
K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 3 , P A G E S 3 3 5 – 3 5 3

FIXED POINT RESULT IN CONTROLLED FUZZY
METRIC SPACES WITH APPLICATION TO DYNAMIC
MARKET EQUILIBRIUM

Rakesh Tiwari, Vladimir Rakočević and Shraddha Rajput

In this paper, we introduce Θf -type controlled fuzzy metric spaces and establish some fixed
point results in this spaces. We provide suitable examples to validate our result. We also employ
an application to substantiate the utility of our established result for finding the unique solution
of an integral equation emerging in the dynamic market equilibrium aspects to economics.
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1. INTRODUCTION

In 1922, S. Banach [5] had given an important result of the fixed point theory. This
topic has been studied, presented and generalized by many researchers in many different
spaces. Firstly, the work of Bakhtin [6], Bourbaki [7] and Czerwik [8] expanded the
theory of fixed points for b-metric spaces. Also, many authors proved some important
fixed point theorems in b-metric spaces ([1, 2, 3]). Afterwards the controlled metric
spaces introduced by Nabil Mlaiki et al. [21] which generalizes the b-metric spaces and
proved some fixed point theorems.

Zadeh [28] had introduced important theoretical development in the fuzzy set the-
ory. Fuzzy set theory is the way of defining the concept of fuzzy metric spaces was
illustrated by Kramosil and Michálek [17], which can be regarded as a generalization of
the statistical metric spaces. Subsequently, M. Grabiec [14] defined G-complete fuzzy
metric spaces and extended the complete fuzzy metric spaces. Following Grabiec’s work,
George and Veeramani [10] modified the notion of M -complete fuzzy metric spaces with
the help of continuous t-norms. Afterwards, this concept was extended by Nadaban [22]
the context of fuzzy b-metric spaces. In the direction, Many researchers studied and gen-
eralized various fixed point results in the framework of fuzzy b-metric spaces [16, 18].
Müzeyyen Sangurlu Sezen [24] introduced controlled fuzzy metric spaces, which is a
generalization of extended fuzzy b-metric spaces [18]. Furthermore, he also proved a
Banach-type fixed point theorem and a new fixed point theorem for some self-mappings
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satisfying fuzzy ψ- contraction condition and also establish some examples. Many au-
thors introduced and generalized the numerous types of fuzzy contractive mappings
([4, 11, 12, 13, 15, 19, 20, 25, 27]) and investigated some fixed point theorems in fuzzy
metric spaces.

H. Saleh Nasr et al. [23] introduced Fuzzy Θf - contractive mapping and established
some fixed point theorems in M-complete fuzzy metric spaces and furnished an applica-
tion to functional equations under Θf - contractive conditions.

The objective of this work is to prove a Banach type fixed point theorem in controlled
fuzzy metric spaces using fuzzy Θf - contractive mapping, which is an extension of [23].
Our result generalizes many recent fixed point theorems in the literature ([22, 16, 18, 24]).
We furnish an example to validate our result. Application is also provided to show the
utility of our result to find the unique solution of an integral equation appearing in the
dynamic market equilibrium aspects to economics.

2. PRELIMINARIES

Now, we begin with some basic concepts, notations and definitions. Let R represent
the set of real numbers, R+ represent the set of all non-negative real numbers and N
represent the set of natural numbers.

We start with the following definitions of a fuzzy metric space. Schweizer and Sklar
introduced the continuous t- norm as follows:

Definition 2.1. (Schweizer and Sklar[26]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1]
is called a continuous t- norm if for all r1, r2, r3 ∈ [0, 1], the following conditions are
hold:

(T -1) r1 ∗ r2 = r2 ∗ r1 and r1 ∗ (r2 ∗ r3) = (r1 ∗ r2) ∗ r3,

(T -2) r1 ∗ r2 ≤ r3 ∗ r4 whenever r1 ≤ r3 and r2 ≤ r4,

(T -3) r1 ∗ 1 = r1,

(T -4) ∗ is a continuous.

The most commonly used t-norms are: r1 ∗1 r2 = min{r1, r2}, r1 ∗2 r2 = r1r2
max{r1,r2,λ} for

all λ ∈ (0, 1), r1 ∗3 r2 = r1r2, r1 ∗4 r2 = max{r1 + r2 − 1, 0}, the Lukasiewicz t-norms,
we will denote it by ∗L. For all r1 ∗ r2 ∗ · · · ∗ rn will be denoted by

∏n
i=1 ri.

Kramosil and Michálek [17] introduced the notion of fuzzy metric space as follows:

Definition 2.2. (Kramosil and Michálek [17]) An ordered triple (X,M, ∗) is called
fuzzy metric space such that X is a nonempty set, ∗ defined a continuous t-norm and
M is a fuzzy set on X ×X × [0,∞), satisfying the following conditions, for all x, y, z ∈
X, s, t > 0,

(KM-1) M(x, y, 0) = 0,

(KM-2) M(x, y, t) = 1, for all t > 0 iff x = y,
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(KM-3) M(x, y, t) = M(y, x, t),

(KM-4) (M(x, y, t) ∗M(y, z, s)) ≤M(x, z, t+ s),

(KM-5) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

George and Veeramani [10] modified the definition of M -complete fuzzy metric spaces
due to Kramosil and Michálek and the concept as follows:

Definition 2.3. (George and Veeramani [10]) An ordered triple (X,M, ∗) is called
fuzzy metric space such that X is a nonempty set, ∗ defined a continuous t-norm and
M is a fuzzy set on X ×X × (0,∞), satisfying the following conditions:

(FM-1) M(x, y, t) > 0,

(FM-2) M(x, y, t) = 1 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) (M(x, y, t) ∗M(y, z, s)) ≤M(x, z, t+ s),

(FM-5) M(x, y, ·) : (0,∞)→ [0, 1] is left continuous, x, y, z ∈ X and t, s > 0.

George and Veeramani proved in [10] that every fuzzy metric M on X generates a
topology τM on X which has as a base the family of open sets of the form

{BM (x, r, t) : x ∈ X, 0 < r < 1, t > 0},

where

BM (x, r, t) = {y ∈ X : M(x, y, t) > 1− r} for all x ∈ X, r ∈ (0, 1) and t > 0.

In 2017, Nădăban [22] introduced the idea of a fuzzy b-metric space to generalize the
notion of a fuzzy metric spaces introduced by Kramosil and Michálek [17].

Definition 2.4. (Nădăban [22]) Let X is a non-empty set and k ≥ 1 be a given real
number and ∗ be a continuous t-norm. A fuzzy set M in X2 × (0,∞) is called fuzzy
b-metric on X if for all x, y, z ∈ X, the following conditions hold.

(bM-1) M(x, y, 0) = 0,

(bM-2) [M(x, y, t) = 1, (∀)t > 0] if and only if x = y,

(bM-3) M(x, y, t) = M(y, x, t), (∀)t > 0,

(bM-4) M(x, z, k(t+ s)) ≥M(x, y, t) ∗M(y, z, s), (∀)t, s > 0,

(bM-5) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous and limt→∞M(x, y, t) = 1.

The quadruple (X,M, ∗, k) is said to be a fuzzy b-metric space.
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Definition 2.5. (Nădăban [22]) Let (X,M, ∗, k) be a fuzzy b-metric space. For x ∈
X, r ∈ (0, 1), t > 0 we define the open ball

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Then
τM = {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T}

is a topology on X.

Mehmood et al. [18] introduced the notion of an extended fuzzy b-metric space
following the approach of Grabiec [14].

Definition 2.6. (Mehmood et al. [18]) Let X be a non-empty set, α : X×X → [1,∞),
∗ is a continuous t-norm and Mα is a fuzzy set on X2 × (0,∞), is called extended fuzzy
b-metric on X if for all x, y, z ∈ X and s, t > 0, satisfying the following conditions.

(FbMα1) Mα(x, y, 0) = 0,

(FbMα2) Mα(x, y, t) = 1 iff x = y,

(FbMα3) Mα(x, y, t) = Mα(y, x, t),

(FbMα4) Mα(x, z, α(x, z)(t+ s)) ≥Mα(x, y, t) ∗Mα(y, z, s),

(FbMα5) Mα(x, y, ·) : (0,∞)→ [0, 1] is continuous.

Then (X,Mα, ∗, α(x, y)) is an extended fuzzy b-metric space.

In [24], Sezen introduced the controlled fuzzy metric spaces, which is a generalization
of extended fuzzy b-metric spaces.

Definition 2.7. (Sezen [24]) Let X be a non-empty set, λ : X × X → [1,∞), ∗ is
a continuous t-norm and Mλ is a fuzzy set on X2 × (0,∞), satisfying the following
conditions, for all a, c, d ∈ X, s, t > 0 :

(FM-1) Mλ(a, c, 0) = 0,

(FM-2) Mλ(a, c, t) = 1 iff a = c,

(FM-3) Mλ(a, c, t) = Mλ(c, a, t),

(FM-4) Mλ(a, d, t+ s) ≥Mλ

(
a, c, t

λ(a,c)

)
∗Mλ

(
c, d, s

λ(c,d)

)
,

(FM-5) Mλ(a, c, ·) : [0,∞)→ [0, 1] is continuous,

Then, the triple (X,Mλ, ∗) is called a controlled fuzzy metric space on X.

Definition 2.8. (Gopal and Vetro [13]) Let (X,M, ∗) be a fuzzy metric space. We say
that T : X → X is α-admissible if there exists a function α : X×X×(0,+∞)→ [0,+∞)
such that, for all t > 0,

x, y ∈ X,α(x, y, t) ≥ 1⇒ α(Tx, Ty, t) ≥ 1.
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Definition 2.9. (Nasr [23]) Θf : (0, 1) → (0, 1), such that Θf is non decreasing con-
tinuous and satisfying condition for each sequence {βn} ⊂ (0, 1),

lim
n→∞

Θf (βn) = 1⇔ lim
n→∞

βn = 1. (1)

Definition 2.10. (Gopal [11, 12]) Let (X,M, ∗) be a fuzzy metric space. Then

(i) A sequence {xn}n∈N converges to x ∈ X, that is limn→+∞ xn = x, if

lim
n→+∞

M(xn, x, t) = 1 for all t > 0.

(ii) A sequence {xn}n∈N is called M-Cauchy, if for each ε ∈ (0, 1) and t > 0 there exists
n0 ∈ N such that

M(xn, xm, t) > 1− ε for all m,n ≥ n0.

(iii) A sequence {xn}n∈N is called G-Cauchy if

lim
n→+∞

M(xn, xn+m, t) = 1 for each m ∈ N and t > 0.

Now, a fuzzy metric space (X,M, ∗) is called M-complete (G-complete) if every
M-Cauchy (G-Cauchy) sequence is convergent.

Definition 2.11. (Sezen [24]) Let (X,Mλ, ∗) be a controlled fuzzy metric spaces. Then

1. A sequence {xn} in X is said to be G-convergent to x in X, if and only if

lim
n→∞

Mλ(xn, x, t) = 1, for any n > 0 and for all t > 0.

2. A sequence {xn} in X is said to be G-Cauchy sequence if and only if

lim
n→∞

Mλ(xn, xn+m, t) = 1 for any m > 0 and for all t > 0.

3. The controlled fuzzy metric space is called G-complete if every G-Cauchy sequence
is convergent.

3. MAIN RESULT

In this section, we introduce some new definitions and establish a fixed point theorem
in controlled fuzzy metric spaces.

Definition 3.1. Let Y be a non-empty set, λ : Y ×Y → [1,∞), ∗ is a continuous t-norm
and Mλ is a fuzzy set on Y 2 × (0,∞), for all a, c, d ∈ Y, s, t > 0, Θf : [0, 1] → [0, 1],
satisfying the following conditions,

(ΘfFMλ-1) Θf (Mλ(a, c, 0)) = 0,

(ΘfFMλ-2) Θf (Mλ(a, c, t)) = 1 iff a = c,
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(ΘfFMλ-3) Θf (Mλ((a, c, t)) = Θf (Mλ(c, a, t)),

(ΘfFMλ-4) Θf (Mλ(a, d, t+ s)) ≥ Θf (Mλ

(
a, c, t

λ(a,c)

)
∗Mλ

(
c, d, s

λ(c,d) )
)
,

(ΘfFMλ-5) Θf (Mλ(a, c, ·)) : [0,∞)→ [0, 1] is continuous.

Then, the triple (Y,ΘfMλ, ∗) is called a Θf -type controlled fuzzy metric spaces on Y.

Now, we display an example to verify our definition.

Example 3.2. Let Y = A ∪ C where A = (0, 2) and C = [2,∞). Define Mλ is a fuzzy
set on Y 2 × (0,∞), as

Mλ(a, c, t) =


1 if a = c

e−
3
ct if a ∈ A and c ∈ C

e−
3
at if a ∈ C and c ∈ A

e−
3
t otherwise.

With the continuous product t-norm. Taking Θf (β) = e1−
1
β and define λ : Y × Y →

[1,∞), as

λ(a, c) =

{
1 if a, c ∈ A
max{a, c} otherwise.

Let us show that (Y,ΘfMλ, ∗) is a Θf - type controlled fuzzy metric space on Y. It is
easy to prove conditions (ΘfFMλ-1), (ΘfFMλ-2) and (ΘfFMλ-3). We have to examine
the following cases to show that condition (ΘfFMλ-4) holds.

Case I. If d = a or d = c, (ΘfFMλ-4) is satisfied.

Case II. If d 6= a and d 6= c, (ΘfFMλ-4) holds when a = c.

Suppose that a 6= c. Then, we get a 6= c 6= d. Now, we can see that (ΘfFMλ-4) is
satisfied in all the cases below:

1. Let a, c, d ∈ A and a, c, d ∈ C, choose t = 1, s = 1 and a = 1, c = 1
2 , d = 3

2 and
λ(a, c) = 1, λ(a, d) = 1, then we get Θf (e−1.5) ≥ Θf (e−6).

2. Let a, d ∈ A and c ∈ C, choose t = 1, s = 1 and a = 1
2 , c = 3, d = 3

2 and
λ(a, c) = max{a, c} = 3, λ(a, d) = 3

2 , then we get Θf (e−0.5) ≥ Θf (e−1).

3. Let a, d ∈ C and c ∈ A, choose t = 1, s = 1 and a = 3, c = 3
2 , d = 4 and

λ(a, c) = max{a, c} = 3, λ(a, d) = 1, then we get Θf (e−0.5) ≥ Θf (e−1.3).

4. Let a ∈ C and c, d ∈ A, choose t = 1, s = 1, and a = 4, c = 1
2 , d = 3

2 and
λ(a, c) = max{a, c} = 4, λ(a, d) = 1, then we get Θf (e−0.37) ≥ Θf (e−0.93).

5. Let a, c ∈ A and d ∈ C, choose t = 1, s = 1 and a = 1
2 , c = 3

2 , d = 4 and
λ(a, c) = 1, λ(a, d) = 1, then we get Θf (e−1.5) ≥ Θf (e−6).

6. Let a, c ∈ C and d ∈ A, choose t = 1, s = 1, and a = 3, c = 4, d = 1
2 and

λ(a, c) = max{a, c} = 4, λ(a, d) = 3, then we get Θf (e−1.5) ≥ Θf (e−1.75).
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7. Let c, d ∈ C and a ∈ A, choose t = 1, s = 1, and a = 3
2 , c = 3, d = 4 and

λ(a, c) = max{a, c} = 3, λ(a, d) = 4, then we get Θf (e−0.5) ≥ Θf (e−0.6).

Consequently, (Y,ΘfMλ, ∗) is a Θf type controlled fuzzy metric space on X. Also, for
the same functions λ using by (ΘfFMλ-4), we get

Θf (Mλ(a, d, t+ s)) ≥ Θf (Mλ

(
a, d,

t

λ(a, c)

)
∗Mλ

(
c, d,

t

λ(c, d)

)
.

Remark 3.3. We show by the following example, that verifies definition of Θf -type
controlled fuzzy metric spaces and doesn’t verify controlled fuzzy metric spaces.

Example 3.4. Let Y = [1,∞). Define Mλ is a fuzzy set on Y 2 × (0,∞), as

Mλ(a, c, t) =


1 if a = c

te−(−
a
c+1)t if a ≤ c

te−(−
c
a+1)t if c ≤ a.

With the continuous product t-norm. Taking Θf (β) = e(β−1)e
(1− 1

β
)

+sin (β−1)π
2 +cos βπ2 ,

t = 1, s = 2 and define λ : Y × Y → [1,∞), as

λ(a, c) =

{
1 if a, c ∈ Y
max{a, c} otherwise.

Let us show that (Y,ΘfMλ, ∗) is a Θf - type controlled fuzzy metric space on Y. It is
easy to prove conditions (ΘfFMλ-1), (ΘfFMλ-2) and (ΘfFMλ-3). We have to examine
the following cases to show that condition (ΘfFMλ-4) holds.

Case I. If d = a or d = c, (ΘfFMλ-4) is satisfied.

Case II. If d 6= a and d 6= c, (ΘfFMλ-4) holds when a = c.

Suppose that a 6= c. Then, we get a 6= c 6= d. Now, we can see that (ΘfFMλ-4) is
satisfied in all the cases below:

1. Let a ≤ c and c ≤ d choose t = 1, s = 2, and a = 1, c = 2, d = 3 and λ(a, c) =
1, λ(c, d) = 1, then we get Θf (0.4060) ≥ Θf (0.620)

Θf (Mλ(a, d, t+ s)) = Θf (0.4060)

= e(0.4060−1)e
(1− 1

0.4060
)

+ sin
(0.4060− 1)π

2
+ cos

0.4060π

2

≥ e(0.620−1)e
(1− 1

0.620
)

+ sin
(0.620− 1)π

2
+ cos

0.620π

2

= Θf (0.620) = Θf

(
Mλ(a, c,

t

λ(a, c)

)
∗Mλ

(
c, d,

s

λ(c, d)

)
,
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2. Let c ≤ a and a ≤ d choose t = 1, s = 2, and c = 2, a = 3, d = 4 and λ(a, c) =
1, λ(a, d) = 1, then we get Θf (0.6693) ≥ Θf (0.86)

Θf (Mλ(a, d, t+ s))

= Θf (0.6693) = e(0.6693−1)e
(1− 1

0.6693
)

+ sin
(0.6693− 1)π

2
+ cos

0.6693π

2

≥ e(0.86−1)e
(1− 1

0.86
)

+ sin
(0.86− 1)π

2
+ cos

0.86π

2

= Θf (0.86) = Θf (Mλ

(
a, c,

t

λ(a, c)

)
∗Mλ

(
c, d,

s

λ(c, d)

)
,

It shows that, (Y,ΘfMλ, ∗) is a Θf -type controlled fuzzy metric spaces and condition
(FMλ-4) is not satisfied of controlled fuzzy metric spaces, so not controlled fuzzy metric
spaces.

Definition 3.5. Let (Y,ΘfMλ, ∗) is a Θf type controlled fuzzy metric space on X with
λ : Y × Y → [1,∞), A mapping S : Y → Y is called a fuzzy Θf weak contractive with
respect to Θf ∈ Ω, and Y is α- admissible. There exist l ∈ (0, 1) such that

Mλ(Sa, Sc, t) < 1⇒ α(a, c)Θf (Mλ(Sa, Sc, t)) ≥ [Θf (N(a, c, t))]l (2)

for all a, c ∈ Y and t > 0, where

N(a, c, t) = min

{
Mλ(a, c, t),Mλ(a, Sa, t),Mλ(c, Sc, t),

Mλ(a, Sa, t)Mλ(c, Sc, t)

Mλ(a, c, t)

}
. (3)

Theorem 3.6. Let (Y,ΘfMλ, ∗) is a Θf type controlled fuzzy metric space on Y. A
mapping S : Y → Y is a fuzzy Θf weak contractive and Y is α- admissible, then S
admits a unique fixed point.

P r o o f . Let a0 is an arbitrary point in Y,

α(a0, Sa0) ≥ 1.

We define a sequence {an} in Y by

an+1 = San for all n ∈ N.

Obviously if, there exists n0 ∈ N such that

an0 = San0+1,

then San0
= an0

and the proof is finished. Suppose that an 6= an+1 for all n ∈ N, that
is, α(Sn, Sn+1) ≥ 1.

Mλ(San−1, San, t) < 1 for all n ∈ N and s > 0.
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Using (2), since S is a (α,Θf ) type contraction, so for all n ∈ N, we can write

1 > Mλ(San−1, San, t)⇒ α(an, an+1)Θf (Mλ(San−1, San, t))

≥ [Θf (N(an−1, an, t))]
l

≥
[
Θf

(
min

{
Mλ(an−1, an, t),Mλ(an−1, an, t),Mλ(an, an+1, t),

Mλ(an−1, an, t)Mλ(an, an+1, t)

Mλ(an−1, an, t)

})]l
≥ [Θf (min{Mλ(an−1, an, t),Mλ(an, an+1, t)})]l.

Thus

Θf (Mλ(an, an+1, t) ≥ [Θf (min{Mλ(an−1, an, t),Mλ(an, an+1, t)})]l. (4)

If there exists n ∈ N such that

min{Mλ(an−1, an, t),Mλ(an, an+1, t)} = Mλ(an, an+1, t),

so

Θf (Mλ(an, an+1, t) ≥ [Θf (Mλ(an, an+1, t))]
l > Mλ(an, an+1, t).

Which is contradiction. Therefore

min{Mλ(an−1, an, t),Mλ(an, an+1, t)} = Mλ(an−1, an, t),

so

Θf (Mλ(an, an+1, t) ≥ [Θf (Mλ(an−1, an, t))]
l > Mλ(an−1, an, t),

for all n ∈ N. Thus (4), we get

Θf (Mλ(an, an+1, t)) ≥
[
Θf

(
Mλ

(
an−1, an,

t

k

))]l
≥
[
Θ2
f

(
Mλ

(
an−2, an−1,

t

k2
))]l2

≥
[
Θ3
f

(
Mλ

(
an−3, an−2,

t

k3
))]l3

...

≥ [Θn
f (Mλ(a0, a1,

t

kn
))]l

n

. (5)

Thus by (4), we have

Θf (Mλ(an, an+1, t)) ≥
[
Θf

(
Mλ

(
a0, a1,

t

kn
))]ln

> Mλ

(
a0, a1,

t

kn

)
. (6)
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Consider the triangle inequality, using the condition (ΘfFMλ-4), we have

Θf (Mλ(an, an+m, t))

≥ Θf

(
Mλ

(
an, an+1,

t

2λ(an, an+1)

)
∗Mλ

(
an+1, an+m,

t

2λ(an+1, an+m)

))
≥ Θf

(
Mλ(an, an+1,

t

2λ(an, an+1)

)
∗Mλ

(
an+1, an+2,

t

(2)2λ(an+1, an+m)λ(an+1, an+2)

)
∗Mλ

(
an+2, an+m,

t

(2)2λ(an+1, an+m)µ(an+2, an+m)

)

Θf (Mλ

(
(an, an+m, t)) (7)

≥ Θf

(
Mλ(an, an+1,

t

2λ(an, an+1)

))
∗Mλ

(
an+1, an+2,

t

(2)2λ(an+1, an+m)λ(an+1, an+2)

)
∗Mλ

(
an+2, an+3,

t

(2)3λ(an+1, an+m)λ(an+2, an+m)λ(an+2, an+3)

)
∗Mλ

(
an+3, an+m,

t

(2)3λ(an+1, an+m)λ(an+2, an+m)λ(an+3, an+m)

)
...

≥ Θn
f

(
Mλ

(
a0, a1,

t

2kn−1λ(an, an+1)

))
∗
[
∗n+m−2i=n+1 Θi

f

(
Mλ

(
a0, a1,

t

(2)m−1ki−1(
∏i
j=n+1 µ(aj , an+m))λ(ai, ai+1)

))]
∗
[
Θn+m−1
f

(
Mλ

(
a0, a1,

t

(2)m−1kn+m−1(
∏n+m−1
i=n+1 µ(ai, an+m))

))]
. (8)

Θf is non decreasing continuous and satisfying condition for each sequence {βn} ⊂ (0, 1)

lim
n→∞

Θf (αn) = 1⇔ lim
n→∞

αn = 1. (9)

Therefore, by taking limit as n→∞ in (7), from (6) together with (2) we have

lim
n→∞

Θf (Mλ(an, an+m, t)) ≥ (1 ∗ 1 ∗ · · · ∗ 1) = 1,

for all t > 0 and n,m ∈ N. Thus, {an} is a G-Cauchy sequence in X. From the
completeness of (X,Mλ, ∗), there exists u ∈ X such that

lim
n→∞

Mλ(an, u, t) = 1, (10)
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for all t > 0. Now we show that u is a fixed point of h. For any t > 0 and from the
condition (FMλ-4), we have

Θf (Mλ(u, Su, t)) ≥ Θf

(
Mλ

(
u, an+1,

t

2λ(an, an+1)

)
∗Mλ

(
an+1, Su,

t

2λ(an+1, Su)

))
= Θf

(
Mλ

(
u, an+1,

t

2λ(u, an+1)

))
∗Mλ

(
San, Su,

t

2λ(an+1, Su)

)
≥ Θf

(
Mλ

(
u, an+1,

t

2λ(u, an+1)

))
∗Θf

(
Mλ

(
an, u,

t

2λ(an+1, Su)

))
.

(11)

Letting n→∞ in (11) and using (10), we get

lim
n→∞

Θf (Mλ(u, Su, t)) = 1,

by definition of Θf , we have

lim
n→∞

Θf (Mλ(u, Su, t)) = 1⇔ lim
n→∞

Mλ(u, Su, t) = 1,

for all t > 0, that is, u = Su.
Let w ∈ X is an another fixed point of S and there exists t > 0 such that u 6= w, then
it follows from (2) that

Θf (Mλ(u,w, t)) = Θf (Mλ(Su, Sw, t))

≥ Θf

(
Mλ

(
u,w,

t

k

))
≥ Θf

(
Mλ

(
u,w,

t

k2

))
...

> Θf

(
Mλ

(
u,w,

t

kn

))
, (12)

for all n ∈ N. By taking limit as n → ∞ in (11), Mλ(u,w, t) = 1 for all t > 0, that is,
u = w. This completes the proof. �

Remark 3.7. Putting Θf (β) = β, α(a, c) = 1 and

N(a, c, t) = min
{
Mλ(a, c, t),Mλ(a, Sa, t),Mλ(c, Sc, t),

Mλ(a, Sa, t)Mλ(c, Sc, t)

Mλ(a, c, t)

}
= Mλ(a, c, t)

in Theorem 3.6, we obtain the following result.

Corollary 3.8. Let (Y,ΘfMλ, ∗) is a Θf -type controlled fuzzy metric space on Y. If
S : Y → Y is a mapping such that for all a, c ∈ Y, and λ : Y × Y → [1,∞), t > 0 for
some l ∈ (0, 1)

Mλ(Sa, Sc, t) ≥ [Mλ(a, c, t)]l,

then S admits a unique fixed point.
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Remark 3.9. By taking l = 1, in corollary 3.8, we infer the Theorem 2 in [24].

We furnish an example to validate our main result.

Example 3.10. Let Y = A ∪ C where A = {22n : n ∈ N} and C = {2}. Define
Mλ : Y × Y × [0,∞)→ [0, 1] as

Mλ(a, c, t) =


1 if a = c
t

t+ 1
a

if a ∈ A and c ∈ C
t

t+ 1
c

if a ∈ C and c ∈ A
( t
t+1 )

1
3 otherwise.

With the continuous product t-norm. Define λ : Y × Y → [1,∞), as

λ(a, c) =

{
1 if a, c ∈ A
max{a, c} otherwise.

Clearly (Y,ΘfFMλ, ∗) is a Θf type controlled fuzzy metric space and we take Θf (β) =
β, β ∈ (0, 1], α(a, c) ≥ 1. Consider S : Y → Y by

S(a) =

{√
2 if a ∈ A

22
n+1

if a ∈ C.

Now let us show that (Y,ΘfFMλ, ∗) is a Θf controlled fuzzy metric space. It is easy
to prove conditions (ΘfFMλ-1), (ΘfFMλ-2) and (ΘfFMλ-3). We have to examine the
following cases to show that condition (ΘfFMλ-4) holds.

Case I. If a = c then we have Sa = Sc. In this case:

Θf (Mλ(Sa, Sc, t)) = 1 = Θf (Nλ(a, c, t))
1
2 .

Fig. 1. Variation of L.H.S = Θf (Mλ(Sa, Sc, t)) with

R.H.S = Θf [N(a, c, t)]l of Example 3.10 case-II on 2D and 3D view,

for: (a) Θf (Mλ(Sa, Sc, t)) vs Θf [N(a, c, t)]l at t, n ∈ (1, 10).
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Case II. Let a ∈ A and c ∈ C, then we have Sa ∈ A and Sc ∈ C. In this case:

Since

Θf (Mλ(Sa, Sc, t)) = Θf

( t(
t+ 1

S(a)

))
= Θf

( t

(t+ 1

22n+1 )

)
≥ Θf

[ t

(t+ 1
22n

)

] 1
2

= Θf [N(a, c, t)
]l
. (13)

Table 1 and 2 show the variation between Θf (Mλ(Sa, Sc, t)) and Θf [N(a, c, t)]l as a
function of n with relative to t. This table justifies inequality (13), which observed in
both the curves for the value of t is a higher than 50 as a function of n.

Value of t Value of n Θf (Mλ(Sa, Sc, t)) Θf [N(a, c, t)]l

1 1 0.9412 0.4000
2 0.9961 0.4706
5 1 0.5000
10 1 0.5000

50 1 0.9988 0.4975
2 0.9999 0.4994
20 1.0000 0.5000
50 1.0000 0.5000

Tab. 1. Variation of Θf (Mλ(Sa, Sc, t)) with Θf [N(a, c, t)]l of

inequality (13), as a function of n with fixed value of t = 1 and t = 50.

Value of n Value of t Θf (Mλ(Sa, Sc, t)) Θf [N(a, c, t)]l

1 1 0.9412 0.4000
2 0.9697 0.4444
50 0.9988 0.4975
100 0.9994 0.4988

50 1 1.000 0.5000
2 1.000 0.5000
50 1.000 0.5000
100 1.000 0.5000

Tab. 2. Variation of Θf (Mλ(Sa, Sc, t)) with Θf [N(a, c, t)]l of

inequality (13) as a function of n with fixed value of n = 1 and n = 50.
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Case III. Let a ∈ C and c ∈ A, then we have Sa ∈ C and Sc ∈ A. In this case:

Θf (Mλ(Sa, Sc, t)) = Θf

( t(
t+ 1

S(c)

))
= Θf

( t(
t+ 1

22n+1

))
≥ Θf

[ t

(t+ 1
22n

)

] 1
2

= Θf [N(a, c, t)]l.

Case IV. For other states of a, c and similarly Sa, Sc, we have,

Fig. 2. Variation of L.H.S = Θf (Mλ(Sa, Sc, t)) with

R.H.S. = Θf [N(a, c, t)]l of Example 3.8, case-IV on 2D and 3D view,

for: (a) Θf (Mλ(Sa, Sc, t)) vs Θf [N(a, c, t)]l at t, n ∈ (1, 10).

Θf (Mλ(Sa, Sc, t)) = Θf (
t

t+ 1
)

1
3

≥ Θf [
t

t+ 1
]
1
6

= Θf [N(a, c, t)]l.

Therefore, all the conditions of Theorem 3.6 hold and S has a unique fixed point y = 1.

Remark 3.11. Putting Θf (β) = eβ−1, α(a, c) = 1,

N(a, c, t) = min
{
Mλ(a, c, t),Mλ(a, Sa, t),Mλ(c, Sc, t),

Mλ(a, Sa, t)Mλ(c, Sc, t)

Mλ(a, c, t)

}
= Mλ(a, c, t)

and α(a, c) = 1 in Theorem 3.6, we obtain the following result.
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Corollary 3.12. Let (Y,ΘfMλ, ∗) is a Θf -type controlled fuzzy metric space on Y. If
S : Y → Y is a mapping such that for all a, c ∈ Y, t > 0. Define λ : Y × Y → [1,∞), for
some l ∈ (0, 1).

eMλ(Sa,Sc,t)−1 ≥ [eMλ(a,c,t)−1]l,

then S admits a unique fixed point.

Similarly, by choosing different values of Θf (β), we can obtain several results in the
literature.

4. APPLICATION

We also provide an application to substantiate the utility of our established result to find
the unique solution of an integral equation appearing in the dynamic market equilibrium
aspects to economics.

Supply Qs and demand Qd are influenced by current prices and price trends (i. e.,
whether prices are rising or falling and whether they are rising or falling at an increasing
or decreasing rate) in many markets [9]. The economist, therefore, needs to know the

current price P (t), the first derivative dP (t)
dt , and the second derivative d2P (t)

dt2 . Assume

Qs = g1 + u1P (t) + e1
dP (t)

dt
+ c1

d2P (t)

dt2

Qd = g2 + u2P (t) + e2
dP (t)

dt
+ c2

d2P (t)

dt2
.

g1, g2, u1, u2, e1 and e2 are constants. Comment on the dynamic stability of the market,
if price clears the market at each point in time. In equilibrium, Qs = Qd. Therefore,

g1 + u1P (t) + e1
dP (t)

dt
+ c1

d2P (t)

dt2
= g2 + u2P (t) + e2

dP (t)

dt
+ c2

d2P (t)

dt2

since

(c1 − c2)
d2P (t)

dt2
+ (e1 − e2)d

dP (t)

dt
+ (u1 − u2)P (t) = −(g1 − g2).

Letting c = c1 − c2, e = e1 − e2, u = u1 − u2 and g = g1 − g2 in above, we have

c
d2P (t)

dt2
+ e

dP (t)

dt
+ uP (t) = −g,

dividing through by c, P (t) is governed by the following initial value problem
P
′′

+ e
cP
′
+ u

cP (t) = − gc
P (0) = 0

P ′(0) = 0,

(14)
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where e2

c = 4u
c and u

e = µ is a continuous function. It is easy to show that the problem
(14) is equivalent to the integral equation:

P (t) =

∫ T

0

ζ(t, r)F (t, r, P (r)) dr, (15)

where ζ(t, r) is Green’s function given by

ζ(t, r) =

{
re

µ
2 (t−r) if 0 ≤ r ≤ t ≤ T

te
µ
2 (r−t) if 0 ≤ t ≤ r ≤ T.

(16)

In this section, by using Corollary 3.8, we will show the existence of a solution to the
integral equation:

P (t) =

∫ T

0

G(t, r, P (r)) dr. (17)

Let X = C([0, T ]) be the set of real continuous functions defined on [0, T ] . For t > 0,
we define

Mλ(a, c, t) = sup
t∈[0,T ]

min{a, c}+ t

max{a, c}+ t
(18)

for all a, c ∈ Y, with the continuous t-norm ∗ such that t1 ∗ t2 = t1t2. Taking Θf (β) = β
and define λ : Y × Y → [1,∞), as

λ(a, c) =

{
1 if a, c ∈ A
max{a, c} otherwise.

It is easy to prove that (Y,Mλ, ∗) is a controlled fuzzy metric spaces. Consider the
mapping S : Y → Y defined by

SP (t) =

∫ T

0

G(t, r, P (r)) dr. (19)

Theorem 4.1. Consider equation (17) and suppose that

1. There exist a continuous function ζ : [0, T ]× [0, T ]→ R+ such that

supt∈[0,T ]

∫ T
0
ζ(t, r) dr ≥ 1

2. max{G(t, r, a(r))−G(t, r, c(r))} ≥ ζ(t, r) max{a(r), c(r)} and
min{G(t, r, a(r))−G(t, r, c(r))} ≥ ζ(t, r) min{a(r), c(r)}

3. max{a(r), c(r)}+ t ≥ (max{a(r), c(r)}+ t)l and
min{a(r), c(r)}+ t ≥ (min{a(r), c(r)}+ t)l,

for all l ∈ (0, 1). Then, the integral equation (17) has a unique solution.
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P r o o f . For a, c ∈ Y , by using of assumptions (1)(3), we have

Mλ(Sa, Sc, t) = sup
t∈[0,T ]

min{
∫ T
0
G(t, r, a(r)) dr,

∫ T
0
G(t, r, c(r)) dr.)}+ t

max{
∫ T
0
G(t, r, a(r)) dr,

∫ T
0
G(t, r, c(r)) dr.)}+ t

= sup
t∈[0,T ]

∫ T
0

min{G(t, r, a(r), G(t, r, c(r))} dr + t∫ T
0

max{G(t, r, a(r)) dr,G(t, r, c(r))}dr + t

≥ sup
t∈[0,T ]

∫ T
0
ζ(t, r)min{a(r), c(r)} dr + t∫ T

0
ζ(t, r) max{a(r), c(r)} dr + t

≥ sup
t∈[0,T ]

min{a(r), c(r)}
∫ T
0
ζ(t, r) dr + t

max{a(r), c(r))}
∫ T
0
ζ(t, r) dr + t

≥ (min{a(r), c(r)}+ t)l

(max{a(r), c(r))}+ t)l

≥ (
min{a(r), c(r)}+ t

max{a(r), c(r))}+ t
)l

≥ (Mλ(a, c, t))l.

Therefore all the conditions of Corollary 3.8 are satisfied. As a result, the mapping S
has a unique fixed point y ∈ Y, which is a solution of the integral equation (17). �

CONCLUSIONS

In this article, motivated and inspired by the work of Müzeyyen Sangurlu Sezen [24] and
H. Saleh Nasr et al. [23], we generalize the controlled fuzzy metric spaces using fuzzy
Θf - contractive mapping. We obtain a fixed point result by using generalized contractive
conditions in the framework of controlled fuzzy metric spaces. Our investigations and
results obtained were supported by suitable examples. We also provide an application
of our result to the existence of a solution to an integral equation, which determine
dynamic market equilibrium aspects to economics problems. This work provides a new
path for researchers in the concerned field.
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