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THE EXPONENTIAL COST OPTIMALITY FOR FINITE
HORIZON SEMI-MARKOV DECISION PROCESSES

Haifeng Huo and Xian Wen

This paper considers an exponential cost optimality problem for finite horizon semi-Markov
decision processes (SMDPs). The objective is to calculate an optimal policy with minimal
exponential costs over the full set of policies in a finite horizon. First, under the standard
regular and compact-continuity conditions, we establish the optimality equation, prove that
the value function is the unique solution of the optimality equation and the existence of an
optimal policy by using the minimum nonnegative solution approach. Second, we establish a
new value iteration algorithm to calculate both the value function and the ε-optimal policy.
Finally, we give a computable machine maintenance system to illustrate the convergence of the
algorithm.
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1. INTRODUCTION

As is well known, semi-Markov decision processes (SMDPs) form a more general
stochastic optimal model, in which the sojourn time periods of the system state in
SMDPs are allowed to follow any arbitrary probability distribution. This feature makes
it widely applicable in many fields such as the queuing systems, reliability engineering,
risk analysis and finance, and so on [2, 10, 11, 18, 24]. In recent years, a lot of research
has been conducted on the classical expected criteria of SMDPs; see e. g., [14, 22, 24] for
the finite horizon expected criteria; [2, 4, 10, 21, 23] for the expected discounted criteria;
[10, 19, 27] for the expected average criteria.

These traditional criteria do not reflect the attitude of the decision maker towards
the risk. Based on these situations, SMDPs with the expected exponential utility cri-
teria (also known as risk-sensitive SMDPs) have attracted attention of scholars; see
e. g.,[7, 13]. More precisely, the authors in [7] discussed risk sensitive SMDPs with a
long-run average cost, established the optimality equation for the risk-sensitive average
cost, and proved the existence of an optimal stationary policy under the continuity-
compactness conditions. Recently, Huang, Lian and Guo [13] adopted the convex an-
alytic approach to solve the unconstrained and constrained risk sensitive problems for
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SMDPs, and proved the existence of the Bellman equation and the optimal policies
under some continuity-compactness conditions. Risk sensitive MDPs is an important
dynamic programming model and has been widely studied in discrete time Markov de-
cision processes (DTMDPs) [3, 5, 6, 8, 17, 20], and continuous time Markov decision
processes (CTMDPs) [9, 25, 28]. More specifically, Ghosh and Saha [9] considered finite
and infinite horizon risk-sensitive problems for CTMDPs with bounded transition rates,
proved that the value function is a unique solution to the HJB equation, showed the
existence of an optimal Markov control. Wei [25] further considered the finite horizon
risk sensitive cost criterion for CTMDPs with unbounded transition rates under the so-
called drift condition, proved the existence of an optimal deterministic Markov policy by
using the Feynman-Kac formula. Different from the mentioned works [9, 25], Zhang [28]
reduced the infinite horizon risk-sensitive CTMDPs to an equivalent risk-sensitive DT-
MDP. Under the compactness-continuity condition, the author proved the existence of
a deterministic stationary optimal policy. In this paper, we are going to discuss further
the exponential cost optimality for finite horizon SMDPs.

Compared with the existing research work, we pay more attention to the calculation
of the optimal policies and the feasibility and effectiveness of the algorithm, whereas the
authors in [13] are more focused on the existing conditions of the optimal policies. More
specifically, we use a so-called minimum nonnegative solution technique to establish
the corresponding optimality equation and the existence of an optimal policy, which is
different from the application of the convex analytic method in Huang [13]. Secondly,
from a practical standpoint, we establish NEW facts (see Theorem 2 and 3) to ensure the
existence of optimal policies, and develop a new value iteration algorithm to calculate
the value function and the optimal policy. Moreover, we prove the convergence of the
value iteration algorithm. However, there is little discussion on the calculation of the
optimal optimal policy and the feasibility and convergence of the algorithm in [13].

The main contributions of this paper are reflected as follow: Since the criterion is the
optimization of the expected exponential cost over a fixed finite horizon, it is normal to
consider planning horizons in the standard histories, see Definition 1. Thus, we define a
class of policies depending on histories with the additional planning horizons, construct
the corresponding probability space, and provide the so-called regularity condition to
ensure that the state process is non-explosive; see Lemma 1. Under some suitable
conditions, we establish the corresponding optimality equation, prove the existence and
uniqueness of the solution, and show the existence of an optimal policy using a minimum
nonnegative solution approach, which is slightly different from the Feyman-Kac formula
method in [25], the reduction method in [28] and the occupation measure method in
[13]. Furthermore, we develop a value iteration algorithm for computing both the value
function and the ε-exponential cost optimal policy; see Theorem 3. Moreover, we pro-
vided an example of machine maintenance system to analyse the convergence of the
value iteration algorithm, and compute both the value function and the ε-exponential
cost optimal policy.

The rest of this paper is organized as follows. In Section 2, we describe the optimal
control model for semi-Markov decision processes. The main results are presented and
proved in Section 3. In Section 4, an example illustrating our main results is given.
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2. THE CONTROL MODEL

The control model is given by

{E,A, (A(i) ⊆ A, i ∈ E), Q(u, j|i, a), c(i, a)} (1)

where E is a Borel state space with a Borel σ-algebras B(E) ; A is a Borel action space;
A(i) denotes the set of admissible actions at state i ∈ E; The set of pairs of states
and actions is denoted by K := {(i, a)|i ∈ E, a ∈ A(i)}. Q(·, ·|x, a) denotes the semi-
Markov kernel on R+ × E given K with R+ := [0,∞). For any u ∈ R+, D ∈ B(S),
Q(u,D|i, a) represents the joint probability that the sojourn time in state i does not
exceed u ∈ [0,∞) and the state i transitions into the set D if action a is taken.

The semi-Markov kernel has the following properties:

(a) Q(·, j|i, a) is a non-decreasing, right continuous function from [0,∞) to [0, 1] with
Q(0, j|i, a) = 0 for any fixed (i, a) ∈ K, j ∈ E.

(b) Q(u, ·|i, a) is a sub-stochastic kernel on E given K for any fixed u ∈ [0,∞).

(c) p(j|i, a) := limu→∞Q(u, j|i, a) is a stochastic kernel on E given K.

The cost function c(i, a) is a nonnegative real-valued function on K.
The evolution of this system is described as follows: At an initial decision epoch

s0 = 0, based on the initial state i0 and planning horizon t0, the decision maker chooses
an action a0 ∈ A(i0). As a result of this chosen action, the system stays at the state i0
until time s1, at which point the system jumps into a new state i1 ∈ D with the transition
law Q(s1, D|i0, a0), and pays the cost c(i0, a0)(s1 − s0). Then, the next decision epoch
s1 arrives, and based on the current state i1, the planning horizon t1 = [t0− (s1− s0)]+,
the previous state i0, and the planning horizon t0, the decision marker chooses an action
a1 ∈ A(i1), where [x]+ = max(0, x). The system continues to evolve in the same way,
and produces along a vector

hk := (i0, t0, a0, s1, i1, t1, a1, . . . , sk, ik, tk), (2)

which is called an admissible history up to the kth decision epoch. In (2), sk (k ≥ 1)
represents the kth decision epoch, ik−1 denotes the state of the system on [sk−1, sk),
ak−1 is the action taken by the decision marker at time sk−1. θk := sk− sk−1 represents
the sojourn time at state ik−1, which can be made to follow any probability distribution.
tk is the planning horizon at time sk and is defined by

tk := [tk−1 − θk]+. (3)

Moreover, the state process is assumed to be absorbed in an isolated point ∆ 6∈ E after
s∞ := limk→∞ sk, c(∆, a∞) :≡ 0, A(∆) := {a∞}, and A∞ := A∪ {a∞}, where a∞ is an
isolated point.

Let Hk denote the sets of all admissible histories hk defined by

H0 := E ×R+, H1 := E ×R+ ×A× (0,+∞]× E ×R+, and
Hk := E ×R+ ×A× ((0,+∞]× E ×R+ ×A)k−1 × (0,+∞]× E ×R+ for k ≥ 2.
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To state our optimal control problem rigorously, we define some admissible policies.

Definition 1. A stochastic history-dependent policy π is defined by a sequence {πk, k ≥
0}, where πk is a stochastic kernel on A given Hk, and such that

πk(A(ik)|hk) = 1 ∀hk ∈ Hk, k = 0, 1, 2 . . . .

The class of all stochastic history-dependent policies is denoted by Π.
Let φ be the set of stochastic kernels ϕ on A given E×R+ satisfying ϕ(A(i)|i, t) = 1

for all (i, t) ∈ E × R+. Denote by F the set of measurable functions f : E × R+ → A
such that f(i, t) ∈ A(i) for all (i, t) ∈ E ×R+.

Definition 2. A policy π = {πk} ∈ Π is called stochastic Markov if πk(·|hk) = ϕk(·|ik, tk)
for some stochastic kernels ϕk ∈ φ with k ≥ 0 and hk ∈ Hk. Such a stochastic Markov
policy is denoted by π = {ϕk} for simplicity.

A stochastic Markov policy π = {ϕk} is said to be stochastic stationary if each ϕk
is independent of k. Such a stationary policy is denoted by π = {ϕ} for simplicity.

A stochastic Markov policy π = {ϕk} is said to be deterministic Markov if ϕk(·|ik, tk)
is concentrated at fk(ik, tk) ∈ A(ik) for some measurable function fk from E × R+ to
A(ik) with k ≥ 0 and (ik, tk) ∈ E ×R+.

A deterministic Markov policy π = {fk} is said to be deterministic stationary if each
fk is independent of k. Such a stationary policy is denoted by f for simplicity.

Let ΠRM ,ΠRS ,ΠDM and ΠDS denote the class of all stochastic Markov, the class
of stochastic stationary, deterministic Markov, and deterministic stationary policies,
respectively. It is clear that φ = ΠRS ⊂ ΠRM ⊂ Π and F = ΠDS ⊂ ΠDM ⊂ Π.

To ensure the rationality of the optimal control problem, we need to construct the
probability space as follows: The sample space Ω is defined by Ω := {(i0, t0, a0, s1, i1,
t1, a1, . . . , sk, ik, tk, ak, . . . , )| i0 ∈ E, t0 ∈ R+, a0 ∈ A, sl ∈ (0,∞], il ∈ E, tl ∈ R+, al ∈ A
for each 1 ≤ l ≤ k, k ≥ 1}. The sample space Ω endowed with its Borel σ-algebra
F . For each ω := (i0, t0, a0, s1, i1, t1, a1, . . . , sk, ik, tk, ak, . . .) ∈ Ω, k ≥ 1, we de-
fine some random variables on (Ω,F) as follows: S0(ω) := 0, X0(ω) := i0, T0(ω) :=
t0, A0(ω) = a0, Sk(ω) := sk,Θk(ω) := θk, Xk(ω) := ik, Tk(ω) := tk, Ak(ω) := ak, S∞(ω)
:= limk→∞ Sk(ω). For simplicity, the argument ω will be omitted from now on. Hence,
the state process {xs, s ≥ 0} and the action process {As, s ≥ 0} are defined by

xs :=
∑
k≥0

I{Sk≤s<Sk+1}ik + ∆I{s≥S∞}, (4)

As :=
∑
k≥0

I{Sk≤s<Sk+1}ak + a∆I{s≥S∞}, (5)

where ID represents the indicator function on a set D.
For any (i, t) ∈ E×R+ and π ∈ Π, by the Ionescu Tulcea theorem (e. g., Proposition

7.45 in [1]), there exist a unique probability space (Ω,F , Pπ(i,t)) and a stochastic process

{xs, As, s ≥ 0} such that for each k ≥ 0,

Pπ(i,t)(Ak ∈ Γ|hk) = πk(Γ|hk), (6)

Pπ(i,t)(θk+1 ≤ u,Xk+1 ∈ D|S0, X0, T0, A0, . . . , Sk, Xk, Tk, Ak) = Q(u,D|Xk, Ak). (7)
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The expectation operator is denoted by Eπ(i,t) associated with Pπ(i,t).

To ensure that the explosion of state process, we need to impose the following basic
assumption, which has been used previously in MDPs, see, for instance, [10, 16] for
CTMDPs and [13–15] for SMDPs.

Assumption 1. For any π ∈ Π, (i, t) ∈ E × [0, T ], Pπ(i,t)(S∞ =∞) = 1.

Assumption 1 means that the state process {xs, s ≥ 0} is non-explosive, that is the
state process {xs, s ≥ 0} cannot jump infinitely many times during any finite horizon.
Moreover, the following lemma gives an easily verifiable sufficient condition on the semi-
Markov kernel ensuring the validity of Assumption 1.

Lemma 1. If there exist some constants δ and ε0 > 0 such that

Q(δ, E|i, a) ≤ 1− ε0, (8)

for all (i, a) ∈ K, then Assumption 1 holds.

P r o o f . It follows from Proposition 2.1 in [14]. �

Remark 1. The condition in Lemma 1 is usually called the “standard regular condi-
tion”, and which is widely used in SMDPs [13–15].

For any fixed T ∈ R+, i ∈ E and π ∈ Π, the finite horizon exponential cost criterion
V π(i, T ) of SMDPs is defined by

V π(i, T ) := Eπ(i,T )

(
e−γ

∫ T
0
c(xs,As)ds

)
, (9)

where γ > 0 denotes the risk aversion coefficient, which shows the degree of risk aversion
of the decision maker.

Definition 3. A policy π∗ ∈ Π is said to be an optimal policy if

V π
∗
(i, T ) = sup

π∈Π
V π(i, T ), i ∈ E. (10)

The value function is given by

V ∗(i, T ) := sup
π∈Π

V π(i, T ), i ∈ E. (11)
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3. MAIN RESULTS

The aim of the present section is to exhibit the main results on the problem of minimizing
exponential cost for SMDPs on finite horizon.

Notation: For any policy π ∈ Π and initial state i ∈ E, we define the expected expo-
nential cost during a planning horizon[0, t] as follows: V π(i, t) := Eπ(i,t)(e

−γ
∫ t
0
c(xs,As) ds),

where 0 ≤ t ≤ T .
Let

V ∗(i, t) := sup
π∈Π

V π(i, t) ∀(i, t) ∈ E × [0, T ]. (12)

Let Vm be the set of all Borel-measurable functions V : E × [0, T ]→ [0, 1].
For any (i, t) ∈ E× [0, T ], V ∈ Vm, ϕ ∈ φ, and a ∈ A(i), we define the operators LϕV

and LV by:

LaV (i, t) := e−γc(i,a)t(1−D(t|i, a))

+

∫
E

∫ t

0

e−γc(i,a)uV (j, t− u)Q(du,dj|i, a) (13)

LϕV (i, t) :=

∫
A

ϕ(da|i, t)LaV (i, t) (14)

LV (i, t) := sup
A(i)

LaV (i, t), (15)

where D(t|i, a) :=
∫
E
Q(t,dj|i, a).

Moreover, we iteratively define the operators (LnV, n ≥ 1), ((Lϕ)nV, n ≥ 1) by

L1V = LV,Ln+1V = L(LnV ), (Lϕ)1V = LϕV, (Lϕ)n+1V = Lϕ((Lϕ)nV ), n ≥ 1.

Let Um be the set of all Borel-measurable functions U : E × [0, T ] → [−1, 1]. For
any (i, t) ∈ E × [0, T ], U ∈ Um, ϕ ∈ φ, and a ∈ A(i), we define the operators

L̃ϕV, ((L̃ϕ)nV, n ≥ 1) by:

L̃aU(i, t) :=

∫
E

∫ t

0

e−γc(i,a)uU(j, t− u)Q(du,dj|i, a) (16)

L̃ϕU(i, t) :=

∫
A

ϕ(da|i, t)L̃aU(i, t) (17)

(L̃ϕ)n+1U = L̃ϕ((L̃ϕ)nU). (18)

In order to ensue the existence of the optimal policy, we need to establish the following
compact-continuity condition, which is satisfied for the finite set A(i) with i ∈ E. See,
for instance, [10, 11, 13].

Assumption 2. (a) For any i ∈ E, A(i) is compact.

(b) For each fixed V ∈ Vm,
∫
E

∫ t
0
e−γc(i,a)uV (j, t− u)Q(du,dj|i, a) is is upper semicon-

tinuous and inf-compact on K.
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In the following, we give some properties of the operator L.

Lemma 2. Under Assumptions 1 and 2, the following assertions hold:

(a) For V,G ∈ Vm such that V ≥ G, we have LaV (i, t) ≥ LaG(i, t), LV (i, t) ≥ LG(i, t)
for any a ∈ A(i), (i, t) ∈ E × [0, T ].

(b) For V ∈ Vm, there exists a policy f ∈ F satisfying LV (i, t) = LfV (i, t) for any
(i, t) ∈ E × [0, T ].

P r o o f . (a) It is a straightforward consequence of the definition of the operators La

and L.

(b) Under Assumptions 1 and 2, the measurable selection theorem (proposition D.5
in [11]) provides the existence of a policy f ∈ F satisfying LfV (i, t) = LV (i, t) =
supa∈A(i) L

aV (i, t) for V ∈ Vm, (i, t) ∈ E × [0, T ]. �

For any given (i, t) ∈ E × [0, T ], π ∈ Π, based on the non-explosion of state process
{xs, s ≥ 0}, the nonnegativity of the cost rate, the continuity of probability measures
and the monotone convergence theorem, we can rewrite V π(i, t) as follows:

V π(i, t) = Eπ(i,t)

(
e−γ

∫ t
0
c(xs,As)ds

)
= Eπ(i,t)

(
e−γ

∑∞
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds

)
= lim

n→∞
Eπ(i,t)

(
e−γ

∑n
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds

)
.

Then, the sequence {V πn (i, t), n = −1, 0, 1, . . .} is defined as follows:

V π−1(i, t) := 1,

V πn (i, t) := Eπ(i,t)

(
e−γ

∑n
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds

)
(19)

for all (i, t) ∈ E×[0, T ]. It is clear that V πn (i, t) ≥ V πn+1(i, t), n ≥ −1 and limn→∞ V πn (i, t) =
V π(i, t).

Proposition 1. For each (i, t) ∈ E × [0, T ] and π = {π0, π1, . . .} ∈ Π, there is a policy

π
′

= {ϕ0, ϕ1, . . .} ∈ ΠRM which satisfies V π(i, t) = V π
′

(i, t).

P r o o f . The proof of Proposition 1 follows from the same arguments as in the proof
of Proposition 2.2 in [14]. �

This Proposition states that it suffices to find optimal policies for our optimality prob-
lem 10 in the family randomized Markov policies. Then, we will restrict our attention
to the case of randomized Markov policies.

The following lemma is required to establish the optimality equation.
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Lemma 3. Suppose that Assumptions 1 and 2 hold. For any (i, t) ∈ E× [0, T ], n ≥ −1,
and π = {ϕ0, ϕ1, . . .} ∈ ΠRM , the following assertions hold.

(a) V πn ∈ Vm and V π ∈ Vm.

(b) V πn+1(i, t) = Lϕ0V
1π
n (i, t) and V π(i, t) = Lϕ0V

1π(i, t), where 1π := {ϕ1, ϕ2, . . .}
being the 1-shift policy of π.

(c) In particular, for any f ∈ F , V fn+1(i, t) = LfV fn (i, t) and V f (i, t) = LfV f (i, t).

P r o o f . (a) For any (i, t) ∈ E× [0, T ], π ∈ ΠRM , we prove (a) by induction. Obviously,
V π−1(i, t) = 1 ∈ Vm, and part (a) is valid for n = −1. Assume that part (a) holds for
−1 < k ≤ n. it follows from (7) and the property of conditional expectation, we have

V πk+1(i, t) = Eπ(i,t)

(
e−γ

∑k+1
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds

)
= Eπ(i,t)[E

π
(i,t)[e

−γ
∑k+1
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds|S0, xS0

, T0, a0, S1, xS1
, T1]]

=

∫
A

ϕ0(da|i, t)
∫
E

∫ +∞

0

Eπ(i,t)

(
e−γ

∑k+1
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds|S0 = 0,

xS0
= i, T0 = t, a0 = a, S1 = u, xS1

= j, T1 = [t− u]+
)
Q(du,dj|i, a)

=

∫
A

ϕ0(da|i, t)
∫
E

∫ +∞

t

Eπ(i,t)

(
e−γ

∫ t
0
c(xs,As)ds|S0 = 0, xS0 = i,

T0 = t, a0 = a, S1 = u, xS1
= j, T1 = [t− u]+

)
Q(du,dj|i, a)

+

∫
A

ϕ0(da|i, t)
∫
E

∫ t

0

Eπ(i,t)

(
e−γ

∑k+1
m=0

∫ Sm+1∧t
Sm∧t c(xs,As)ds|S0 = 0,

xS0
= i, T0 = t, a0 = a, S1 = u, xS1

= j, T1 = [t− u]+
)
Q(du,dj|i, a)

=

∫
A

ϕ0(da|i, t)
[
e−γc(i,a)t(1−D(t|i, a))

+

∫
E

∫ t

0

e−γc(i,a)uE
1π
(j,t−u)

(
e
−γ

∑k
m=0

∫ Sm+1∧(t−u)
Sm∧(t−u)

c(xs,As)ds
)
Q(du,dj|i, a)

]
=

∫
A

ϕ0(da|i, t)
[
e−γc(i,a)t(1−D(t|i, a))

+

∫
E

∫ t

0

e−γc(i,a)uV
1π
k (j, t− u)Q(du,dj|i, a)

]
:= Lϕ0V

1π
k (j, t− u).

Thus, by the induction hypothesis and (20), we deduce that V πn (i, t) is measurable
and that V πn ∈ Vm for all n ≥ −1. Since the limit of a sequence of measurable functions
is still measurable, we obtain limn→∞ V πn = V π ∈ Vm.

(b) For any (i, t) ∈ E × [0, T ], n ≥ −1, from part (a), we know that V πn+1(i, t) =

Lϕ0V
1π
n (i, t). Letting n → ∞, and invoking the monotone convergence theorem, we
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obtain
V π(i, t) = Lϕ0V

1π(i, t).

(c) This part follows from part (a) and (b). �

Remark 2. The Lemma 3 provides an algorithm to calculate the function V f (i, t) as fol-

lows: letting V f−1(i, t) := 1, Then V fn+1(i, t) = LfV fn (i, t) and V f (i, t) = limn→∞ V fn (i, t)
for any (i, t) ∈ E × [0, T ], f ∈ F and n ≥ −1.

In what follows, we establish the optimality equation, and prove the existence of the
optimal policies.

Theorem 1. Under Assumptions 1 and 2, for any (i, t) ∈ E × [0, T ], let V ∗−1(i, t) := 1,
V ∗n+1(i, t) := LV ∗n (i, t), n ≥ −1. Then, limn→∞ V ∗n (i, t) = V ∗(i, t) ∈ Vm.

P r o o f . For any (i, t) ∈ E× [0, T ], n ≥ −1, since V ∗−1(i, t) := 1, by Lemma 2(a) and the

definition of V ∗n , we have 0 ≤ V ∗n (i, t) ≤ V ∗n+1(i, t) ≤ 1, V ∗n ∈ Vm and Ṽ := limn→∞ V ∗n ∈
Vm.

To prove Ṽ (i, t) ≥ V ∗(i, t), we first need to prove V ∗n (i, t) ≥ V πn (i, t) by induction
for any π ∈ ΠRM , (i, t) ∈ E × [0, T ] and n ≥ −1. Since V ∗−1(i, t) = V π−1(i, t) = 1 for
any π ∈ ΠRM , the property holds for n = −1. Suppose that V ∗k (i, t) ≥ V πk (i, t) for all
π = {ϕ0, ϕ1, . . .} ∈ ΠRM , −1 ≤ k ≤ n. Then, it follows from the induction hypothesis
and Lemma 3(b) that

V ∗k+1(i, t) = LV ∗k (i, t) ≥ LV
1π
k (i, t) ≥ Lϕ0V

1π
k (i, t) = V πk+1(i, t).

Thus, by induction, we obtain

V ∗n (i, t) ≥ V πn (i, t), (20)

for all π ∈ ΠRM , (i, t) ∈ E × [0, T ] and n ≥ −1. Letting n → ∞ in (20), we obtain
Ṽ (i, t) = limn→∞ V ∗n (i, t) ≥ V π(i, t) for all π ∈ Π. The arbitrariness of π shows that
Ṽ (i, t) ≥ V ∗(i, t).

To prove Ṽ (i, t) ≤ V ∗(i, t) for any (i, t) ∈ E × [0, T ], n ≥ −1. Letting An := {a ∈
A(i)|LaV ∗n (i, t) ≥ LṼ (i, t)} and A∗ := {a ∈ A(i)|LaṼ (i, t) = LṼ (i, t)}. Under Assump-
tion 2, since V ∗n ↓ Ṽ , we know that An and A∗ are nonempty and compact, and An ↓ A∗.
Then, by using the measurable selection theorem (Theorem B.6 in [24]), we know that
is an action an ∈ An satisfying LanV ∗n (i, t) = LV ∗n (i, t). Hence, the existence of an
action a∗ ∈ A∗ and a subsequence {ank} of {an} satisfying ank → a∗ are ensured by the
compactness of An and An ↓ A∗. It follows from Lemma 3(a) that for any given n ≥ 1,

LankV ∗nk(i, t) ≤ LankV ∗n (i, t) ∀nk ≥ n.

Letting k →∞ and using the upper semicontinuity condition in Assumption 2 give

Ṽ (i, t) ≤ La
∗
V ∗n (i, t).
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Letting n→∞, we obtain

Ṽ (i, t) ≤ La
∗
Ṽ (i, t) ≤ LṼ (i, t).

Hence, using Lemma 2(b), we see that there exists a stationary policy f ∈ F such that

Ṽ (i, t) ≤ LṼ (i, t) = Lf Ṽ (i, t) ≤ (Lf )nṼ (i, t) ≤ (Lf )nV f−1(i, t) = V fn−1(i, t).

Letting n → ∞, and using (19), we have Ṽ (i, t) ≤ V f (i, t) ≤ V ∗(i, t). Then, Ṽ (i, t) =
V ∗(i, t).

�

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, for any (i, t) ∈ E× [0, T ],
f ∈ Πs, u, v ∈ Vm.

(a) If u(i, t)− v(i, t) ≤ L̃f (u− v)(i, t), then u(i, t) ≤ v(i, t).

(b) The function V f (i, t) is the unique solution to the equation V = LfV (i, t).

P r o o f . (a) For any (i, t) ∈ E × [0, T ], f ∈ Πs, u, v ∈ Vm, u − v ∈ Um, based on the
mathematical induction method, we first prove the following fact:

(L̃f )n(u− v)(i, t) ≤ P f(i,t)(Sn < t), n ≥ 1. (21)

When n = 1, since u, v ∈ Vm, c(i, f) ≥ 0, by the definition of the operator L̃, we have

L̃f (u− v)(i, t) =

∫
E

∫ t

0

e−γc(i,f)s(u− v)(j, t− s)Q(ds,dj|i, f)

≤
∫ t

0

D(ds|i, f)

= P f(i,t)(S1 ≤ t).

Assume the fact (21) is satisfied for n = k. On the basis of the induction hypothesis,
we obtain

(L̃f )k+1(u− v)(i, t) = L̃f (L̃f )k(u− v)(i, t)

=

∫
E

∫ t

0

e−γc(i,f)s(L̃f )k(u− v)(j, t− s)Q(ds,dj|i, f)

≤
∫
E

∫ t

0

e−γc(i,f)sP f(j,t−s)(Sk ≤ t− s)Q(ds,dj|i, f)

≤
∫
E

∫ t

0

P f(j,t−s)(Sk ≤ t− s)Q(ds,dj|i, f). (22)
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Further, according to the properties of conditional expectation, we have

P f(i,t)(Sk+1 ≤ t)

= Ef(i,t)[I{Sk+1≤t}]

= Ef(i,t)[E
f
(i,t)[I{Sk+1≤t}|S0, xS0

, T0, S1, xS1
, T1]

=

∫
E

∫ t

0

P f(i,t)

(
Sk+1 ≤ t|S0 = 0,

xS0
= i, T0 = t, S1 = s, xS1

= j, T1 = [t− s]+
)
Q(ds,dj|i, f)

=

∫
E

∫ t

0

P f(j,t−s)(Sk ≤ t− s)Q(ds,dj|x, f),

which together with (22) and the mathematical induction gives

u(i, t)− v(i, t) ≤ (L̃f )n(u− v)(i, t) ≤ P f(i,t)(Sn ≤ t) ∀n ≥ 1. (23)

On the basis of Assumption 1, as n→∞, we have

u(i, t)− v(i, t) ≤ lim
n→∞

P f(i,t)(Sn ≤ t) = P f(i,t)(S∞ ≤ t) = 0.

Thus, u(i, t) ≤ v(i, t) for (i, t) ∈ E × [0, T ].
(b) For any (i, t) ∈ E × [0, T ], f ∈ F , V f (i, t) ∈ Vm satisfying the equation V = LfV

is proved in Lemma 2(b). If the equation V = LfV has another solution U(i, t) on

E × [0, T ], then U(i, t)− V f (i, t) = L̃f (U − V f )(i, t). This implies U(i, t) = V f (i, t) by
the conclusion in part (a). �

Theorem 3. Suppose that Assumptions 1 and 2 hold, for any (i, t) ∈ E×[0, T ], n ≥ −1.

(a) V ∗ is the unique solution in Vm to the optimality equation V = LV .

(b) There exists a policy f∗ ∈ F satisfying V ∗ = Lf
∗
V ∗, and such a policy f∗ is

optimal.

P r o o f . (a) For any (i, t) ∈ E × [0, T ], π ∈ ΠRM , from Lemma 3(b), we have

V π(i, t) = Lϕ0V
1π(i, t) ≥ Lϕ0V ∗(i, t) ≥ LV ∗(i, t),

which together with the arbitrariness of π gives that V ∗(i, t) ≥ LV ∗(i, t).
On the other hand, for each (i, t) ∈ E × [0, T ] and a ∈ A(i), by the definition of V ∗n ,

we have
V ∗n+1(i, t) = LV ∗n (i, t) ≤ LaV ∗n (i, t),

which together with the monotone convergence theorem implies V ∗(i, t) ≤ LaV ∗(i, t).
Hence, the arbitrariness of a ∈ A(i) gives V ∗(i, t) ≤ LV ∗(i, t). Thus, V ∗ = LV ∗.

Since V ∗ = LV ∗ for any (i, t) ∈ E × [0, T ], using Lemma 2, we know that there
exists an f∗ ∈ F such that V ∗(i, t) = Lf

∗
V ∗(i, t). Moreover, suppose that G is a
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another solution in Vm to the equation Lu = u. Similarly, we know that there is a
policy f ∈ F such that G∗(i, t) = LfG∗(i, t) for any (i, t) ∈ E × [0, T ]. Then, we have
V ∗−G ≤ Lf∗(V ∗−G) and G−V ∗ ≤ Lf (G−V ∗), which together with Theorem 2 give
G = V ∗. This concludes the proof of part (a).

(b) For any (i, t) ∈ E × [0, T ], it follows from Lemma 2 that there exists an f∗ ∈ F
such that V ∗(i, t) = Lf

∗
V ∗(i, t). Moreover, since V ∗ ∈ Vm, using Lemma 3, we obtain

V ∗ = lim
n→∞

(Lf
∗
)nV ∗ ≤ lim

n→∞
(Lf

∗
)nV f

∗

−1 = lim
n→∞

V f
∗

n−1 = V f
∗
,

which implies V ∗ = V f
∗
. Thus, f∗ is optimal. �

4. THE VALUE ITERATION ALGORITHM

Based on Theorem 3, for any given error, we establish the following value iterative
algorithm to calculate the value function and the ε-optimal policy with finite iteration.

Definition 4. For any ε > 0, a policy f∗ε ∈ Πs is called exponential cost ε-optimal if

−ε ≤ V ∗(i, t)− V f
∗
ε (i, t) ≤ ε ∀(i, t) ∈ E × [0, T ].

Theorem 4. Suppose that Assumptions 1 and 2 hold. The sequence {V ∗n } is defined
in Theorem 3, δ, ε0 are defined in (8), 0 < α = (1 − εk0)1/k < 1, where k is defined as
a non-negative integer and satisfies k > T/δ. For every (i, t) ∈ E × [0, T ], the following
assertions hold.

(a) For any sufficiently small ε > 0, letting n0 = [logα
ε(1−α)

2 ]+ +k, where [x]+ denotes
the largest integer not bigger than x ∈ R+. Then we get

|V ∗ − V ∗n0
| ≤ ε

2
.

(b) There exists f∗ε ∈ Πs such that V ∗n0+1 = Lf
∗
ε V ∗n0

, and such policy f∗ε ∈ Πs is an
ε-optimal policy.

P r o o f . (a) For any (i, t) ∈ E×[0, T ], from Lemma 2, we know that: there is a policy f∗

such that V ∗n+1 = LV ∗n = Lf
∗
V ∗n . Then, under Assumption 1, by the proof of Theorem

2 and (21), we have for n ≥ 1

|V ∗n − V ∗n+1| = V ∗n − V ∗n+1

= (L)n+1V ∗−1 − Ln+1V ∗0

≤ (L̃f
∗
)n+1(V ∗−1 − V ∗0 )

≤ P f
∗

(i,t)(Sn+1 < t). (24)

Letting

Fδ(t) =


0, t < 0,

1− ε0, 0 ≤ t ≤ δ,
1, t > δ,
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where δ, ε0 are defined in (8).

Moreover, it follows from the proof of Theorem 1 in [22], we know that

F
(n)
δ (t) ≤ (1− εk0)[n/k]+ , ∀n > k, (25)

Then, under Assumption 1, since Q(δ, E|i, a) ≤ Fδ(t), by (7),(24) and (25), we obtain

|V ∗n − V ∗n+1| ≤ F
(n+1)
δ (t) ≤ (1− εk0)[n+1/k]+ . (26)

For any given ε > 0, letting 0 < α := (1 − εk0)1/k < 1, n0 = [logα
ε(1−α)

2 ]+ + k, from
(26), we have

|V ∗n0
(i, t)− V ∗(i, t)|

=

+∞∑
l=1

[V ∗n0+l−1(i, t)− V ∗n0+l(i, t)]

<

+∞∑
l=1

αn0+l−k

=
αn0+1−k

1− α
<

ε

2
. (27)

(b) For any (i, t) ∈ E × [0, T ], it follows from the measurable selection theorem
(proposition D.5 in [11]) and Theorem 3 that, there exists an f∗ε ∈ Πs satisfying

V ∗n0+1(i, t) = LV ∗n0
(i, t) = Lf

∗
ε V ∗n0

(i, t).

According to the similar argument in (26) and Theorem 2, we have

|V ∗n0
− V f

∗
ε |

= |(L)n0+1V ∗−1 − (Lf
∗
ε )n0+1V f

∗
ε |

≤ |(L̃f
∗
ε )n0+1(V ∗−1 − V f

∗
ε )|

≤ F
(n0+1)
δ (t)

< αn0+1−k

<
1− α

2
ε,

which gives that |V ∗ − V f∗ε | ≤ |V ∗ − V ∗n0
|+ |V ∗n0

− V f∗ε | ≤ 2−α
2 ε < ε, and so (b) follows.

�



314 H. HUO AND X. WEN

The value iteration algorithm procedure:

Step 1: For any (i, t) ∈ E × [0, T ], set V ∗−1(i, t) = 1.

Step 2: For all n ≥ 0, a ∈ A(i), by Theorem 3, the functions LaV ∗n (i, t) and V ∗n+1(i, t)
are computed as follows:

LaV ∗n (i, t) = e−γc(i,a)t(1−D(t|i, a))

+

∫
E

∫ t

0

e−γc(i,a)uV ∗n (j, t− u)Q(du,dj|i, a)

≈ e−γc(i,a)t(1−D(t|i, a))

+

∫
E

m−1∑
l=1

1

2

[
V ∗n

(
j, t− lh

)
e−γc(i,a)lhQ(lh,dj|i, a)

+V ∗n

(
j, t− (l + 1)h

)
e−γc(i,a)(l+1)hQ((l + 1)h,dj|i, a)

]
h. (28)

V ∗n+1(i, t) ≈ sup
a∈A(i)

{LaV ∗n (i, t)}, (29)

where the step length h satisfies mh = t and l ≤ m with l,m ∈ N, where N denotes
the set of natural numbers.

Step 3: For any sufficiently small ε > 0, when n = n0 = [logα
ε(1−α)

2 ]+ +k, the iteration
stops, and V ∗n0

is accepted as a good approximation of the value function V ∗.
Hence, the existence of the ε-optimal policy f∗ε is determined by Theorem 4.

Remark 3. The formula (28) is due to the trapezoidal integration rule [18] given as
follows: ∫ b

a

g(x)dx ≈
m−1∑
l=0

g(a+ lh) + g(a+ (l + 1)h)

2
h, (30)

where the step length h satisfies a+mh = b,m ∈ N, and [a, b] is the integration interval.

5. EXAMPLE

In this section, we apply our main results obtained to a machine maintenance problem,
in which we exhibit the usefulness of the value iteration algorithm in computing the
value function and optimal policies.

Example 1. Consider a machine maintenance system with three states: the bad state,
medium and good state, which are denoted by 0, 1 and 2. When the system is in
a state i ∈ {0, 1, 2}, the decision-maker can choose a rapid maintenance action ai1
or a general maintenance action ai2, according to the actual maintenance cost at rate
c(i, ai1) or c(i, ai2). Assuming that the transition mechanism of this maintenance system
is primarily interested in the evolution of the control model of SMDPs (1). Additionally,
the model parameter are given as follows:
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The state space E = {0, 1, 2} and admissible action space A(0) = {a01}, A(1) =
{a11, a12}, A(2) = {a21, a22}, the risk-sensitivity coefficient γ = 1. The transition prob-
abilities are given as follows

p(0|1, a11) = 0.5, p(2|1, a11) = 0.5, p(0|1, a12) = 0.3,

p(2|1, a12) = 0.7, p(0|2, a21) = 0.9, p(1|2, a21) = 0.1, (31)

p(0|2, a22) = 0.3, p(1|2, a22) = 0.7, p(0|0, a01) = 1.

Correspondingly, for any u ∈ [0,+∞), the semi-Markov decision kernels are given by

Q(u, 0|1, a11) = p(0|1, a11)(1− e−0.15u), Q(u, 2|1, a11) = p(2|1, a11)(1− e−0.15u),

Q(u, 0|1, a12) = p(0|1, a12)(1− e−0.08u), Q(u, 2|1, a12) = p(2|1, a12)(1− e−0.08u),
(32)

Q(u, 0|2, a21) = p(0|2, a21)(1− e−0.11u), Q(u, 1|2, a21) = p(1|2, a21)(1− e−0.11u),

Q(u, 0|2, a22) = p(0|2, a22)(1− e−0.05u), Q(u, 1|2, a22) = p(1|2, a22)(1− e−0.05u),

and the cost rates are given as follows:

c(1, a11) = 0.05, c(1, a12) = 0.03, c(2, a21) = 0.04, c(2, a22) = 0.02, c(0, a01) = 0.

Our goal is to compute the exponential cost optimal policy by using a value iteration
algorithm over the finite horizon [0, 90].

From (32), one can easily verify the sufficient condition of Lemma 1 and thus the
validity of Assumption 1 for δ = 10, ε0 = 0.95. Moreover, based on the denumerable
state space and the finite action space, we know that Assumption 2 is trivially satisfied.
Thus, the existence of the value function and the optimal policy is ensured by Theorem
3. Therefore, it follows from (31), c(0, a01) = 0 and Theorem 3 that V ∗(0, t) = 1 for
t ∈ [0, 90]. Letting k = 15, ε = 10−4 Then, the value iteration algorithm in Theorem 4
can be used to compute the value function V ∗(1, t), V ∗(2, t) and the ε-optimal policy as
follows.

Step 1: For i = 1, 2, n = −1, t ∈ [0, 90], set V ∗−1(i, t) := 1.

Step 2: For i = 1, 2, n ≥ 0 and a ∈ A(i), by Theorem 3, we have

La11V ∗n (1, t) = e−0.2t + 0.5× 0.15×
∫ t

0

V ∗n (2, t− u)e−0.2udu

+0.5× 0.15×
∫ t

0

e−0.2udu,

La12V ∗n (1, t) = e−0.11t + 0.7× 0.08×
∫ t

0

V ∗n (2, t− u)e−0.11udu

+0.3× 0.08×
∫ t

0

e−0.11udu,
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V ∗n+1(1, t) = max{La11V ∗n (1, t), La12V ∗n (1, t)},

La21V ∗n (2, t) = e−0.15t + 0.1× 0.11×
∫ t

0

V ∗n (1, t− u)e−0.15udu

+0.9× 0.11×
∫ t

0

e−0.15udu,

La22V ∗n (2, t) = e−0.07t + 0.7× 0.05×
∫ t

0

V ∗n (1, t− u)e−0.07udu

+0.3× 0.05×
∫ t

0

e−0.07udu,

V ∗n+1(2, t) = max{La21V ∗n (2, t), La22V ∗n (2, t)}.

Step 3: For i = 1, 2, when n = n0 = 334, the iteration stops. Then, go to step 4, the
value V ∗n0+1 is accepted as an approximate value of the value V ∗.

Step 4: For i = 1, 2, plot out the graphs of the functions LaV ∗(i, t), V ∗(i, t) (see Fig-
ures 1 – 2).

planning horizon t 

0 10 20 30 40 50 60 70 80 90

L
a
V

* (i
,t
)

0.5

0.6

0.7

0.8

0.9

1

1.1

(15.9,0.7431)

(18.8,0.6728)

L
a

11V
*
(1,t)

L
a

12V
*
(1,t)

L
a

21V
*
(2,t)

L
a

22V
*
(2,t)

Fig. 1. The function LaV ∗(i, t).

By analyzing the computing procedure and Figures 1 – 2, it is found the following
conclusions:

(a) In state 1, La11V ∗(1, t) is smaller than La12V ∗(1, t) with the planning horizon
t ∈ [0, 18.8), and La12V ∗(1, t) is smaller than La11V ∗(1, t) with the planning horizon
t ∈ [18.8, 90]. This means that the action a11 has lower exponential expected costs than
the action a12 when the planning horizon is t ∈ [0, 18.8), but the action a12 has lower
exponential expected costs than the action a11 when the planning horizon is t ∈ [18.8, 90].
This implies the decision maker should select the action a11 rather than the action a12

when the planning horizon t ∈ [0, 18.8), or select the action a12 rather than the action
a11 if the planning horizon t ∈ [18.8, 90].
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Fig. 2. The value function V ∗(i, t).

Similarly, in state 2, the action a21 has lower exponential expected costs than the
action a22 when the planning horizon is t ∈ [0, 15.9), but the action a22 has lower
exponential expected costs than the action a21 when the planning horizon is t ∈ [15.9, 90].

(b) From Figures 1 – 2 and part (a), we obtain the following optimal policy f∗ε as
follows:

f∗ε (1, t) =

{
a11, 0 ≤ t < 18.8,

a12, 18.8 ≤ t ≤ 90,
f∗ε (2, t) =

{
a21, 0 ≤ t < 15.9,

a22, 15.9 ≤ t ≤ 90,
(33)

which satisfy V ∗(i, t) = Lf
∗
ε V ∗(i, t) for i = 1, 2, t ∈ [0, 90].

This means that at the initial decision epoch s0 = 0, and according to the initial
system state i0 ∈ {1, 2}, the planning horizon t0 = 90 and (33), the decision marker
chooses the optimal action f∗ε (i0, t0) ∈ A(i0). As a consequence of this action, the
system remains in state i0 until time s1, at which point the system jumps to another
state i1 with probability p(i1|i0, f∗ε (i0, t0)). Then, the next decision epoch s1 arrives,
and again based on the current state i1, the planning horizon t1 = [t0 − s1]+, and (33),
the decision marker chooses the optimal action f∗ε (i1, t1) ∈ A(i1). Thus, at the decision
epoch sk, k = 2, 3, . . ., the decision maker chooses actions repeatedly in the same way.
By Theorem 4, we know that π∗ = {f∗ε (i0, t0), f∗ε (i1, t1), . . .} is the ε-optimal policy.
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