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LEADER-FOLLOWING CONSENSUS FOR
LOWER-TRIANGULAR NONLINEAR MULTI-AGENT
SYSTEMS WITH UNKNOWN CONTROLLER AND
MEASUREMENT SENSITIVITIES

Yanjun Shen, Dawei Wang, and Zifan Fang

In this paper, a novel consensus algorithm is presented to handle with the leader-following
consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown
controller and measurement sensitivities under a given undirected topology. As distinguished
from the existing results, the proposed consensus algorithm can tolerate to a relative wide range
of controller and measurement sensitivities. We present some important matrix inequalities,
especially a class of matrix inequalities with multiplicative noises. Based on these results and a
dual-domination gain method, the output consensus error with unknown measurement noises
can be used to construct the compensator for each follower directly. Then, a new distributed
output feedback control is designed to enable the MASs to reach consensus in the presence
of large controller perturbations. In view of a Lyapunov function, sufficient conditions are
presented to guarantee that the states of the leader and followers can achieve consensus asymp-
totically. In the end, the proposed consensus algorithm is tested and verified by an illustrative
example.
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1. INTRODUCTION

MASs may be reviewed as a class of large-scale complex networks which are composed of
multiple independent but interacting agents in a given distributed configuration. These
agents are capable of accomplishing some complex tasks through interaction, coopera-
tion and collective intelligence. Recently, researchers have paid more increasing enthusi-
asm to the cooperative control problems of MASs because they can be utilized in various
fields, for instance, optimization and distributed computing [45], micro-grid [3, 4], power
systems [31], formation control of robot [7, 33] and unmanned aerial vehicles [11]. In
order to realize cooperative control, the problem of reaching consensus should be solved
firstly. That is, an appropriate control law is designed to make the states of all agents
converge to same values on the base of the information between each agent and its
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neighbor nodes. At present, researchers have proposed two categories of the consensus
problems, i.e., the leaderless consensus problem [8] and the leader-following consensus
problem [14, 22, 24, 43]. For example, the problem of distributed consensus control
was solved for MASs with unknown control and output directions [22]. In [8], the
actuator faults were modelled by a polytopic uncertainty method. Then, robust and
reliable consensus control was proposed for linear MASs with time-varying parameters
and actuator faults. In the presence of measurement sensitivities, an adaptive dis-
tributed controller was investigated to realize the leader-following consensus for MASs
via output feedback based on the backstepping control method and the Nussbaum-type
function [24]. For the consensus problem of nonlinear MASs, considerable results have
been derived [12, 13, 23, 25, 29, 38]. In [29], an adaptive distributed consensus proto-
col was developed for a class of time-delay nonlinear MASs with external noises. The
problems of distributed tracking were also studied for nonlinear MASs with unknown
hysteresis [12] and uncertain external disturbances [38]. More recently, the dynamic gain
method has been applied to deal with the consensus problem for nonlinear MASs with
time delays [13, 23, 25].

The aforementioned works on the consensus problem for MASs are obtained under
the assumption that the distributed controller of each agent is not subject to exogenous
disturbances or parameter uncertainties. In other words, the proposed consensus pro-
tocol can be implemented accurately. In practical, the controller gain may be variable
due to the factors, such as round-off errors in the numerical calculation, the aging of the
facilities, complex environments and noise disturbances, which may lead to control per-
formance degradation or divergence. In order to overcome this fragility of the controller,
various non-fragile consensus protocols have been developed for MASs under the fixed
topology [1, 2, 15, 16, 35, 42, 46, 47]. For instance, the authors in [1] proposed a non-
fragile sampled-data based control scheme for nonlinear MASs with uncertain Markovian
jump parameters and time varying delays. By means of randomly occurring gain fluc-
tuations and an extended dissipative approach, non-fragile controllers was applied such
that the nonlinear MASs reached consensus even if there existed semi-Markovian jump-
ing parameters and external disturbances [35]. In [16], a robust non-fragile protocol was
proposed to solve the finite-time consensus problem for a class of stochastic nonlinear
MASs by state feedback. Non-fragile control protocols such as containment control [47],
robust tracking control [15], near-optimal control [42] and H∞ control [2, 46] have been
developed for the consensus problem of MASs. It should be noted that the existing re-
sults of non-fragile consensus for nonlinear MASs are all obtained under the framework
of LMIs (linear matrix inequalities) or the linear programming.

In this paper, we investigate the leader-following consensus problem of nonlinear
MASs in a lower triangular form with unknown output measurement noises and con-
troller sensitivity based on high gain technology. The ideas come from the above works
and the works in [18], in which the problem of output feedback stabilization was solved
for nonlinear systems with unknown measurement sensitivities. We assume that there
exists unknown controller perturbation in the distributed controller of each follower,
and construct a matrix A by the controllers’ coefficients with multiplicative noises. The
matrix A is in Luenberger controllable canonical form. Then, a symmetric positive def-
inite matrix P is also constructed such that ATP + PA < 0. Based on these results
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and some other important matrix inequalities and high-gain technology, a distributed
compensator is proposed to estate the states of the followers, and a new dynamic output
feedback controller is designed to guarantee the nonlinear MASs reach consensus. The
major contributions are illustrated as follows:

1. Some important matrix inequalities, especially a class of matrix inequalities with
multiplicative noises are proposed.

2. A novel consensus protocol is proposed for nonlinear MASs in a lower triangular
form with unknown controller and measurement sensitivities. The bounds of the
sensitivities are enlarged from 0 to ∞.

3. By constructing a Lyapunov function, sufficient conditions are obtained to ensure
that the MASs reach consensus. Compared to the LMIs approach, there always
exists a consensus algorithm of the nonlinear lower-triangular MASs.

The remainder of this paper is given as follows. In Section 2, we describe the main
issue and introduce some relevant preliminaries. The design of output feedback consen-
sus protocol and consensus analysis are presented in Section 3. Section 4 illustrates the
validity of proposed consensus algorithm by means of numerical simulations. At last,
the summary is offered in Section 5.

2. PRELIMINARIES

2.1. Graph theory

Consider a set of followers S = {1, . . . , N}, a set of edges R ⊆ S ×S, and an undirected
graph G = (S,R). If (j, i) ∈ R, then we call that there is an edge between node i to j.
The set of neighbors of node i is defined by Ei = {j ∈ S : (j, i) ∈ R, j 6= i}. We assume
that the graph G is connected, which means that there exists a path between any two
nodes of G.

Let

aij =

{
1, if (i, j) ∈ R,
0, otherwise,

and Ωi =
∑
j∈Ei aij . The adjacency matrix of G is defined as A = [aij ] ∈ RN×N , the

degree matrix Ω = diag(Ω1, . . . ,ΩN ), the Laplacian matrix L = Ω − A is symmetric,
and the augmented graph Ḡ is consisted of the graph G, the vertex 0 and edges between
the leader and its neighbors, and the matrix H is defined as H = L + B, where B =
diag(b1, . . . , bN ), and

bi =

{
1, the leader is a neighbor of node i,
0, otherwise.

2.2. Problem description

Consider a MAS with N + 1 agents which are regarded as a class of nonlinear systems
and have a lower-triangular form. The integers 0 and 1, . . . , N are used to index the
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leader and the N followers, respectively. We give the dynamical equation of ith agent
as follows, {

ε̇i(t) = ∆0ε
i(t) + φ

(
εi(t)

)
+ Υui(t),

νi(t) = θ(t)Ξεi(t), i = 0, 1, . . . , N,
(1)

where

∆0 =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 ,Υ =


0
...
0
1

 ,Ξ =
(

1 0 · · · 0
)
,

εi(t) = (εi1(t), εi2(t), . . . , εin(t))T ∈ Rn, ui(t) ∈ R and νi(t) ∈ R are the state, the control
input and the output of the ith agent, respectively. We make the assumption that
only the outputs are measurable and u0(t) = 0, and the continuous nonlinear function
φ(εi(t)) = (φ1(εi(t)), φ2(εi(t)), . . . , φn(εi(t)))T ∈ Rn possesses the lower-triangular form,
i.e., φm(εi(t)) = φm(εi1(t), εi2(t), . . . , εim(t)) ∈ R, and φm(0) = 0, m = 1, . . . , n. The
measurement noise θ(t) is an unknown continuous bounded function.

Remark 2.1. In practice, we can apply the nonlinear system (1) to model some physical
systems, for instance, the electromechanical systems, the synchronous generator, and the
single-link robot [26, 34, 39]. Moreover, the system (1) is strict feedback, which is also
frequently encountered in the control problems of nonlinear MASs. For some systems,
such as mobile manipulators [23] and chemical reactors [13], it is comparatively easy
to measure the output compared to the state. In addition, because of manufacturing
reasons, sensitivity error θ(t) in the measurement output of sensors is inevitable [6, 18].

The aim of this paper is illustrated as follows: under a given undirected communica-
tion topology, a distributed controller is designed for each follower via output feedback
such that all states of followers asymptotically converge to those of the leader. At the
same time, the controlled system can remain steady even if the designed controllers
have large noise disturbances or implementation errors. In what follows, we propose the
definition of consensus for the multi-agent system (1).

Definition 2.2. If the following conditions are satisfied,

lim
t→∞

(
εi(t)− ε0(t)

)
= 0, i = 1, . . . , N,

then, we claim that the nonlinear multi-agent system (1) reaches consensus.

In order to derive our main results, we present the following assumptions and lemmas.

Assumption 2.3. The graph G is fixed and undirected. Then, for its augmentation Ḡ,
there exists a spanning tree such that the leader is the root.

Assumption 2.4. For any real numbers yi, zi, the following inequalities are satisfied,

|φh(y1, y2, . . . , yh)− φh(z1, z2, . . . , zh)| ≤ τ(|y1 − z1|+ · · ·+ |yh − zh|), h = 1, . . . , n,

where τ > 0 is a known constant.
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Assumption 2.5. The measurement noise θ(t) is unknown continuous and bounded.
There exist known positive constants 0 < θ1 ≤ 1 and 1 ≤ θ2 <∞ such that θ(t) ∈ [θ1, θ2],
for all t ≥ 0.

Assumption 2.6. There exist controller sensitivities ρi(t), i = 1, . . . , N with the dis-
tributed controllers for all followers, which are assumed to be unknown, continuous and
bounded, and satisfy ρi(t) ∈

[
ρi1, ρ

i
2

]
,∀t ≥ 0, where 0 < ρi1 ≤ 1 and 1 ≤ ρi2 <∞ are two

known positive constants.

Remark 2.7. Assumption 2.3 is a general and standard condition for the MASs pro-
posed in many works [10, 14]. Based on this assumption, it is shown that there exists
an undirected spanning tree in the communication topology such that the root node is
a leader, which ensures that each follower can obtain information from the leader. From
Assumption 2.4, the nonlinear terms φm

(
εi(t)

)
satisfy the Lipschitz growth condition

since φm(0) = 0. Note that the Lipschitz constant τ is known. The system uncertainties
may be weakened. However, it is still possess representative characteristics in various
nonlinear MASs [10, 37]. Moreover, the Assumptions 2.5 and 2.6 are necessary to design
our control scheme.

Lemma 2.8. (Krstic and Deng [19]) The following Young’s inequality

uh ≤ υa

a
|u|a +

1

bυb
|h|b,

is satisfies for any (u, h)T ∈ R2, where υ > 0, a > 1, b > 1, and (a− 1)(b− 1) = 1.

Lemma 2.9. (Yang and Lin [40]) The following inequality holds,

(|u1|+ · · ·+ |un|)p ≤ np−1(|u1|p + · · ·+ |un|p),

for any p ∈ [1,+∞) and any ui ∈ R, i = 1, . . . , n.

Lemma 2.10. (Ni and Cheng [30]) For an undirected and connected graph Ḡ, we can
obtain that the matrix H is symmetric positive definite. Moreover, the eigenvalues λiH
(i = 1, . . . , N) of the matrix H are positive.

Lemma 2.11. Let n× n matrices Υi,k (i = 1, . . . , N) which are given as follows

Υi,k =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−ρi(t)k1 −ρi(t)k2 · · · −ρi(t)kn

 .

The matrices Υi,k are in Luenberger controllable canonical form. Let k1, . . . , kn be given
as

kj = djkj+1 − dj
∏n−1
m=j dm +

∏n−1
m=j−1 dm, j = 1, . . . , n− 1,

kn = dn−1 + 1
2 + k0,

(2)
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where k0 > 0, and

dj = dj−1 + n+1−j
2 + 1 + d̄j , j = 1, . . . , n− 1, (3)

where d0 = 0, d̄1 = 0, and

d̄j = 1
2

∑j−1
m=2

(
d̄m + 1 + n−m+1

2

)2∏j−1
k=m d

2
k + 1

2d
2
1

∏j−1
k=1 d

2
k, j = 2, . . . , n− 1, (4)

and
δj = dj

∏n−1
m=j dm −

∏n−1
m=j−1 dm, j = 1, . . . , n− 1,

δn = dn−1 + 1
2 .

(5)

Then, there exist two positive constants k0 and ki∗ such that when k0 > ki∗ for all
i = 1, . . . , N , thus the following inequalities can be yielded,

ΥT
i,kQk +QkΥi,k ≤ −ρiMI, (6)

where ρiM = λmin(Q1)

(λmax(Q1))2
min

{
k0ρ

i
1, 1
}

, Q1 = QTdQd, I is an n × n identity matrix and

Qk = Q−1
1 is a positive definite matrix, and Qd is given as

Qd =



1 −d1 0 · · · 0

0 1 −d2 · · ·
...

0 0 1 · · · 0
...

...
...

. . . −dn−1

0 0 0 · · · 1

 .

P r o o f . Let εi = (εi,1, εi,2, . . . , εi,n)
T

and ξi = (ξi,1, ξi,2 , . . . , ξi,n)T . Consider the
linear systems ε̇i = ΥT

i,kεi (i = 1, . . . , N), and a linear transformation ξi = Qdεi. We
have

ξi,j = εi,j − djεi,j+1, j = 1, . . . , n− 1,
ξi,n = εi,n,

which inverse transformation is as follows,

εi,j = ξi,j +
∑n
m=j+1 ξi,m

∏m−1
k=j dk, j = 1, . . . , n− 1,

εi,n = ξi,n.

Therefore, ξ̇i = QdΥ
T
i,kεi, that is,

ξ̇i,j =
(
djkj+1ρ

i(t)− kjρi(t)− dj
∏n−1
k=j dk +

∏n−1
k=j−1 dk

)
ξi,n

+
∑n−1
m=j+1 ξi,m

(∏m−1
k=j−1 dk − dj

∏m−1
k=j dk

)
+ (dj−1 − dj)ξi,j + ξi,j−1,

j = 1, . . . , n− 1,

ξ̇i,n =
(
dn−1 − ρi(t)kn

)
ξi,n + ξi,n−1,

(7)
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where ξi,0 = 0. Substituting (2) and (5) into (7) yields,

ξ̇i,j = δj
(
ρi(t)− 1

)
ξi,n + (dj−1 − dj)ξi,j + ξi,j−1

+
∑n−1
m=j+1 ξi,m

(∏m−1
k=j dk(dj−1 − dj)

)
, j = 1, . . . , n− 1,

ξ̇i,n =
(
δn
(
1− ρi(t)

)
− k0ρ

i(t)
)
ξi,n − 1

2ξi,n + ξi,n−1,

where d0 = 0. Note that ξi,jξi,m ≤ 1
2

(
ξ2
i,j + ξ2

i,m

)
. Thus,

ξi,nξ̇i,n ≤
(
δn
(
1− ρi(t)

)
− k0ρ

i(t)
)
ξ2
i,n +

1

2
ξ2
i,n−1. (8)

Similarly, we can obtain,

ξi,j ξ̇i,j = δj
(
ρi(t)− 1

)
ξi,jξi,n +

(
dj−1 − dj + n−j

2

)
ξ2
i,j

+ 1
2

∑n−1
m=j+1 ξ

2
i,m(dj−1 − dj)2∏m−1

k=j d
2
k + 1

2ξ
2
i,j−1, j = 1, . . . , n− 1.

(9)

From (3), (8) and (9), we have∑n
j=1 ξi,j ξ̇i,j ≤

(
δn
(
1− ρi(t)

)
− k0ρ

i(t)
)
ξ2
i,n +

(
ρi(t)− 1

)∑n−1
j=1 δjξi,jξi,n −

∑n−1
j=1 ξ

2
i,j

−
∑n−1
j=2 d̄jξ

2
i,j + 1

2

∑n−1
j=2 ξ

2
i,j

(∑j−1
m=2

((
d̄m + 1 + n−m+1

2

)2∏j−1
k=m d

2
k

))
+ 1

2d
2
1

∑n−1
j=2 ξ

2
i,j

∏j−1
k=1 d

2
k.

(10)
By substituting (4) into (10), it follows that∑n
j=1 ξi,j ξ̇i,j ≤

(
δn
(
1− ρi(t)

)
− k0ρ

i(t)
)
ξ2
i,n +

(
ρi(t)− 1

)∑n−1
j=1 δjξi,jξi,n −

∑n−1
j=1 ξ

2
i,j

≤ −k0ρ
i(t)
2 ξ2

i,n − 1
2

∑n−1
j=1 ξ

2
i,j +

(
δn
(
1− ρi(t)

)
− ki∗ρ

i(t)
2

)
ξ2
i,n

+
(
ρi(t)− 1

)∑n−1
j=1 δjξi,jξi,n −

1
2

∑n−1
j=1 ξ

2
i,j .

We can select k0 and ki∗ such that k0 > ki∗ (i = 1, . . . , N), and δn
(
1− ρi(t)

)
− ki∗ρ

i(t)
2 ≤

0, and

2
(n−1)2

(
ki∗ρ

i(t)
2 − δn

(
1− ρi(t)

))
−
(
1− ρi(t)

)2
δ2
j ≥ 0, j = 1, . . . , n− 1.

Then we can deduce that
(
δn
(
1− ρi(t)

)
− ki∗ρ

i(t)
2

)
ξ2
i,n+

(
ρi(t)− 1

)∑n−1
j=1 δjξi,jξi,n−

1
2

∑n−1
j=1 ξ

2
i,j ≤ 0, ∀t ∈ [0,+∞). Therefore,

∑n
j=1 ξi,j ξ̇i,j ≤ −

k0ρ
i(t)
2 ξ2

i,n − 1
2

∑n−1
j=1 ξ

2
i,j ≤ − 1

2 min
{
k0ρ

i
1, 1
}∑n

j=1 ξ
2
i,j .

Note that 1
2ξ
T
i ξi = 1

2

∑n
j=1 ξ

2
i,j , ξi = Qdεi and ε̇i = ΥT

i,kεi. We have

∑n
j=1 ξi,j ξ̇i,j = 1

2

d(ξTi ξi)
dt = 1

2

(
ε̇Ti Q

T
dQdεi + εTi Q

T
dQdε̇i

)
= 1

2

(
εTi Υi,kQ1εi + εTi Q1ΥT

i,kεi

)
.
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Then,
εTi Υi,kQ1εi + εTi Q1ΥT

i,kεi ≤ −min
{
k0ρ

i
1, 1
}∑n

j=1 ξ
2
i,j

≤ −λmin(Q1) min
{
k0ρ

i
1, 1
}
εTi εi.

Further,
Υi,kQ1 +Q1ΥT

i,k ≤ −λmin(Q1) min
{
k0ρ

i
1, 1
}
I.

Let Qk = Q−1
1 . Then,

Q−1
1

(
Υi,kQ1 +Q1ΥT

i,k

)
Q−1

1 = QkΥi,k + ΥT
i,kQk

≤ −λmin(Q1) min
{
k0ρ

i
1, 1
}
Q2
k

≤ − λmin(Q1)

(λmax(Q1))2
min

{
k0ρ

i
1, 1
}
I.

Thus, the conclusions hold. �

Lemma 2.12. Suppose that the conditions of Lemma 2.11 hold. For an n×n triangular
matrix Dσ = diag{σ, 1 +σ, . . . , n− 1 +σ}, there exists an appropriate positive constant
σd such that when σ > σd, the following matrix inequality holds,

c0I ≤ DσQk +QkDσ, (11)

where c0 > 0 is a real constant.

P r o o f . Let ε = (ε1, ε2, . . . , εn)T and ξ = (ξ1, ξ2, . . . , ξn)T . Consider a dynamical linear
system given by ε̇ = Dσε, and a linear transformation ξ = Qdε. Then, we have

εi = ξi +
∑n
j=i+1 ξj

∏j−1
m=i dm, i = 1, . . . , n− 1,

εn = ξn.

Therefore, ξ̇ = QdDσε, that is,

ξ̇i = (i− 1 + σ)
(
ξi +

∑n
j=i+1 ξj

∏j−1
m=i dm

)
− di(i+ σ)

(
ξi+1 +

∑n
j=i+2 ξj

∏j−1
m=i+1 dm

)
= (i− 1 + σ)ξi −

∑n
j=i+1 ξj

∏j−1
m=i dm, i = 1, . . . , n− 1,

ξ̇n = (n− 1 + σ)ξn.

Note that ξiξj ≤ 1
2 (ξ2

i + ξ2
j ), and di > 1, i = 1, . . . , n− 1. Thus,∑n

i=1 ξiξ̇i =
∑n
i=1 (i− 1 + σ)ξ2

i −
∑n−1
i=1 ξi

∑n
j=i+1 ξj

∏j−1
m=i dm

≥
∑n
i=1 (σ − σd)ξ2

i ,

where σd is a positive constant that is related to dj in Lemma 2.11. If σ > σd, then we

get
∑n
i=1 ξiξ̇i > 0. Note that

∑n
i=1 ξiξ̇i = 1

2

d(ξT ξ)
dt = 1

2

(
ε̇TQTdQdε+ εTQTdQdε̇

)
= 1

2

(
εTDσQ1ε+ εTQ1Dσε

)
≥ λmin(Q1)(σ − σd)εT ε.
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Then,

DσQ1 +Q1Dσ ≥ 2λmin(Q1)(σ − σd)I.

Further,

Q1
−1(DσQ1 +Q1Dσ)Q1

−1 = QkDσ +DσQk

≥ 2λmin(Q1)(σ − σd)Q2
k

≥ 2λmin(Q1)(σ−σd)

(λmax(Q1))2
I = c0I.

Thus, the conclusion holds. �

Lemma 2.13. Consider the following n× n matrices ∆i (i = 1, . . . , N)

∆i =


−θ(t)λiHg1 1 · · · 0

...
...

. . .
...

−θ(t)λiHgn−1 0 · · · 1
−θ(t)λiHgn 0 · · · 0

 ,

which are in Luenberger observable canonical form. Set g1 = q2 + 1
2 + g0, gj = qjgj−1 −

qj
∏j
k=2 qk +

∏j+1
k=2 qk, j = 2, . . . , n, where g0 is a positive real number, N positive real

numbers gi∗ (i = 1, . . . , N) are given such that l1
(
1− λiHθ(t)

)
− gi∗λ

i
Hθ(t)
2 ≤ 0, and the

following inequalities,

2
(n−1)2

(
gi∗λ

i
Hθ(t)
2 − l1

(
1− λiHθ(t)

))
−
(
1− λiHθ(t)

)2
l2j ≥ 0, j = 2, . . . , n,

hold, where l1 = q2 + 1
2 , lj = qj

∏j
k=2 qk −

∏j+1
k=2 qk, qj = qj+1 + j

2 + 1 + q̄j , j = 2, . . . , n,

qn+1 = 0, q̄n = 0, and q̄j = 1
2

∑n−1
m=j+1 (q̄m + 1 + m

2 )
2∏m

k=j+1 q
2
k + 1

2q
2
n

∏n
k=j+1 q

2
k, j =

2, . . . , n− 1.

Then, if g0 > gi∗(i = 1, . . . , N), we have the following inequalities,

∆T
i P1 + P1∆i ≤ −θiMI, (12)

where θiM = λmin(P1) min
{
λiHg0θ1, 1

}
, I is an n× n identity matrix and P1 = PTq Pq is

a positive definite matrix, and Pq is given by

Pq =


1 0 0 · · · 0
−q2 1 0 · · · 0

0 −q3 1 · · · 0
...

...
...

. . .
...

0 · · · 0 −qn 1

 .

P r o o f . Based on [18, Lemma 1] and Lemma 2.11, the conclusions can be derived.
�
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Lemma 2.14. Under the same conditions to Lemma 2.13, for an n×n triangular matrix
Dσ = diag{σ, 1+σ, . . . , n−1+σ}, there exists an appropriate positive constant σq such
that when σ > σq, the following matrix inequality holds,

c1I ≤ DσP1 + P1Dσ, (13)

where c1 > 0 is a real constant.

P r o o f . The proof is similar to Lemma 2.12 and is omitted. �

Remark 2.15. In practical, because of round-off errors in the numerical calculation,
actuator degradations and sensor faults, there always exist controller gain perturbations
when the designed controller is implemented [16, 42]. However, it should be noted that
a little variation of the controller may make the existing consensus results null and
void. The uncertain term ρi(t)kj in Lemma 2.11 can be rewritten as kj +

(
ρi(t)− 1

)
kj ,

where
(
ρi(t)− 1

)
kj is called the nominal controller gain multiplicative perturbation or

controller sensitivity error. This form of controller sensitivity is an important technique
to reduce the impact of these uncertainties on the closed-loop multi-agent system. It
can be seen from Lemma 2.11 that all the parametric uncertainties are lumped in the
Luenberger controllable canonical form Υi,k. Due to the variation range of controller
sensitivity ρi(t) is wide enough, the designed controller may tolerate a relative large
level of sensitivity error. In other words, the MASs can work under extreme abominable
environments.

3. DISTRIBUTED OUTPUT FEEDBACK CONTROLLER DESIGN

In this section, we design a new distributed controller with unknown controller sensi-
tivities to solve the consensus problem of the multi-agent system (1) when unknown
measurement noise exists in the output of each agent by employing an output feedback
control scheme. For the purpose of reduction communication burden, we assume that
the ith follower only accepts the output information from its neighbors. Therefore, the
output consensus error received by the ith follower can be defined as

ξ̂i(θ) =

N∑
j=1

aij
(
νi(t)− νj(t)

)
+ bi

(
νi(t)− ν0(t)

)
, (14)

where aij and bi are defined in the graph theory.
Firstly, we construct the following distribute compensator for the ith follower (i =

1, 2, . . . , N) 
˙̂εi1(t) = ε̂i2(t) + Γg1ξ̂

i(θ),
˙̂εi2(t) = ε̂i3(t) + Γ2g2ξ̂

i(θ),
...

˙̂εin(t) = ui(t) + Γngnξ̂
i(θ),

(15)

and the high gain Γ is given by

Γ̇(t) = Γ max {α− βΓ, 0} , Γ(0) ≥ 1, (16)
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where ε̂i(t) = (ε̂i1(t), ε̂i2(t), . . . , ε̂in(t))T ∈ Rn is the state of the compensator, and α, β
are two positive constants.

By introducing the following coordinate transformation, it follows that

eim(t) =
εim(t)− ε̂im(t)− ε0m(t)

Γm−1+σ
, m = 1, . . . , n, (17)

zim(t) =
ε̂im(t)

Γm−1+σΓm−1
0

, m = 1, . . . , n, (18)

where Γ0 ≥ 1 is a constant gain.
From (1), (15), (17) and (18), we have

ėi(t) = Γ∆0e
i(t)− Γ̇

ΓDσe
i(t)− θ(t)ΓG

(∑N
j=1 aij

(
ei1(t)− ej1(t)

)
+ bie

i
1(t)

)
−θ(t)ΓG

(∑N
j=1 aij

(
zi1(t)− zj1(t)

)
+ biz

i
1(t)

)
+Mφ̄

(
εi(t)

)
, i = 1, 2, . . . , N,

(19)

where ei(t) =
(
ei1(t), ei2(t), . . . , ein(t)

)T
, M = diag

{
1

Γσ ,
1

Γ1+σ , . . . ,
1

Γn−1+σ

}
, φ̄
(
εi(t)

)
=

φ
(
εi(t)

)
− φ

(
ε0(t)

)
, G = (g1, g2, . . . , gn)T , Dσ = diag{σ, 1 + σ, . . . ,n − 1 + σ}. De-

fine e(t) = col
(
e1(t), e2(t), . . . , eN (t)

)
, φ̄ (ε(t)) = col

(
φ̄
(
ε1(t)

)
, φ̄
(
ε2(t)

)
, . . . , φ̄

(
εN (t)

))
,

z1(t) =
(
z1

1(t), z2
1(t), . . . , zN1 (t)

)T
. Then, the compact form of the system (19) can be

obtained,

ė(t) = Γ (IN ⊗∆0 − θ(t)H⊗GΞ) e(t)− Γ̇
Γ (IN ⊗Dσ)e(t)

+(IN ⊗M)φ̄ (ε(t))− θ(t)Γ(H⊗G)z1(t).
(20)

Based on the compensator (15), the distributed controllers with unknown controller
sensitivities ui(t) (i = 1, 2, . . . , N) are designed as

ui(t) = −Γn+σΓn0

n∑
j=1

ρi(t)kjz
i
j(t), (21)

where the controller sensitivities ρi(t) (i = 1, . . . , N) are given in Assumption 2.6.
According to the coordinate transformations (17) and (18), we substitute the con-
trollers (21) into the system (15). Then, for i = 1, 2, . . . , N , we have

żi(t) = Γ0Γ∆0z
i(t)− Γ̇

ΓDσz
i(t) + θ(t)ΓGZ

(∑N
j=1 aij

(
ei1(t)− ej1(t)

)
+ bie

i
1(t)

)
+θ(t)ΓGZ

(∑N
j=1 aij

(
zi1(t)− zj1(t)

)
+ biz

i
1(t)

)
− ρi(t)Γ0ΓΥKzi(t),

(22)

where zi(t) =
(
zi1(t), zi2(t), . . . , zin(t)

)T
, GZ =

(
g1,

g2
Γ0
, . . . , gn

Γn−1
0

)T
, K = (k1, k2, . . . , kn)

is the output feedback control gain.

Similarly, denote z(t) = col
(
z1(t), z2(t), . . . , zN (t)

)
, e1(t) =

(
e1

1(t), e2
1(t), . . . , eN1 (t)

)T
,

Υk = diag{Υ1,k, Υ2,k , . . . , ΥN,k}. Thus, the system (22) can be written in a compact
form,

ż(t) = Γ0ΓΥkz(t)− Γ̇
Γ (IN ⊗Dσ)z(t) + θ(t)Γ(H⊗GZ)e1(t)

+θ(t)Γ(H⊗GZ)z1(t).
(23)
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Next, based on the results of the Luenberger controllable canonical form Υi,k, suffi-
cient conditions are proposed to ensure consensus of the multi-agent system (1) under
the distributed output feedback controller (15) and (21).

Theorem 3.1. Under Assumptions 2.3, 2.4, 2.5 and 2.6, the appropriate gains G and
K are chosen by means of Lemmas 2.11 and 2.13, and the parameters α, β, Γ0 satisfy
the following conditions

β <
θ̂M
2c
, α >

κ6

c
, (24)

and

Γ0 ≥ max

{
κ2

5

θ̂M ρ̂M
,
θ̂M + 2κ4

ρ̂M
, 1

}
. (25)

Then, under the distributed output feedback controller (15) and (21), the multi-agent
system (1) can reach consensus, where c, κ4, κ5 and κ6 are four positive real constants,

θ̂M = λmin(P1) min{λ0g0θ1, 1}, λ0 = λmin(H), λ1 = λmax(H), and ρ̂M = λmin(Q1)

(λmax(Q1))2
min

{k0ρm, 1} with ρm = min
{
ρ1

1, ρ
2
1, . . . , ρ

N
1

}
.

P r o o f . Consider the following Lyapunov function

W (t) = W1(t) +W2(t), (26)

whereW1(t) = e(t)TPe(t) =
∑N
i=1 e

i(t)TP1e
i(t), W2(t) = z(t)TQz(t) =

∑N
i=1 z

i(t)TQkz
i(t).

Let ẽ(t) = (S ⊗ In)e(t), z̃(t) = (S ⊗ In)z(t), P = IN ⊗ P1, Q = IN ⊗Qk.
Calculating the derivative of the function W1(t) along the closed-loop system (20),

(23), we have,

Ẇ1(t) = Γe(t)T
(

(IN ⊗∆0 − θ(t)H⊗GΞ)
T
P + P (IN ⊗∆0 − θ(t)H⊗GΞ)

)
e(t)

− Γ̇
Γe(t)

T ((IN ⊗Dσ)P + P (IN ⊗Dσ)) e(t) + 2e(t)TP (IN ⊗M)φ̄ (ε(t))
−2θ(t)Γe(t)TP (H⊗G) z1(t).

(27)
From the coordinate transformation (17) – (18), Lemma 2.9 and Assumption 2.4, one

can obtain that, ∥∥Mφ̄
(
εi(t)

)∥∥ =
∥∥M (

φ
(
εi(t)

)
− φ

(
ε0(t)

))∥∥
≤ τ

(
n
√
n
∥∥ei(t)∥∥+ n

∑n
m=1 Γm−1

0

∣∣zim(t)
∣∣) . (28)

From (28) and Lemma 2.9, it follows that∥∥Mφ̄
(
εi(t)

)∥∥2 ≤ 2τ2n3ei(t)T ei(t) + 2τ2n2
∑n
m=1 Γ2m−2

0 zi(t)
T
zi(t). (29)

Lemma 2.8 and the inequality (29) imply that,

2e(t)TP (IN ⊗M)φ̄ (ε(t)) =
∑N
i=1 2ei(t)TP1Mφ̄

(
εi(t)

)
≤
(
‖P1‖+ 2τ2n3 ‖P1‖

)
e(t)T e(t) + 2τ2n2 ‖P1‖

∑n
m=1 Γ2m−2

0 z(t)T z(t).
(30)
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For the symmetric matrix H, we have SHST = Λ = diag
{
λ1
H, λ

2
H, . . . , λ

N
H
}

, where
S is an orthogonal matrix. Thus

−Γe(t)T
(

(θ(t)H⊗GΞ)
T
P + P (θ(t)H⊗GΞ)

)
e(t)

= −Γe(t)T
(

(ST ⊗ In)(θ(t)Λ⊗GΞ)
T
P (S ⊗ In)

+(ST ⊗ In)P (θ(t)Λ⊗GΞ) (S ⊗ In)
)
e(t)

= −Γẽ(t)T
(

(θ(t)Λ⊗GΞ)
T
P + P (θ(t)Λ⊗GΞ)

)
ẽ(t).

Furthermore,

Γe(t)T
(

(IN ⊗∆0 − θ(t)H⊗GΞ)
T
P + P (IN ⊗∆0 − θ(t)H⊗GΞ)

)
e(t)

= Γe(t)T
(

(ST ⊗ In)(IN ⊗∆0)
T
P (S ⊗ In) + (ST ⊗ In)P (IN ⊗∆0)(S ⊗ In)

)
e(t)

−Γẽ(t)T
(

(θ(t)Λ⊗GΞ)
T
P + P (θ(t)Λ⊗GΞ)

)
ẽ(t)

= Γ
∑N
i=1 ẽ

i(t)
T (

∆T
i P1 + P1∆i

)
ẽi(t).

(31)
Next, we estimate the last term in the inequality (27). From Lemma 2.9 and As-

sumption 2.5, it follows that

−2θ(t)Γe(t)TP (H⊗G) z1(t) = −2θ(t)Γẽ(t)TP (Λ⊗GΞ) z̃(t)

≤ 2Γθ2λ1

√
N ‖P1‖ ‖G‖ ‖ẽ(t)‖ ‖z̃(t)‖ .

(32)

Note that ẽ(t)T ẽ(t) = e(t)T e(t). Substituting (12), (13), (30) – (32) into (27), one can
obtain

Ẇ1(t) ≤ −
(

Γθ̂M + c1
Γ̇
Γ − κ1

)
e(t)T e(t) + Γκ2 ‖ẽ(t)‖ ‖z̃(t)‖+ κ3z(t)

T z(t), (33)

where κ1 = ‖P1‖+2τ2n3 ‖P1‖, κ2 = 2θ2λ1

√
N ‖P1‖ ‖G‖, κ3 = 2τ2n2 ‖P1‖

∑n
m=1 Γ2m−2

0 .
Along the trajectories of the system (23), the time derivative of W2(t) is given by,

Ẇ2(t) = Γ0Γz(t)T
(
ΥT
kQ+QΥk

)
z(t)− Γ̇

Γz(t)
T ((IN ⊗Dσ)Q+Q (IN ⊗Dσ)) z(t)

+2θ(t)Γz(t)TQ (H⊗GZ) e1(t) + 2θ(t)Γz(t)TQ (H⊗GZ) z1(t).
(34)

Note that ‖GZ‖ ≤ ‖G‖. Using Lemma 2.9 and Assumption 2.5, we have

2θ(t)Γz(t)TQ(H⊗GZ)e1(t) + 2θ(t)Γz(t)TQ(H⊗GZ)z1(t)
= 2θ(t)Γz̃(t)TQ(Λ⊗GZΞ)ẽ(t) + 2θ(t)Γz̃(t)TQ(Λ⊗GZΞ)z̃(t)

≤ 2Γθ2λ1

√
N ‖Qk‖ ‖G‖ ‖ẽ(t)‖ ‖z̃(t)‖+ 2Γθ2λ1 ‖Qk‖ ‖G‖ z̃(t)T z̃(t).

(35)

Obviously,

Γ0Γz(t)T
(
ΥT
kQ+QΥk

)
z(t) = Γ0Γ

∑N
i=1 z

i(t)
T
(

ΥT
i,kQk +QkΥi,k

)
zi(t). (36)

Since z̃(t)T z̃(t) = z(t)T z(t), then, substituting (6), (11), (35) and (36) into (34)
yields,

Ẇ2(t) ≤ −
(

Γ0Γρ̂M + c0
Γ̇
Γ − Γκ4

)
z(t)T z(t) + Γκ4 ‖ẽ(t)‖ ‖z̃(t)‖ , (37)
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where κ4 = 2θ2λ1

√
N ‖Qk‖ ‖G‖. Let κ5 = κ2 + κ4, κ6 = κ1 + κ3, c = min {c0, c1}.

Note that the constant gain Γ0 satisfies the inequality (25). From (26), (33) and (37),
it follows that

Ẇ (t) ≤ −
(
θ̂M
2 Γ− κ1

)
e(t)T e(t)−

(
ρ̂M
2 Γ0Γ− Γκ4 − κ3

)
z(t)T z(t)

−c Γ̇
Γ

(
e(t)

T
e(t) + z(t)

T
z(t)

)
−
[
‖ẽ(t)‖
‖z̃(t)‖

]T [ θ̂M
2 Γ − 1

2Γκ5

− 1
2Γκ5

ρ̂M
2 Γ0Γ

] [
‖ẽ(t)‖
‖z̃(t)‖

]
≤ −

(
θ̂M
2 Γ− κ6

)(
e(t)

T
e(t) + z(t)

T
z(t)

)
− c Γ̇

Γ

(
e(t)

T
e(t) + z(t)

T
z(t)

)
.

(38)

The condition (16) and the inequality (38) imply that,

Ẇ (t) ≤ −Γµ
(
e(t)

T
e(t) + z(t)

T
z(t)

)
− (cα− κ6)

(
e(t)

T
e(t) + z(t)

T
z(t)

)
,

where µ = θ̂M
2 − cβ.

From the condition (24), we have µ > 0 and cα − κ6 > 0. It follows from (16) that

Γ(0) ≤ Γ(t) ≤ Γm, where Γm = max
{
α
β ,Γ(0)

}
. Then,

Ẇ (t) ≤ −µ
(
e(t)

T
e(t) + z(t)

T
z(t)

)
.

Thus,

λmin(P )‖e(t)‖2 + λmin(Q)‖z(t)‖2 −
(
e(0)

T
Pe(0) + z(0)

T
Qz(0)

)
≤W1(t) +W2(t)−W1(0)−W2(0)

≤ −µ
∫ t

0

(
‖e(t)‖2 + ‖z(t)‖2

)
dt, t ∈ [0,+∞) .

Therefore,∫ t

0

µ
(
‖e(t)‖2 + ‖z(t)‖2

)
dt ≤ e(0)TPe(0) + z(0)TQz(0) < +∞. (39)

From the inequality (39), we can obtain that e(t) and z(t) are bounded on [0,+∞).
By the Barbalat’s Lemma [17], it follows that limt→∞ e(t) = 0 and limt→∞ z(t) = 0.
Then, (17) and (18) imply that limt→∞ ε̂i(t)→ 0 and limt→∞ εi(t)→ ε0(t), i = 1, . . . , N ,
that is, the states of followers can asymptotically converge those of the leader. The proof
is completed. �

Remark 3.2. In the recent decades, there are many works on consensus schemes for
nonlinear MASs with unknown controller sensitivity under a fixed communication topol-
ogy [1, 2, 16, ?]. The common characteristic of these schemes is that sufficient conditions
of the existence of non-fragile controllers are established in the form of LMIs. Up to
now, the controller gain variations are usually assumed to be norm-bounded and gener-
ally classified as additive [16, 35] and multiplicative [1, 28]. For example, in [28], control
gain perturbations were modelled as ∆K = MF (t)NK with ‖∆K‖ ≤ η0, where η0 is
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a positive scalar, F (t) represents the parameter uncertainties and satisfies ‖F (t)‖ ≤ 1.
The non-fragile controllers can tolerate a certain level of gain perturbations, whereas,
our newly proposed controller with unknown controller sensitivity can tolerate a rela-
tive wide range of gain perturbations. On the other hand, it is worth noting that the
existence of non-fragile consensus is dependent on the feasibility of LMI-based sufficient
conditions [1, 2, 16, 28, 35]. If the LMI-based sufficient conditions are infeasible, then
non-fragile consensus can not be derived. However, there always exists consensus for the
nonlinear lower-triangular MASs when the controller has unknown controller sensitivity
by using our proposed methods.

Remark 3.3. Until now, the research on heterogeneous MASs has yielded more and
more distinguished results. For instance, in the literature [9, 44], the resilient cooperative
output regulation problem was investigated for heterogeneous MASs under DoS attacks.
The MASs considered in [9] is linear, whose exosystem dynamics are unknown for all
agents and can be switched in different time intervals. In [44], the nonlinear dynam-
ics of each agent have uncertain parameters, and remain essentially a lower-triangular
form. However, the above works do not take into account the influence of unknown
measurement noises. In practical engineering, due to manufacturing reasons, inaccurate
measurement of sensors, external disturbances, etc., there always exist measurement
noises. In this paper, our main aim is to deal with the consensus problem for a class
of lower-triangular nonlinear MASs with unknown measurement sensitivities. We also
consider the fragility of the designed controller, such that it has stronger robustness. Be-
yond the above, the full states tracking consensus is achieved when there exist unknown
controller and measurement sensitivities. Whereas, the authors considered the problem
of the output of each agent tracking the reference signal in [9, 44]. On the other hand,
the regulated output in [9] is globally ultimately bounded.

Remark 3.4. In the literature [6], a dual-domination method originated from [20, 21,
32], was presented to deal with nonlinear terms and unknown measurement noise, and
has been widely applied in the works [27, 36, 41]. In this paper, we apply the idea of
this method to make the MASs consensus. From (16), (24) and (38), it can be seen that
the dynamic gain Γ(t) is used to dominate the parameter κ6 stemming from the growth
rate τ , and the constant gain Γ0 is used to dominate the unknown output measurement
noises and the unknown controller sensitivities for all the distributed controllers.

4. NUMERICAL SIMULATIONS

In this section, we present a numerical example to test the feasibility of our newly
proposed consensus algorithm. Consider a group of single-link robots [5] with a leader
and four followers. In Figure 1, it is shown the topology Ḡ, where 0 denotes the leader
and i (i = 1, . . . , 4) denote the four followers. We can verify that Assumption 2.3 holds.
The dynamics of each single-link robot is given by

Mq̈i + 0.5mgl sin(qi) = F i,

where qi and F i denote the angle and input torque of the ith single-link robot, respec-
tively, M , g, m, l are the moment of inertia, the gravity acceleration, the mass and the
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length of the link, respectively. Then, by defining εi1 = qi, εi2 = q̇i, ui = M−1F i, we
have 

ε̇i1(t) = εi2(t),

ε̇i2(t) = ui(t)− mgl sin(εi1(t))
2M ,

νi(t) = θ(t)εi1(t), i = 0, 1, . . . , 4.

The parameters are given as M = 1, m = 1, g = 9.8, l = 1. It can be verified that
the nonlinear terms satisfy Assumption 2.4 with τ = 4.9. Then the distributed output
feedback controller for the ith follower is constructed as

˙̂εi1(t) = ε̂i2(t) + Γg1ξ̂
i(θ),

˙̂εi2(t) = ui(t) + Γ2g2ξ̂
i(θ),

ui(t) = −ρi(t)k1(Γ0Γ)
2
ε̂i1(t)− ρi(t)k2Γ0Γε̂i2(t),

where ξ̂i(θ) =
∑4
j=1 aij

(
νi(t)− νj(t)

)
+ bi

(
νi(t)− ν0(t)

)
(i = 1, 2, 3, 4), u0(t) = 0, Γ

is given by (16). In order to better illustrate the impact of uncertainties in sensors
and distributed controllers on the consensus performance, we conduct the simulation
experiment under two cases by setting different values of the measurement noise and
controller sensitivities.

Case 1. Set the measurement noise θ(t) = 1 + 0.1 sin(10t + 0.1π). Then, As-
sumption 2.5 holds with θ1 = 0.9 and θ2 = 1.1. The controller sensitivities are
given as ρ1(t) = 0.8 + 0.4 |cos (10t+ 0.1π)|, ρ2(t) = 0.95 + 0.1 sin (20t+ 0.2π), ρ3(t) =
1.1 + 0.08 cos (30t+ 0.3π), ρ4(t) = 1.05 + 0.05 |sin (50t +0.5π)|, which satisfy the condi-
tions in Assumption 2.6 with ρi1 = {0.8, 0.85, 1.02, 1.05} and ρi2 = {1.2, 1.05, 1.18, 1.1}.
Thus, we have ρm = 0.8.

Based on the topology diagram illustrated in Figure 1, we can obtain the minimum
and maximum eigenvalues of H as λ0 = 0.2679, λ1 = 3.7321. According to Lemma 2.11,
we have d1 = 2, δ1 = 4, δ2 = 2.5. Let k0 = 30, then K = (61, 32.5), λmin(Q1) = 0.1716,
λmax(Q1) = 5.8284, ρ̂M = 0.0051. From Lemma 2.13, we have q2 = 2, l1 = 2.5, l2 = 4.

Choose g0 = 115, then, G = (117.5, 231)T , λmin(P1) = 0.1716, θ̂M = 0.1716. Based on
Theorem 3.1, the appropriate parameters are given by σ = 4, c0 = 0.02, c1 = 1, α = 85,
β = 0.098, Γ0 = 69.

Fig. 1. The connected graph.

The initial conditions are set as ε0(0) = (−0.4, 10)T , ε1(0) = (−0.1,−50)T , ε2(0) =
(0.3, 80)T , ε3(0) = (−0.5,−100)T , ε4(0) = (0.2, 150)T , and ε̂1(0) = (0.5,−50)T , ε̂2(0) =
(0.1, 10)T , ε̂3(0) = (0.2,−20)T , ε̂4(0) = (−0.3, 30)T , Γ(0) = 1. The results of the
simulation are illustrated in Figures 2 – 7. The trajectories of each agent’s states are
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shown in Figures 2 and 3. Figures 4 and 5 present the trajectories of the state errors
between followers and the leader. The dynamic gain is bounded which can be seen in
Figure 6. The control inputs are described in Figure 7.

0 0.02 0.04 0.06 0.08 0.1

t/s

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2. The trajectories of εi1(t), i = 0, 1, . . . , 4.
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Fig. 3. The trajectories of εi2(t), i = 0, 1, . . . , 4.
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Fig. 4. The trajectories of εi1(t) − ε01(t), i = 1, . . . , 4.
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Fig. 5. The trajectories of εi2(t) − ε02(t), i = 1, . . . , 4.
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Fig. 6. The trajectory of Γ(t).
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Fig. 7. The trajectories of ui(t), i = 0, 1, . . . , 4.

Case 2. Let θ(t) = 0.15 + 0.05 |cos(20t+ 0.2π)|, which satisfies Assumption 2.5 with
θ1 = 0.15 and θ2 = 0.2. The controller sensitivities ρ1(t) = 3 + 2.8 |sin (10t+ 0.1π)|,
ρ2(t) = 4.5 + 0.5 cos (20t+ 0.2π), ρ3(t) = 6 − |cos (30t+ 0.3π)|, ρ4(t) = 5 + 1.5 sin (50t
+0.5π). They satisfy the conditions in Assumption 2.6 with ρi1 = {3, 4, 5, 3.5} and
ρi2 = {5.8, 5, 6, 6.5}. Then we can get ρm = 3.

Based on Lemma 2.11, we have d1 = 2, δ1 = 4, δ2 = 2.5. Set k0 = 75, then
K = (151, 77.5), λmin(Q1) = 0.1716, λmax(Q1) = 5.8284, ρ̂M = 0.0051. According to
Lemma 2.13, we get q2 = 2, l1 = 2.5, l2 = 4. Select g0 = 170, thus, G = (172.5, 341)T ,
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λmin(P1) = 0.1716, θ̂M = 0.1716. Based on Theorem 3.1, the appropriate parameters
are given by σ = 4, c0 = 0.02, c1 = 1, α = 205, β = 0.15, Γ0 = 45. The initial conditions
are same to those in Case 1. The simulation results are displayed in Figsures 8 – 13.
Figsures 8 and 9 represent that the trajectories of each agent’s states. The trajectories
of the state errors between followers and the leader are described in Figsures 10 and 11.
It is evident from Figure 12 that the dynamic gain is bounded. Figure 13 shows that
the trajectories of the control inputs.

It is apparent from the simulation results that the states of followers can asymptoti-
cally track those of the leader, which demonstrates the validity of our proposed consensus
protocol. Furthermore, the values of the measurement noise and controller sensitivities
are taken to be close to 1 in Case 1, whereas they are farther away from 1 in Case 2.
From Figures 2 and 3, it is easy to see that the trajectories of the agent state consensus
have relatively small overshoots but slower convergence rates. However, in Case 2, the
overshoots in Figures 8 and 9 are large, but the convergence speeds are faster. There-
fore, we can derive the conclusion that if the values of the uncertainties in the sensor
and the controller are farther away 1, the overshoot of the dynamic process of the state
consensus is larger, and the convergence speed is fast.
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Fig. 8. The trajectories of εi1(t), i = 0, 1, . . . , 4.
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Fig. 9. The trajectories of εi2(t), i = 0, 1, . . . , 4.
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Fig. 10. The trajectories of εi1(t) − ε01(t), i = 1, . . . , 4.
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Fig. 11. The trajectories of εi2(t) − ε02(t), i = 1, . . . , 4.
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Fig. 12. The trajectory of Γ(t).
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Fig. 13. The trajectories of ui(t), i = 0, 1, . . . , 4.

5. CONCLUSION

In this paper, we proposed a novel method of the leader-following consensus for a class
of lower-triangular nonlinear MASs with unknown measurement noises and controller
sensitivity under a fixed undirected graph. By developing some important matrix in-
equalities and applying a dual-domination gain method, a distributed compensator that
only accepts output information with unknown measurement noise was constructed to
estimate the state of the corresponding follower. Owing to the presence of unknown
controller sensitivity in the control law, a new distributed dynamic output feedback
controller was designed, which could tolerate a relative wide range of sensitivity error.
Based on the Lyapunov stability theory, sufficient conditions were presented to guaran-
tee that the states of the leader and followers could achieve consensus asymptotically.
An illustrative example was also provided to verify the correctness of the proposed con-
sensus algorithm. Further, one possible future investigation is to consider the consensus
problem that the output of each agent carries different unknown measurement noises
under the sampling and delay mechanism.
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