf (Kf )Ksf ]y1,sf (ξ1) +Hsf (Kf )y1,sf (ξ1 − h1), ξ1 ≥ 0 (104)

with the initial condition (46).
Due to the equivalence of the above mentioned problems and Definition 3.13, we

have that the solution y1,sf (ξ1), ξ1 ≥ 0 of the differential equation (104) with the initial
condition (46) satisfies the inequality

‖y1,sf (ξ1)‖ ≤ a1,sf exp(−κsfξ1)‖ψsf (ζ1)‖C , ξ1 ≥ 0 (105)

with some number a1,sf > 0 independent of ψsf (ζ1).
From the other hand, the differential equation (104) can be obtain from the system

(49) by substituting there the state-feedback control (48). The latter, along with the
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inequality (105), means that the control (48) stabilizes the system (49), which completes
the proof of the necessity.

Sufficiency. The sufficiency is proven similarly to the necessity.
Thus, the lemma is proven. �

10. APPENDIX D: PROOF OF LEMMA 3.17

Necessity. First of all, let us show that the matrix W (Ksf ,Kf ) is invertible. This matrix
can be represented in the block form as:

W (Ksf ,Kf ) =

(
A22,s +B2Ksf A23,s +B2Kf

A32,s +B3Ksf A33,s +B3Kf

)
.

Using this representation of W (Ksf ,Kf ), as well as the formula for the determinant of
a block matrix (see [15]) and the equations (15), (50), we obtain that:

detW (Ksf ,Kf ) = det
(
Asf (Kf ) + Bsf (Kf )Ksf +Hsf (Kf )

)
det
(
A33,s +B3Kf

)
.

Thus, by virtue of (44) and (51), detW (Ksf ,Kf ) 6= 0, meaning the invertibility of the
matrix W (Ksf ,Kf ). Hence, the system (56) is feasible. Now, let us assume that the
control (52) stabilizes the purely slow subsystem (11) – (13). The closed-loop system
(11) – (13), (52) is

dxs(t)

dt
= (A11 +B1Ks)xs(t) + (A12,s +B1Ksf )y1,s(t)

+(A13,s +B1Kf )y2,s(t) +G1xs(t− g), t ≥ 0,

0 = (A21 +B2Ks)xs(t) + (A22,s +B2Ksf )y1,s(t)

+(A23,s +B2Kf )y2,s(t) +G2xs(t− g), t ≥ 0,

0 = (A31 +B3Ks)xs(t) + (A32,s +B3Ksf )y1,s(t)

+(A33,s +B3Kf )y2,s(t) +G3xs(t− g), t ≥ 0.

(106)

Since the matrix W (Ksf ,Kf ) is invertible, the initial-value problem (106), (53) can be
transformed to an equivalent problem consisting of the algebraic expression for the vector
col
(
y1,s(t), y2,s(t)

)
col
(
y1,s(t), y2,s(t)

)
= −

(
W (Ksf ,Kf )

)−1(
(A2s + B23,sKs)xs(t) + G23,sxs(t− g)

)
, t ≥ 0,

and the differential equation with respect to xs(t)

dxs(t)

dt
= [As(Ksf ,Kf ) + Bs(Ksf ,Kf )Ks]xs(t) + Gs(Ksf ,Kf )xs(t− g), t ≥ 0 (107)

with the initial condition (53).
Due to the equivalence of the above mentioned problems and Definition 3.16, we

have that the solution xs(t), t ≥ 0 of the initial-value problem (107), (53) satisfies the
inequality

‖xs(t)‖ ≤ a1,s exp(−κst)‖ψs(η)‖C , t ≥ 0 (108)
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with some number a1,s > 0 independent of ψs(η).
From the other hand, the differential equation (107) can be obtain from the system

(56) by substituting there the state-feedback control (55). The latter, along with the
inequality (108), means that the control (55) stabilizes the system (56), which completes
the proof of the necessity.

Sufficiency. The sufficiency is proven similarly to the necessity.
Thus, the lemma is proven. �

(Received September 14, 2021)
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