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A NEW OVERLAPPING COMMUNITY DETECTION
ALGORITHM BASED ON SIMILARITY OF NEIGHBORS
IN COMPLEX NETWORKS

PELIN CETIN AND SAHIN EMRAH AMRAHOV

Community detection algorithms help us improve the management of complex networks and
provide a clean sight of them. We can encounter complex networks in various fields such as
social media, bioinformatics, recommendation systems, and search engines. As the definition
of the community changes based on the problem considered, there is no algorithm that works
universally for all kinds of data and network structures. Communities can be disjointed such
that each member is in at most one community or overlapping such that every member is in at
least one community. In this study, we examine the problem of finding overlapping communities
in complex networks and propose a new algorithm based on the similarity of neighbors. This
algorithm runs in O(mlgm) running time in the complex network containing m number of
relationships. To compare our algorithm with existing ones, we select the most successful four
algorithms from the Community Detection library (CDlib) by eliminating the algorithms that
require prior knowledge, are unstable, and are time-consuming. We evaluate the successes
of the proposed algorithm and the selected algorithms using various known metrics such as
modularity, F-score, and Normalized Mutual Information. In addition, we adapt the coverage
metric defined for disjoint communities to overlapping communities and also make comparisons
with this metric. We also test all of the algorithms on small graphs of real communities.
The experimental results show that the proposed algorithm is successful in finding overlapping
communities.

Keywords: overlapping community detection, complex networks, graph approach, simi-
larity approach, community metrics
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1. INTRODUCTION

Nowadays, people have to cope with the growing data in every field with the growth of
technology usage. Even just using the Internet, we produce numerous data every minute.
Also, we can store big data and access it from miles away. As a result of these, data
management is getting harder, and there is a need for categorization. Grouping data
increases manageability and helps to understand the main structure. It allows sharing
information only with the related ones in social networks, making better suggestions
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in recommendation systems, finding related topics in search engines, finding similar
proteins in drug discovery, etc.

In the literature, both clustering and community detection algorithms are used to
group objects. Community detection is a special case of clustering, which is peculiar to
networks. While clustering uses attributes to group similar objects, community detection
uses relations between the objects. Since community detection algorithms use structural
properties of the networks, they produce more general solutions for many domains.

There are two main approaches for community detection; mathematical and heuristic.
Mathematical methods define the community and detect these structures. Heuristic
methods assign objects to a community with the most similar one. Since defining a
community is hard because of having different structures and strict rules, the heuristic
approach is more common in the literature.

It is not always possible to assign each object to a community that is the most
appropriate. The reason for that, sometimes, there can be more than one suitable
community for the object. For example, a person can be in both school and business
communities on a social network. In a product network, a product can have more than
one category. A shaving machine can be in both beard and hair categories, or a robot
cleaner can be in both vacuum cleaner and mop class, etc. In search engines, a word
can have more than one meaning. Because of this, overlapping community detection
algorithms are proposed. These algorithms can help us see multiple solutions together
and hidden structures in the networks.

In this study, we propose an algorithm that can be used to solve different problems
from various domains and help to see hidden structures. We create six small test net-
works divided into natural communities and see if the algorithms find them correctly.
We measure the modularity, normalized mutual information, and F-Scores of our al-
gorithm and compare them with the results of some well-known algorithms. However,
how well these metrics measure the success of community detection algorithms is a con-
troversial issue, as many authors [4, [7, 39, 45] have identified. In this study, we adapt
the coverage metric used for disjoint communities to overlapping communities. We test
both the proposed algorithm on benchmark and synthetic datasets with a small and
large number of vertices. Our contributions are:

e We proposed a new overlapping community detection algorithm that can detect dif-
ferent community structures, where most algorithms like PercoMVC and LPANNI
do not work. In addition, it is suitable to work on various networks such as
protein-protein, social, books, and so on.

e The proposed algorithm does not require prior knowledge such as the number of
communities, directions of relations, weights of connections, etc.

e We show that our algorithm works better than the existing community detection
algorithms by using evaluation metrics and test networks.

The rest of the paper is organized as follows: In the next section, we summarize the
studies on overlapping community detection. In section , we give information about
evaluation metrics. The details of the proposed algorithm are given in section . We
compare the results in section . Finally, in section @, we discuss our results and
define the conclusion of the study respectively.
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2. RELATED WORK

The overlapping community detection problem has been studied for many years, and
various methods have been applied. As far as we know, the first overlapping community
detection algorithm is Clique Percolation Method (CPM) which was proposed by Palla
et al. [43] in 2005. CPM uses k-cliques on the network and merges them if they share k-1
nodes. It works on connected networks. Then, working on weighted networks [12] 18],
faster [44] or improved [52] versions are proposed. The main disadvantage of the CPM
method is that it has a strict definition of the community. It is possible to use more
flexible structures such as k-clans, k-clubs, k-plex, and k-core instead of the clique.
However, k must be determined beforehand, and this method is not suitable for sparse
networks [I1].

In 2007, Zhang et al. used Non-negative Matrix Factorization (NMF) to detect over-
lapping communities [57]. This method uses a local modularity function to determine the
number of communities. Then, Bayesian Non-negative Matrix Factorization (BNMF)
is proposed [46] that improves the performance of NMF computationally. In another
study, the performance of BNMF is improved by using three factors [58]. One of the
latest studies uses this method on signed networks [24]. Another one uses this method
and combines structural and semantic features to propose a hybrid method [47]. The
other one uses this method with Bayesian Affiliation Preference [I3]. In general, matrix
factorization methods are used in sparse networks. Since networks have complex struc-
tures and detecting communities is time-consuming, this method is not commonly used
in the literature.

The Label Propagation Algorithm (LPA) is another algorithm that is commonly
used in the literature. The Speaker-Listener Label Propagation Algorithm (SLPA) [55]
is an extended version of the label propagation algorithm that allows each node to have
multiple labels. SL3PA is an improved and multi-thread version of SLPA. In another
version of LPA [35], labels are updated in ascending order of node importance, and
a historical label selection strategy is used. Another one [59] uses a node importance
contribution matrix for similarities between nodes to detect overlapping communities.
The DEMON algorithm [10] also uses LPA. This algorithm lets each node choose their
communities by voting and combines the votes to find overlapping communities. In the
last years, LPA for highly mixed networks [54], LPA-X (LPA with X-means algorithm)
[16], multi-threading LPA [38], LPA with the belonging function [5], LPA with density
peak clustering algorithm [31], LPA with node importance [28], and LPA with deepwalk
[56] is proposed. However, LPA suffers from instability. Since it uses randomness, it
could produce different communities in each run.

Variants of crisp community detection algorithms such as Newman-Girvan and Label
Propagation are also used in overlapping community detection. Gregory [19] proposes
CONGA, an overlapping version of the Newman-Girvan algorithm. He splits nodes or
removes edges according to betweenness values. Then, he uses local betweenness and
proposes CONGO, the optimized version of CONGA [20]. He also proposes an extension
of the Label Propagation algorithm (COPRA) and determines the belonging coefficients
of nodes by using the average coefficients of all neighbors in this version [21]. In another
combination of Label Propagation and Girvan-Newman algorithms, Joghan et al. [20]
determine the weights of edges by using edge-betweenness, then weighted LPA is applied.
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However, calculating edge betweenness is time-consuming and is not very suitable for
complex networks.

In 2009, Lancichinetti et al. [29] proposed the LFM algorithm to find both overlap-
ping communities and hierarchical structures. They use random seeding and expand the
communities by using local optimization of a fitness function. Lee et al. [30] used max-
imal cliques instead of random seed selection and proposed Greedy Clique Expansion
(GCE) algorithm. Choumane et al. [9] find core nodes using the highest edge neigh-
borhood overlap value, then find the communities by expanding them. Aghaalizadeh et
al. [I] also use the seeding technique. They select important nodes and expand them
using similarity until all nodes belong to a community. Agrawal and Patel al. [2] pro-
pose a hybrid method. They group nodes by directly connected, indirectly connected,
and disconnected to find structural similarity. Then they use context similarity. After
combining these two similarities, they applied the k-medoids algorithm. In our studies,
we observe that applying an expanding technique with a similarity metric is effective.
However, using the seeding technique requires the determination of the number of seeds.
Because of that, if the number of the communities is unknown, using the seeding tech-
nique can cause to detection of more communities than desired.

In 2010, Ahn et al. [3] used links instead of nodes to detect overlapping communities.
They use hierarchical clustering with Jaccard similarity between links. Ma et al. [37]
also propose a loop edge deletion algorithm and structural clustering method. Lim [33]
et al. transform node graph to link graph and use structural properties of a graph with
link similarity in the LinkSCAN algorithm. Kim et al. [27] proposed the LinkBlack-
Hole algorithm that uses LinkSCAN’s ability to detect overlapping communities and
BlackHole’s robustness to mixing between communities. Jin et al. [25] developed a
model which takes into consideration both node and link communities. The parameters
of the model are learned by using an NMF, and the communities are determined by
using greedy optimization. The number of communities is determined by using consen-
sus clustering. Then, Sun et al. [49] propose the linked-based LPA. Lierde et al. [32]
extended the normalized cut method to detect overlapping communities. They used a
spectral clustering algorithm to solve the cut minimization problem. Their algorithm
can use the prior knowledge of the number of the communities or get this data from node
centrality. They also proposed a hierarchical version of the algorithm for an unknown
number of clusters. Gupta and Kumar [23] use granular information of links and the
rough set theory for overlapping community detection. However, link-based methods
additionally require a graph transformation step to generate node communities from the
edge communities.

There are also statistical approaches such as the Bayesian and Stochastic Block
Model. Gopalan and Blei [17] developed a Bayesian-based model which assumes that
there are k communities, and each node has an association with these communities by
probability. They use community indicators that point to one of the k£ communities.
For each pair of nodes, if indicators point to the same community, then the algorithm
connects the nodes with high probability. Zhou et al. [59] propose a Mixed-Membership
Stochastic Block Model and take into account the influence of the nodes. However, these
methods require high computational time.

The PageRank algorithm is also used for community detection problems. Wang et al.
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[53] use the PageRank algorithm to evaluate nodes and use the location data of nodes to
detect overlapping communities. They represent communities by peak nodes, internal
nodes by slope nodes, and overlapping nodes by valley nodes. Whang et al. [51] select
seeds and then expand them based on the Page Rank clustering score. All neighbor-
hoods are taken into consideration by modifying seeds to represent all neighborhoods of
themselves. Gao et al. [I5] improve the accuracy of the PageRank algorithm by keeping
the walker away from the irrelevant communities. In one of the latest studies that use
random walk, Guo et al. propose an overlapping community detection algorithm based
on network representation learning. They use a node-centrality-based walk strategy and
design different community-aware random walk strategies for high-degree and low-degree
nodes [22]. One disadvantage of this method is that they are slow.

Having these approaches, expansion methods are produced. Wang et al. [50] use
an approach that starts from central nodes and finds communities by expanding them.
First of all, they calculate structural similarities. Then, the central nodes are detected
by sorting these similarities in descending order. Their algorithm looks at all neighbors
of each central node and determines to add a node to the community of the central node
by calculating density. When all neighbors are evaluated, it terminates. They use local
search for expansion. Long [34] uses core nodes and applies an expanding procedure.
Firstly, he computes the edge density for each node. Secondly, skeleton edges are found
by using threshold parameters, then core and margin nodes are detected. Thirdly,
overlapping nodes are selected among core nodes and replicated. Then the belonging
degrees of margin nodes are calculated, and they are merged with the core nodes having
the highest belonging coefficient. Finally, the replicated nodes which belong to the same
community are merged. However, a threshold value is required in this method, and
determining the threshold value is another problem. Similarly, Ma et al. [36] proposed
an algorithm that first finds the most influential nodes and then detects overlapping
communities using the seeding technique.

In this study, we also apply an expansion method. Unlike the existing methods, we
do not have a central node selection stage. Instead of evaluating neighbor nodes, we sort
all edges in the network and merge the nodes connected by an edge. Additionally, we
determine the merging process by using our criteria. In our method, we use similarity
scores, and the proposed method does not require a threshold value. The details of the
proposed algorithm are given in section .

3. KNOWN AND PROPOSED EVALUATION METRICS

There are internal and external metrics to measure the success of the community detec-
tion algorithms. If there is no ground-truth data, then internal metrics are used. Some
of the internal metrics are modularity, conductance, and coverage. External metrics
such as F-Score, Normalized Mutual Information (NMI), and purity are used when the
real communities are known.

3.1. F-score

F-score is calculated by using precision and recall values. Precision is the fraction of the
true positives that are predicted positive. Recall is the rate of the true positives to the
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actual positive values. F-score given Formula provides a balanced result between
precision and recall.
Precision x Recall

F- =2 . 1
Score % Precision + Recall ™)

3.2. Normalized mutual information (NMI)

Normalized Mutual Information is the amount of information that can be extracted
by knowing another one. If I(X,Y) denotes the mutual information of jointly random
variables X and Y, H(X) and H(Y) are the entropies, then NMI is calculated by

Formula .

H(X)+ H(Y) - H(X,Y) @
HEHAY) :

NMI(X,Y) =

There are also extensions of NMI in literature. One of the most known of them is
proposed by Lancichinetti and Fortuno [29]. They modified the NMI into Formula
to work with overlapping communities.

1 (H(X|Y) H(Y\X)> (3)

NMILrx(X,Y) =1-5 H(X) H(Y)
McDaid et al. [40] indicate that the normalization factor in NMI, pg causes overesti-

mating of the similarity of two clusters. Because of that, they used their normalization
and modified NMI as in Formula .

1Y)
max(H (X), HY)) @

NMIyeu(X,Y) =

We use F-Score and NMIy;¢y in this study if we have real communities. We use
modularity and coverage metrics for evaluation when the real communities are unknown.

3.3. Modularity

Newman and Girvan [42] introduced modularity in 2004. This metric is based on the
idea that a random graph is not likely to have a community structure. The difference
between detected partitions and a random graph with the same number of vertices and
degrees is measured with this metric. In Formula , A is the adjacency matrix of the
graph, which stores the actual links between vertices, and m is the number of edges.
The expected connection between nodes i and j with degree k; and k; is calculated by
the multiplication of probabilities p; = k;/2m and p; = k;/2m. §(C;,C;) is a function
that produces 1 if community C; of vertex 7 and community C; of vertex j are the same,
0 otherwise. However, this modularity is not suitable for overlapping communities.

Q= % > [Aij - %} 6(Cs, Cy). (5)

)
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Nepusz et al. [41] used a similarity measure s;; which is the sum of the multiplication
of membership degrees instead of §(C;, C;) function in the original modularity function.

In Formula @, Si5 = Zf,:l aicajc where a;. is the belonging degree of vertex i to
community ¢, and k is the number of communities.
1 kik;
Q= om Z |:A7«J o ] Sij- (6)

ij

Shen et al. [48] defined a generalized version of the modularity, which works for both
disjoint and overlapping communities. They used 1/(0;0;) instead of 6(C;, C;). O; in
Formula is the number of communities of vertex i.

! k] 1

ij

Chen et al. [8] proposed another generalized version of modularity, Formula .
They defined a function f(ajc, ajc) for the membership of vertices ¢ and j to community
c. This function can be equal to multiplication, average, maximum, and so on of the
belonging degrees.

Q= > {Aij - kzl:j} flaic, aje). (8)

2m “—
¥}

Modularity is a useful metric for the networks where ground-truth data is unknown.
In this study, we use Shen Modularity.

3.4. Coverage

Coverage is the ratio of the number of intra-community edges to the total number of
edges in a graph [I4]. Intra-community edges are defined as the edges which connect
two vertices in the same community. This definition of the coverage metric is used for
disjoint communities. In the case of overlapping communities, intra-community edges
are not defined. The reason is that two neighbors can be both in the same community
and in different communities at the same time. We slightly change the definition of
intra-community edges and adapt the coverage metric to overlapping communities.

Let a graph G = (V, E) be given. Suppose that after a community detection al-
gorithm is applied, this graph is split into k >= 1 disjoint or overlapping communities
C1,Cs, . ..Ck. The formula of the overlapping version of the coverage is given in Formula
@. For an edge (u,v) € E, if there is a community C; such that v € C; and v € C},
we call the edge (u,v) an intra-community edge. The set of all intra-community edges
in G is denoted by E;,.

. [0, itk=1 .
oVTIIE= A Eaml it k> 1 ©)

Some algorithms can put all vertices into one community and generate only one
community for some input graphs. In order to prevent this situation, we define case
k =1 as an exception in Formula @D
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Fig. 1: Example of the overlapping version of the coverage.

We give an example in Figure [1| for this version of coverage. In Figure [1] all edges
except edges (5, 6) and (5, 10) are intra-community edges. For example, (6, 10) is an
intra-community edge because vertices 6 and 10 both belong to the blue community.
For this example, |E;,| = 16, and |E| = 18. The value of the coverage is found 0.89 by
using Formula @D

4. THE PROPOSED ALGORITHM

In this section, we explain our new algorithm for detecting overlapping communities.
The input of the proposed algorithm is an undirected and unweighted simple graph
G = (V,E). For example, an undirected graph can represent relationships between
people in a social network. The vertices of this graph represent people, and the edges
represent the relationships between them. The output of the algorithm is a list of
overlapping communities C. For a social network, communities mean sub-groups (sub-
graphs) formed by people who are more in contact with each other.

The proposed algorithm consists of three stages, and they are explained as follows.
The first stage is the preparation and initialization stage. At this stage, we add each
vertex to its neighbors’ list. Then, we calculate the similarity of all adjacent vertices
connected by an edge in our input graph using cosine similarity. Adding each vertex to
its neighbors’ list allows us to increase the success of cosine similarity since it makes the
similarity score of two vertices more than zero if there is no common neighbor between
two vertices, but they are connected. Then, we assign the calculated similarities as
weights to the edges, which connect the vertices. That is how we transform an initially
unweighted graph G into a weighted graph. We create a community consisting of only
itself for each vertex and obtain the initial list of communities C. We complete the first
stage by sorting edges of the graph G in descending order of weights.

The second stage is the generation of the list of communities C. In this stage, we
perform the following operations starting from the first edge in the ordered list until all
edges are passed. If both of the vertices connected by the current edge are in single-
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element communities consisting of only themselves, we merge these two communities into
a single one. Otherwise, we check if there is a community where these vertices coexist.
If such a community exists, we go to the next edge. If there is no such community,
we calculate which of these vertices would be more advantageous to put to the other’s
community according to the criteria we explain below. For edge (u,v), if putting vertex
u into community C, of vertex v is more advantageous according to our criterion, we
expand C, by adding u. Additionally, if there is community {u} in C, we delete it from
C. We emphasize that we add only the vertex itself, not all vertices in its community.
In this way, we evaluate each vertex one by one. Once all edges are passed, the second
stage completes, and we have a list of communities C'.

The third stage of the algorithm is the stage of improving the community list C.
In this stage, we sort the communities in C' according to the number of their elements
in descending order. Then, starting from the second community in the list, we do the
following operations until all communities are traversed. We look at the intersection of
the current community and a previous community by order. If the number of elements
in the intersection is more than half of the number of elements of the current community,
we merge these two communities. As a special case, if there are only two elements in
the current community and one of them is in the intersection, we also apply the merging
process.

Now let us explain the criteria that we used for evaluation and how we get the more
advantageous situation based on it. We define the criterion for an edge (u, v) by Formula
(10), where n,, denotes the set of neighbors of vertex u, and C, represents a community
that contains vertex v. Since the CN(u,v) value shows the number of u’s neighbors in
a community of vertex v, we express the criterion with CN, which are the initials of the
expression ”Common Neighbors”.

CN(u,v) = Inax |Cv N1 |— (10)

We evaluate each possible combination with our criteria. First, we determine the
highest value of CN(u,v) and community C}, which provides that value according to
Formula (I0). Next, we calculate the value of CN(v,u) for edge (v,u). Let C;; be the
community that provides this highest value. If CN(u,v) > CN(v,u), then adding vertex u
to community C is more advantageous. If CN(u,v) < CN(v,u), it is more advantageous
to add vertex v to community C¥. In the case of CN(u,v) = CN(v,u), we look at the
degrees of u and v and put the vertex with a lower degree into the other’s community.
In the case of equality of degrees, we add vertex v to community C;.

Let us show how the proposed algorithm finds the communities for the graph in
Figure First, for all 18 edges, we calculate their weights by using cosine similarity.
Then, we evaluate these 18 edges in descending order of weights starting from the initial
situation that each vertex forms a separate community. The results after each step are
given in Figure

In the beginning, the edge with the highest degree is (11,12), and vertices 11 and
12 both belong to communities with only one element. Because of that, the algorithm
merges them in step 1. In step 2, we evaluate the second edge with the next highest
weight (10, 11) using our criteria. Since vertex 10 has more neighbors in the community
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Fig. 2: An example graph.

of vertex 11, vertex 10 is added to the community of vertex 11. In step 3, since vertices
connected by edge (10, 12) are already in the same community, no changes are made. In
step 5, since CN(u,v) is equal to CN(v, u), and the degrees of these vertices are equal,
vertex 9 is added to the community of vertex 8. In step 10, CN(u,v) and CN(v,u) are
also equal, but the degree of vertex 0 is higher than the degree of vertex 3. Therefore,
vertex 3 is added to the community of vertex 0.

Step figve) Weight | CN(u, v) | CN(v, u) Deg;z:svaf u Communities
0 - - {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}}
1 ](11,12)] 1.00 - - - {0y, {1}, {23, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11, 12}}
2 |(10,11)] 0.78 2 1 - {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10, 11, 12}}
3 [(10,12)] o078 - - - {fo}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10, 11, 12}}
4 |(78 | 067 - - - {fo}, {1}, {2}, {3}, {4}, {5}, {6}, {7, 8}, {9}, {10, 11, 12}}
5 (8,9) 0.67 1 1 equal {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7, 8, 9}, {10, 11, 12}}
6 (5, 6) 0.60 - - - {{0}, {1}, {2}, {3}, {4}, {5, 6}, {7, 8, 9}, {10, 11, 12}}
7 | (510) [ 0.60 1 2 - {{0}, {1}, {2}, {3}, {4}, {5, 6, 10}, {7, 8, 9}, {10, 11, 12}}
8 | (6,10) [ 0.60 - - - {{0}, {1}, {2}, {3}, {4}, {5, 6, 10}, {7, 8, 9}, {10, 11, 12}}
9 (0,1) 0.58 - - - {{0, 1}, {2}, {3}, {4}, {5, 6, 10}, {7, 8, 9}, {10, 11, 12}}
10 | (0,3) 0.58 1 1 deg(v) is higher|{{0, 1}, {2}, {0, 3}, {4}, {5, 6, 10}, {7, 8, 9}, {10, 11, 12}}
11 | (6,7) 0.52 2 1 - {{0, 1}, {2}, {0, 3}, {4}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
12 | (6,9) 0.52 - - - {{0, 1}, {2}, {0, 3}, {4}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
13 | (1,2) 0.50 1 1 equal {{0, 1, 2}, {0, 3}, {4}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
14 | (1,4) | 050 1 1 equal 10,1, 2,4}, {0, 3}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
15 | (2,3) 0.50 1 3 - {{0, 1,2, 3,4},{0, 3}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
16 | (3,4) 0.50 - - - {{0,1,2,3,4}10,3}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}
17 | (2,9) 0.45 1 2 - {{0,1,2,3,4,5},10,3},{5, 6,10}, {6, 7, 8, 9}, {10, 11, 12}}
18 | (4,5) | 045 - - - {{0,1,2,3,4,5} 10,3}, {5, 6, 10}, {6, 7, 8, 9}, {10, 11, 12}}

Fig. 3: Steps of the second stage of the proposed algorithm.

After step 18, list C' is obtained. When we sort this list in descending order according
to the numbers of elements in the communities, we get C' = {{0, 1,2, 3,4,5},{6,7,8,9},
{5,6,10},{10,11,12},{0,3}}. We start with the second community {6,7,8,9}. Com-
munity {0,1,3,4,5} is the only community before {6,7,8,9}. Since the intersection of
these communities is an empty set, we go to the next community without making any
changes. The next community is {5,6, 10}. The intersection of {5,6,10} and the previ-
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ous community {6,7,8,9} has only one element 6. Since this number is less than half
of the number of elements in community {5,6,10} (i.e., 1 < 3/2), there is no merging
process. The intersection of {5,6,10} and community {1,2,3,4,5} has only one element
(5), and the merging condition is not met. The next community {10,11,12} has an
intersection with only {5,6,10} from the previous ones. Since this intersection has one
element, the merging condition is also not met. Finally, the intersections of community
{0, 3} and previous communities are examined. Only {0,1,2,3,4,5,6} has an intersec-
tion with this community, and this intersection has 2 elements. Accordingly, these two
communities are merged. As a result, the communities found by the algorithm for the
analyzed graph are C = {{0,1,2,3,4,5},{6,7,8,9},{5,6,10},{10,11,12}}, given in
Figure

Fig. 4: Communities detected by the proposed algorithm.

We remind the following notations to describe the pseudocode of our Algorithm 1.
G = (V, E) is an undirected and unweighted simple graph. Since it is simple, there are no
parallel edges (i. e., there can be at most one edge between any two vertices) and no loops
(i. e., the vertices are not connected to themselves). n,, is the set of neighbors of vertex u,
ny = {v € V|(u,v) € E}. N, is the set formed by adding u itself to n,, N, = {u} Un,.
The degree of vertex w is deg(u) = |n,|. C, represents a community which contains
vertex v. S, is a set of all communities that contains vertex v. C = {Cy,Cs,...Cy} is
the set of detected communities.

We assume that input graph G = (V, E) has n number of vertices, m number of
edges (V]| = n, |E| =m), and after the second stage, the proposed algorithm generates
k number of communities. Here, k is a small number compared with n. In the first
stage of the algorithm, we have two loops. The first loop, which calculates the cosine
similarities, runs in O(m), and the second loop runs in O(n). Sorting of the edges is
performed in O(m lgm). Therefore, the complexity of the first stage of the proposed
algorithm is O(n + m + mlgm) = O(m lgm). In the second stage, we have a loop that
runs in O(m). The third stage runs in O(k?). The total complexity of the proposed
algorithm is O(mlgm + k?). We can accept that k is equal to O(n). Finally, the
complexity of the algorithm is O(m Ilgm) for dense graphs.
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Algorithm 1: detectCommunities(G).

Input : G = (V, E) is an unweighted simple graph
Output : C is the list of communities
/* Stage 1: Initialization */

1 for each (u,v) € E do
// calculate the similarity for each pair of adjacent vertices

w(u,v) = |Nu N Ny|//|Nu|[Ny|
end

C=¢

for each v € V do
// add single vertex’s community to the communities list
C =CU{v}

end

8 sort edges (u,v) € E according to w(u,v) in descending order

S V)

<

/* Stage 2: Generating communities */
9 for each edge (u,v) € E do

// if the vertices u and v have communities consisting only of themselves
10 if C, = {{u}} and C, = {{v}} then
// add {u,v} to the community set and remove {u} and {v}
11 C + CU{u,v} —{u} —{v}
12 end
// if there is no community where u and v coexist
13 else if S, NS, = ¢ then
14 CN(u,v) = maxc,ec |Cv NNy
15 C5 = argmaz CN(u,v)
16 CN(v,u) = maxc, ec |Cu NNyl
17 Cy = argmax CN('U w)
18 if C’N(u v) > CN(v,u) or (CN(u,v) = CN(v,u) and deg(u) < deg(v)) then
19 C+—C-C;
20 Cr+CyuU {u}
21 C«+—CcucC;
22 if {u} € C then
23 | C+« C—{u}
24 end
25 end
26 else
27 C+—C-cC;
28 Cr +— Cp U{v}
20 C«+Ccuc;
30 if {v} € C then
31 | C« C—{v}
32 end
33 end
34 end
35 end
/* Stage 3: Merging communities */

// C ={C1,Ca,...Ci}
36 k <« length(C)
37 sort the set C in according to the numbers of elements in the communities C; in descending order
38 1«1
39 for i =2 to k do

40 for j =1 downto 1 do

41 if |C; N Cy| > |C;| /2 or (|Ci| =2 and |C; N Cj| = 1) then

a2 C+—C-C; -C;

43 Ci + C; UC

44 C+—CuUC;

45 end

46 end

a7 renumber communities in list C with indices less than or equal to ¢ and assign the number of the
renumbered communities to [

48 end

49 return C
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5. EXPERIMENTAL RESULTS

We evaluated 34 static overlapping community detection algorithms from the Commu-
nity Detection library (CDlib) [6] to compare our algorithm with existing ones. Firstly
for fairness of comparison, we eliminate the algorithms that require prior knowledge.
Then, we run all the remaining static overlapping community detection algorithms.
Secondly, we eliminate the time-consuming and unstable algorithms giving different re-
sults on each run by reviewing their results. Finally, we choose Core Expansion, Ego
Networks, LPANNI, and PercoMVC algorithms which are the most successful in our
small dataset. This dataset consists of three types of community structures with the
following properties:

e Clique: every member of a community knows each other,

e Star: only the leader of a community knows the members, and there is no con-
nection between the members,

e Ring: members of communities are connected to each other with a circular chain

Network 1 Network 2 Network 3

Modularity: 0.18 Modularity: 0.27 Modularity: 0.31

Network 4 Network 5 Network 6

Modularity: 0.4 Modularity: 0.42 Modularity: 0.3

Fig. 5: Defined networks and the communities detected by proposed algorithm.

We create six networks (Figure [5)) that contain clique, star, and ring communities.
For example, networks 1, 2, and 3 include different sizes of cliques. Network 4 and 5
consists of different sizes of stars. Network 6 consists of equal size of rings. When we
look at these networks, we can see the natural communities. For example, they are {{0,
1, 7,8}, {1, 2, 3, 4, 5}, {5, 6, 7}} for network 1 and {{0, 1, 2, 3}, {1, 4, 5, 6, 7}, {3, 7,
8,9, 10, 11}} for network 2. The proposed algorithm detects all natural communities
for all networks except network 1 in Figure |5} The algorithm finds communities {{0, 1,
5,6, 7,8}, {1,2,3,4,5}} for network 1.
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We run the other algorithms on these small networks. The results are given in Figure
Core Expansion is the algorithm that gives the closest results to ours. However,
it can not assign each vertex to a community and is not very successful in finding the
overlapping vertices in the last three networks. On the other hand, PercoMVC is another
successful algorithm on the first three networks. But this algorithm fails to detect star
and ring-shaped structures. When we look at the results of Ego Networks, we can say
that they are also true, but it produces lots of communities that can be occurred with
a variant of combinations of the vertices. Because of that, it is hard to see the major
communities, and it is needed to filter results. LPANNI could not detect communities
in network 2 and 3. On other networks, it detects crisp communities.

We also compare the modularity scores of these algorithms in Table[i} It is known that
the result between 0.3 and 0.7 for modularity indicates reasonable community structures.
The proposed algorithm gets acceptable modularity scores in the five networks. Although
the communities are detected as expected, we get a 0.27 modularity score on network 2.
On other networks except for network 1, we get modularity scores between this interval.
As a result, we could not get a higher modularity score than 0.42, although finding the
communities perfectly. In addition, Ego Networks detects every possible community
structure, but it gets the lowest modularity scores. Also, it is not possible to calculate
modularity for every network for the Core Expansion algorithm.

Core Expansion | Ego Networks LPANNI PercoMVC Proposed

Q  Coverage Q Coverage | Q Coverage Q Coverage Q  Coverage
Network 1 | 0 0.84 0.03 1 0.19 0.74 0.19 0.95 0.18 1
Network 2 | 0.27 1 0.05 1 0 0 0.27 1 0.27 1
Network 3 | 0.31 1 0.06 1 0 0 0311 0311
Network 4 | 0.39 0.92 0.04 1 0.41 0.92 0 0 0.40 1
Network 5 | 0.41 0.92 0.05 1 0.41 0.92 0 0 042 1
Network 6 | 0.26 0.90 0.07 1 0.12 0.80 0 0 0.30 1

Tab. 1: Scores of the algorithms.

For the networks in Figure |5 we also compare the results of the adapted coverage in
Table Since PercoMVC does not detect a community on networks 4, 5, and 6, the
adapted coverage metric gives 0 scores. Similarly, adapted coverage for the results of
LPANNI algorithm on networks 2 and 3 are 0. According to these scores, all detected
communities except from found by LPANNI on networks 1 and 6 are acceptable and get
a higher score than 0.8. For a given vertex, the adapted coverage metric measures how
social (cohesive) its neighbors are in the sense of being together in the same community.
On the other hand, the proposed algorithm tries that similar members will be maximally
socialized together. Therefore, our algorithm gives high scores in the adapted coverage
metric.

Then, we test our algorithm on synthetic networks. We start with a small dataset to
observe the results and use the LFR benchmark with the following parameters: 15 for the
number of vertices, 3 for the average degree, 5 for the maximum degree, 0.1 as a mixing
parameter, 3 for overlapping vertices, and 2 for the membership of overlapping vertices.
We give the results in Figure [B:I] and Figure [C.1] Since PercoMVC does not work, we
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could not give results of it. The results of the small LFR benchmark datasets indicate
that the proposed algorithm has high modularity, NMI, and F-Score. Additionally, it

has low runtime.
We also test our algorithm on some of the most known real datasets. Zachary’s

Karate Club dataset is one of the primary networks in community detection. The actual
and predicted communities are given Figures [ and [7]

8 |9 |10 |11 |12 |13 |14 | 15|16 | 17|18 | 19| 20 | 21|22 | 23 | 24 | 25| 26 | 27 | 23 [ 29| 30 | 31| 32 | 33

Fig. 6: Communities of Karate Club with the label of nodes.

SR

Merging 1and 2 |58
Real

==

RSN
SHEREEN o

Original Predicted

Fig. 7: Communities of Karate Club.

We found three communities and got NMI 0.29, F-Score 0.52, and modularity 0.25
(Table . When we examine the results in Figure EI, we detect two major communities;
blue and red ones. The green one in predicted communities is a hidden community.
Vertices 4, 5, 6, 10, and 16 are connected to the red community with vertex 0. Except
for vertex 0, they do not have any connection with the rest of the network. If we ignore
this hidden structure and accept this as a part of the red community like in Figure [7]
we correctly group all vertices out of vertex 9. According to our algorithm, vertex 9
belongs to the red community in the real dataset. Our algorithm identifies 2, 8, 27, 28,
30, 31, and 33 as overlapping vertices.

Real Proposed
k Q Coverage | k Q NMI | F-Sc
Karate Club 2 | 0.37 | 0.87 31025 | 029 | 0.52
Les Miserables | 7 | 0.56 | 0.76 71 0.39 | 0.46 0.45
Politic Books 3 | 041 | 0.84 4 | 043 | 0.35 0.22
Dolphins 2 | 0.37 | 0.96 5 0.34 | 0.30 | 0.34

Tab. 2: Results of real datasets.

Similarly, the results of our algorithm on Dolphins, Les Miserables, and Politic Books
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are given in Table [2| and Figure 8] It is seen that predicted communities are very close
to real ones, and they are more detailed than real ones.

Core Expansion LPANNI

k Q NMT F-Score Coverage k Q NMT F-Score Coverage
karate 2 0 0.36 0.67 0.54 karate 3 0.40 0.63 0.60 0.82
Tesmis 13 0 0.40 0.67 0.89 Tesmis 10 0.52 0.57 0.61 0.87
polbooks 16 0 0.13 0.08 0.76 polbooks 6 0.50 0.34 0.14 0.91
dolphins 12 0 0.13 0.15 0.65 dolphins 6 0.51 0.33 0.26 0.81

Ego Network PercoMVC

k Q NMI F-Score Coverage k Q NMI F-Score Coverage
karate 34 0.04 0.14 0.05 1 karate 3 0 0.38 0.69 0.87
lesmis 63 0.07 0.25 0.16 1 lesmis 4 0 0.40 0.32 0.93
polbooks 105 0.04 0.10 0.02 1 polbooks 6 0 0.29 0.34 0.84
dolphins 62 0.05 0.10 0.02 1 dolphins 4 0 0.18 0.27 0.57

Tab. 3: Results of algorithms on real datasets.

We also compare the modularity, NMI, F-Score, and coverage values with the other
algorithms for real datasets in Table 3| The problem with the Core Expansion and Per-
coMVC is that they can not group every vertex, and Ego Networks finds too many com-
munities. Although LPANNI is successful on Karate Club and Les Miserables datasets,
it gets lower NMI and F-Scores on Politic Books and Dolphins datasets. On the other
hand, the proposed algorithm is better for these datasets.

Original Original Original

(a) Dolphins. is. (c) Polbooks.

Fig. 8: Results of the proposed algorithm on real datasets.
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Finally, we use the LFR benchmark to produce larger networks. We use the fol-
lowing parameters: 1000 for the number of vertices, 30 for the average degree, 100 for
the maximum degree, 0.1 as the mixing parameter, 100 for the number of overlapping
vertices, and 2 for the membership of overlapping vertices. We generate 10 networks.
NMI and F-Score results of each algorithm with runtime results are given in Figure [0
Since PercoMVC algorithm uses Clique Percolation Method, it is not possible to get a
solution for every network produced by the LFR benchmark. For this reason, we could
not give the results of PercoMVC. LPANNTI has the highest NMI and F-Score but also
has the longest runtime. The proposed algorithm gives the best results according to the
runtime. On the other hand, when we increase the number of vertices and the overlap-
ping vertices ten times in the benchmark, Ego Networks gives the longest runtime. The
proposed algorithm is still better than the two algorithms (Figure .

6
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(a) NMI

~~ Ego Networks
LPANNI
Core Expansion
-~ Proposed

™| =~ Ego Networks
LPANNI
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Runtime
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2
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Fig. 9: Results of algorithms on LFR benchmark with 1000 vertices.
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Fig. 10: Results of algorithms on LFR benchmark with 10000 vertices.

6. CONCLUSIONS

In this study, we propose an overlapping community detection algorithm that can detect
the communities in star, clique, and ring structures. We test our algorithm in both real
and synthetic datasets. We use modularity, NMI, F-score, and an overlapping version of
coverage as evaluation criteria. Our algorithm successfully finds the hidden structures
and overlapping vertices without a need for prior knowledge. It can also work on different
networks, even unweighted and undirected.

The experiments confirm no algorithm gives the best results for all dataset. Because
of that, every algorithm in this area is vulnerable. For example, although LPANNI has
the highest scores in LFR benchmarks, it is not successful in detecting the communities
that we define. On the other hand, although PercoMVC perfectly defines communities
for the first three networks that we defined, it could not work on LFR benchmarks.
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However, it is better than Core Expansion on real datasets. Despite Core Expansion
being the worst algorithm on the LFR benchmark, it is successful on our small datasets.
Although Ego Networks finds every possible community, it has a long runtime, and it is
hard to see major communities. The proposed algorithm works well in all these datasets
and among all 34 overlapping community detection algorithms. However, there is still
a need for improvement of the algorithms.

In the future, we plan to work to improve the algorithm to detect overlapping and
disjoint communities at the same time and parallelize the algorithm to improve the
running time of our algorithm. We also plan to show different levels of communities as
in the hierarchical methods.

A. APPENDIX: RESULTS OF THE ALGORITHMS ON OUR SMALL DATASET

Network 1 Network 2 Network 3 T — e

Modularity: nan Modularity: 0.27 Modularity: 0.31

Network 4 Network 5 Network 6
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(a) Core Expansion (b) Ego Networks
Network 1 Network 2 Network 3 Network 1 Network 2 Network 3
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Network 5
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Modularity: 0.19
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Fig. A.1: Results of the algorithms on our small dataset.
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B. APPENDIX: RESULTS OF LFM BENCHMARK
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Fig. B.1: Results of LFM benchmark
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C. APPENDIX: RESULTS OF ALGORITHM ON SMALL LFR BENCHMARK
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Fig. C.1: Results of the algorithms on small LFR benchmark.
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