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APPROXIMATIONS OF THE ULTIMATE RUIN PROBA-
BILITY IN THE CLASSICAL RISK MODEL USING THE
BANACH’S FIXED-POINT THEOREM AND THE CONTI-
NUITY OF THE RUIN PROBABILITY

Jaime Mart́ınez Sánchez and Fernando Baltazar-Larios

In this paper, we show two applications of the Banach’s Fixed-Point Theorem: first, to
approximate the ultimate ruin probability in the classical risk model or Cramér-Lundberg
model when claim sizes have some arbitrary continuous distribution and second, we propose an
algorithm based in this theorem and some conditions to guarantee the continuity of the ruin
probability with respect to the weak metric (Kantorovich). In risk theory literature, there is
no methodology based in the Banach’s Fixed-Point Theorem to calculate the ruin probability.
Numerical results in this paper, guarantee a good approximation to the analytic solution of the
ruin probability problem.

Finally, we present numerical examples when claim sizes have distribution light and heavy-
tailed.

Keywords: Banach’s Fixed-Point Theorem, classical risk model, continuity of ruin proba-
bility, probabilistic metric, ultimate ruin probability.

1. INTRODUCTION

This paper shows an application of the properties of contracting operators and Banach’s
Fixed-Point Theorem (BFPT), see this theorem in Appendix A to obtain an approxima-
tion to ultimate ruin probability (or ruin probability) for an insurance company using
the Cramér-Lundberg (CL) risk model. The results obtained in this paper by using a
certain contractive operator provide favorable results compared to known cases where
there is an analytical solution. This contractive operator is used to generate an algorithm
to test the continuity of the ruin probability.

In the CL model, for studying the ruin probability, the surplus process of the insur-
ance company, C = {Ct}t≥0, is the continuous stochastic process that models the time
evolution of the reserves at time t is given by

Ct = u+ ct−
Nt∑
i=1

Yi, (1)
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where u ≥ 0 is the initial reserve, c > 0 is the premium per unit of time, the number of
claims until time t is a homogeneous Poisson process N = {Nt}t≥0 with parameter λ >
0, the claim sizes {Yi}i≥1 is a sequence of independent and identically distributed (iid)
non-negative random variables with continuous distribution function F and independent
of N . The surplus model when arrival times are modeled by a Hawkes process was
studied in [16].

The ruin time is defined as

τ := inf{t > 0|Ct < 0}, where inf{∅} =∞.

We will be interested in the ruin probability (or ruin probablity) given by

ψ(u) = P(τ <∞|C0 = u). (2)

The ruin probability (2) can be found analytically only in particular cases, such as in
those cases when claim sizes have exponential, mixture of exponential, phase-type (PH)
or one-point degenerate distributions (see [2], [7] or [19]). In cases where the inverse of
the Laplace transform of the functions of the risk probability as well as that of survival
can be calculated, then an analytical solution can also be obtained (see [2]).

If the adjustment coefficient R exists (defined as the first positive root of λ(MY (r)−
1) − cr = 0, assuming that the moment generating function MY (r) exist), then it is
possible to have an upper bound for the ruin probability in terms of R, in particular, we
have that ψ(u) < e−Ru (where u ≥ 0), called inequality of Cramér-Lundberg. However,
the adjustment coefficient does not exist for heavy-tailed claim size distributions. In
[3], the authors propose a PH distribution of infinite dimension with a finite number of
parameters to model heavy-tailed distributions. In particular, the authors prove that
the PH distribution complies with having an exact formula for the ruin probability,
however, a calibration algorithm difficult to implement should be applied.

On the other hand, in the literature we can find different methods to approximate
the ruin probability. Each of them presents different requirements, for example, the
existence of the adjustment coefficient, or the existence of the second, third, or moments
of superior order of the distribution function F ; others methods require that the initial
reserve u to be very large, etc., for a summary of the methods and their requirements, see
[21]. Moreover, there are several approaches to estimate the ruin probability using, for
example, Monte Carlo Methods (see [1]) via a simulation of the surplus process. Finally,
in [15] the robustness properties of certain estimators are considered to approximate the
ruin probability using the non-parametric plug-in estimators of the claims distribution
function.

As far as we investigate there is no application of BFPT as a method to estimate the
ruin probability in the CL model.

A more general method to approximate the ruin probability was proposed in [6]
through the so-called “continuity problem”. To achieve the continuity of ruin probability
(2), in this work, we demonstrate that by using appropriate probabilistic metrics that
guarantee weak convergence and mean convergence for the distribution of claim sizes,
we can get continuity for the ruin probability.

In this work the properties of the contracting operators are used, which makes possible
to use the BFPT to find an approximation of the ruin probability (2). The advantage
of using the BFPT is that it only requires Assumption 3.1.
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The principal contribution of this work is to solve (using a contracting operator
and BFPT) a risk problem and then give conditions to get their continuity under the
Kantorovich metric to obtain a new method of approximation of the ruin probability in
the CL model.

This paper is organized as follows. Section 2 presents the concept of continuity for
the ruin probability and its present previous results. In Section 3,we introduce the
contracting operator, how use it to obtain the approximation (using BFPT) to the
ruin probability, and we show the results obtained from one numerical estimate for
approximating the ruin probability. Section 4 presents the main result of this work,
Theorem 4.2, which establishes the conditions to achieve an estimate of the continuity
of the ruin probability, as an application of Theorem 4.2, the Algorithm 1 is presented to
obtain an approximation to the ruin probability for the case in which the distribution of
claim sizes is modeled by an Erlang mixture and its corresponding PH representation, the
results obtained from such numerical estimates support the Theorem 4.2 with examples
of light and heavy-tailed distributions of the claim sizes. Some concluding remarks are
given in Section 5. Finally, Appendix A containts the BFPT and, in Appendix B, the
mathematical induction test is presented for the iterative sequence of the approximation
of the ruin probabilities under the use of the contracting operator.

2. CONTINUITY OF THE RUIN PROBABILITY

To introduce the problem of continuity of the ruin probability, we suppose that the risk
process (1) is governed by the parameter vector θ = (λ, c, F ), denoting this process by
Ct(θ), and that we can not find the corresponding ruin probability ψ(θ|u) ( to simplify
the notation we will omit u) . If Θ denotes the parameter space of θ, the ruin probability
can be seen as the following mapping

ψ(θ) : Θ→ Ψ,

where Ψ is the functional space of all possible functions ψ(θ). Assume that Θ and Ψ are
metric spaces with metrics δ and ν respectively, then if we can find the other appropriate
vector parameter θ̃ = (λ, c, F̃ ) that governs the risk process

Ct(θ̃) = u+ ct−
Nt∑
i=1

Ỹi,

where F̃ is the distribution function of Ỹ and such that we can calculate the ruin
probability corresponding ψθ̃. Then, the continuity for the ruin probability ψ(θ) on θ is
defined as

if δ(θ, θ̃)→ 0, then ν(ψ(θ), ψ(θ̃))→ 0, (3)

for θ, θ̃ ∈ Θ. If we can find an inequality as following

ν(ψ(θ), ψ(θ̃)) ≤ K̄φ(δ(θ, θ̃)), (4)

where K̄ ∈ [0,∞) is in terms of the vector parameter θ (called continuity constant), φ
is a non-negative function such that φ(0) = 0 and φ(s) converges to 0 when s converges
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to 0, then inequality (4) is called a continuity estimate and provides the possibility of
limiting ν(ψθ, ψθ̃) in terms of a distance δ(θ, θ̃).

Inequalities as (4) have been found in [6] to the Sparre-Andersen model and based on
the representation of the ruin probability as the stationary probability for a reversible
Markov chain. In [5], for the Sparre-Andersen model with the inclusion of interest on
the surplus, the authors find exponential upper bounds to the ruin probability using
martingales and recursive techniques, but without the use of distance as in (4).

In [9] the authors find an upper bound as given in (4) (using the Kantorovich and
weighted metrics) and under the assumptions that λ and F in (1) are unknown. However,
there is no general method to approximate the ruin probability, unlike this work in which
the BFPT is used to propose such an approximation of the ruin probability and to obtain
continuity in the terms defined in (3).

In [21], the authors introduced an additional assumption about the convergence of
means (|µ − µ̃| < ε, ε > 0) and they found a similar upper bound to (4): ν(ψθ, ψθ̃) ≤
k1δ(θ, θ̃)u+ k2ε, where k1, k2 are explicitly calculated constants in terms of the param-
eters of the model.

In this work, we demonstrate that using appropriate probabilistic metrics for δ and
ν, we can guarantee continuity for the ruin probability as defined in (3).

3. RUIN PROBABILITY APPROXIMATION USING BANACH’S FIXED-POINT
THEOREM

In this section, we define the operator T and demonstrate that there is a contracting
operator on a certain Banach space; then based on the BFTP, operator T will be used to
obtain an approximation of the ruin probability (2). An immediate result obtained by
the application of the BFTP to the risk model (1), is the deduction of the Pollaczeck–
Khinchine formula. Finally, we apply the method presented in one numerical example.

To obtain the results presented in this work to approximate the ruin probability,
we only must assume that the parameters of the surplus process (1) satisfy only the
following conditions.

Assumption 3.1. The parameters of the surplus process (1) satisfy

1. µ := E[Y1] <∞ 1,

2. F (0) = 0,

3. α := λµ
c < 1 called security loading 2.

One important result to find the ruin probability (2) in the classical risk model, which
will be used to find the approximations in this work, is the following lemma.

1 The expected value must be finite because otherwise no insurance company would insure such
a risk.

2 If α ≥ 1, then for all u ≥ 0 it holds that ψ(u) = 1.



258 J. MARTÍNEZ SÁNCHEZ AND F. BALTAZAR-LARIOS

Lemma 3.2. Let ψ(u) be the ruin probability in the CL model with claim sizes having
distribution function F . Under Assumption 3.1, ψ(u) satisfies

ψ(u) =
λ

c

(∫ ∞
u

F̄ (x)dx+

∫ u

0

ψ(u− x)F̄ (x)dx

)
, u ≥ 0, (5)

where F̄ (x) := 1− F (x) is the survival function.

For a proof of Lemma 3.2 see [8].

3.1. Contracting operator

In order to obtain the first approximation for the ruin probability (2), we define the
following.

Definition 3.3. For all u ≥ 0, we define the following measurable functions set

Y := {g(u) : [0,∞)→ [0, 1]}.

Remark 3.4. For all g ∈ Y we have that ||g||∞ := supu≥0|g(u)| < 1 (which is called
the supremum norm).

Definition 3.5. For each g ∈ Y, we consider the operator T : Y→ Y, defined by

Tg(u) :=
λ

c

(∫ ∞
u

F̄ (x)dx+

∫ u

0

g(u− x)F̄ (x)dx

)
, u ≥ 0. (6)

Definition 3.6. The uniform metric (also called Kolmogorov metric) ρ defined on Y,
given u ≥ 0, is

ρ(g1, g2) := supu≥0|g1(u)− g2(u)|, g1, g2 ∈ Y.

The space of functions of Definition 3.3 is a Banach space with the uniform metric,
i. e., (Y, ρ) is a complete metric space (see [12]).

The following result shows that the operator of Definition 3.5 represents a contraction
mapping on the metric space (Y, ρ) with module α.

Lemma 3.7. Under Assumption 3.1, for all g, g1, g2 ∈ Y and the operator T given in
(6), we have:

1. Tg ∈ Y,

2. ρ(Tg1, T g2) ≤ αρ(g1, g2), where α = λµ
c .

P r o o f .
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1. Given u ≥ 0 and for all g ∈ Y we have that

Tg(u) =
λ

c

(∫ ∞
u

F̄ (x)dx+

∫ u

0

g(u− x)F̄ (x)dx

)
≤ λ

c

(∫ ∞
u

F̄ (x)dx+

∫ u

0

F̄ (x)dx

)
=

λµ

c
= α < 1.

That is, TY ⊂ Y.

2. For all u ≥ 0 and g1, g2 ∈ Y, by Definition 3.6 we have

ρ(Tg1, T g2) = supu≥0|Tg1(u)− Tg2(u)|

=
λ

c
supu≥0

∣∣∣∣∫ u

0

g1(u− x)F̄ (x)dx−
∫ u

0

g2(u− x)F̄ (x)dx

∣∣∣∣
≤ λ

c
supu≥0

∫ u

0

|g1(u− x)− g2(u− x)|F̄ (x)dx

≤ λ

c
supu≥0

∫ u

0

supw∈[0,u]|g1(w)− g2(w)|F̄ (x)dx

≤ λ

c
supu≥0

∫ u

0

ρ(g1, g2)F̄ (x)dx

=
λρ(g1, g2)

c

∫ ∞
0

F̄ (x)dx =
λµρ(g1, g2)

c
= αρ(g1, g2).

�

Hence, by the BFTP for contraction mappings (see Appendix A), there exists a unique
function (fixed point) ψ ∈ Y, such that Tψ = ψ and ψ is the limit of the functions

ψn := Tψn−1 = Tnψ0 n ≥ 1, (7)

for some arbitrary ψ0 ∈ Y and T given in (6).

3.2. Approximations of the ruin probability with the contracting operator
method

To apply the BFPT to find an approximation ruin probability (2), consider the iterative
sequence of ruin probabilities defined in (7), then

ψn(u) :=
λ

c

(∫ ∞
u

F̄ (x)dx+

∫ u

0

ψn−1(u− x)F̄ (x)dx

)
, u ≥ 0, n ≥ 1, (8)

and ψ0 is some arbitrary function of Y.
The following corollary is an immediate consequence of Lemma 3.7.
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Corollary 3.8. Let {ψn}n≥0 be the functions iterative sequence defined in (8). Under
Assumption 3.1 we have

ρ(ψn, ψ)→ 0,

where ψ is the ruin probability (2).

Remark 3.9. An advantage of using the BFPT to obtain an approximation to ruin
probability ψ is that the BFPT provides inequalities, which describe the speed of con-
vergence. The speed of convergence on the space metric (Y, ρ) is given by

1. ρ(ψn, ψ) ≤ αn

1−αρ(ψ1, ψ0).

2. ρ(ψn, ψ) ≤ α
1−αρ(ψn, ψn−1).

3. ρ(ψn, ψ) ≤ αnρ(ψ0, ψ).

Where α is defined in Assumption 3.1 (for a demostration see [11] and [20]). We will
use the third speed of convergence in the numeric example, which is presented in the
next section (see Table 2).

We define the equilibrium probability density function of non-negative random vari-
ables Yi’s of claim sizes for the surplus process (1) as

fe(y) :=
1− F (y)

µ
, y > 0, (9)

and the corresponding equilibrium distribution function is denoted by Fe(x).
We can rewrite the contractive operator (6) in terms of the equilibrium probability

density function (9) as

Tψ(u) = α

(∫ ∞
u

fe(y)dy +

∫ u

0

ψ(u− y)fe(y)dy

)
.

Now, the iterative sequence of ruin probabilities defined in (8) can be rewritten as

ψn(u) = α

(
1− Fe(u) +

∫ u

0

ψn−1(u− y)fe(y)dy

)
, u ≥ 0, n ≥ 1. (10)

The following result provides an analytical formula to calculate the elements of the
sequence {ψn}n≥0 of Corollary 3.8.

Lemma 3.10. Under Assumption 3.1, if ψ0(u) = k (k ∈ [0, 1]) and for u ≥ 0, then

ψn(u) =

{
α− (1− k)αnF

∗(n)
e (u)− (1− α)

∑n−1
i=1 α

iF
∗(i)
e (u) if n ≥ 2,

α− (1− k)αFe(u) if n = 1.

Where F
∗(i)
e is the ith convolution power of Ye,i’s iid random variables with probability

density function given by (9).
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P r o o f . The result can be demonstrated by mathematical induction. For n+1 applying
(10) with ψ0(u) = k, we have

ψ1(u) = Tψ0(u) = Tk

= α

(
1− Fe(u) +

∫ u

0

kfe(x)dx

)
= α− (1− k)αFe(u). (11)

Now, to obtain the second iteration of approximation, we use again (10) with ψ1(u)
given in (11)

ψ2(u) = Tψ1(u) = T (α− (1− k)αFe(u))

= α

(
1− Fe(u) +

∫ u

0

(α− (1− k)αFe(u))fe(x)dx

)
= α− (1− k)α2(Fe(u) + F ∗(2)e (u)).

Suppose that the result holds for n = m ≥ 2 and for the next iteration we have

ψm+1(u) = Tψm(u)

= α

(
1− Fe(u) +

∫ u

0

[
α− (1− k)αmF

∗(m)
e (u− x)− (1− α)

m−1∑
i=1

αiF
∗(i)
e (u− x)

]
fe(x)dx

)

= α− (1− k)αm+1F
∗(m+1)
e (u)− (1− α)αFe(u)− (1− α)

m∑
i=1

αi+1F
∗(i+1)
e (u)

= α− (1− k)αm+1F
∗(m+1)
e (u)− (1− α)

m∑
i=1

αiF
∗(i)
e (u).

The last equality shows that the statement holds for n = m+ 1 and u ≥ 0 (fixed). �

In the limit as n→∞, we obtain the Pollaczeck-Khinchine formula or the Beekman’s
convolution formula (Corollary 3.11) as an immediate consequence of BFPT and Lemma
3.10.

Corollary 3.11. Under Assumption 3.1, for the CL model (1) with ruin probability
ψ(u) and claim sizes with distribution function F . If ψ0(u) = α, then

ψ(u) = limψn(u)
n→∞

= (1− α)

∞∑
i=1

αi(1− F ∗ie (u)), u ≥ 0.

In particular ψ(0) = α.

3.3. Numerical example: Claim sizes with exponential distribution

For the surplus process (1), we suppose that Yi ∼ Exp(β), i ≥ 1. Here, we have that
Y satisfies the conditions of Assumption 3.1 if β ∈ (λ/c,∞). Since in this case the
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analytical solution can be found using Lemma 3.2 (ψ(u) = αe−u(β−
λ
c )), it will be used

to calibrate the accuracy of our method.
For this case, the approximation for the ruin probability can be obtained by applying

the BFPT and the corresponding iterative sequence of ruin probabilities defined in (8),
which is

ψn(u) = αnk + αe−βu
n−1∑
j=0

(λu/c)j

j!
− αne−βuk

n−1∑
j=0

(βu)j

j!
n ≥ 1, (12)

where ψ0 = k for some arbitrary constant k ∈ [0, 1]. A proof for the statement (12) is
in Appendix B. Since that α < 1, by Corollary 3.8, we have that

ψ(u) = limψn(u)
n→∞

= αe−u(β−
λ
c ). (13)

The right side of equation (13) is the unique solution of equation (5) when the claim
sizes follow an exponential distribution.

3.3.1. Numerical results

Here, we show the results obtained when the claim sizes have exponential distribution
with parameter β = 2, and u = λ = c = 1, then α = 0.5. Here, the exact ruin probability
is given by (13), i. e., ψ(1) = 0.5e−1 ≈ 0.1839397.

The numerical results to approximate the ruin probability (13) for initial values ψ0 :=
k = 0.0, 0.1, . . . , 1.0 and the first five iterations of expression (12) are presented in Table
1 and the corresponding values at each iteration are plotted in Figure 1.

Fig. 1. The first five approximation values to ruin probability when

Yi ∼ Exp(2), u = λ = c = 1 and the true value

ψ(1) = 0.5e−1 ≈ 0.1839397.
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n ψ0 = 0.0 ψ0 = 0.1 ψ0 = 0.2 ψ0 = 0.3 ψ0 = 0.4 ψ0 = α = 0.5 ψ0 = 0.6 ψ0 = 0.7 ψ0 = 0.8 ψ0 = 0.9 ψ0 = 1.0

1 0.06766764 0.1109009 0.1541341 0.1973673 0.2406006 0.2838338 0.3270671 0.3703003 0.4135335 0.4567668 0.500000
2 0.13533528 0.1501851 0.1650350 0.1798848 0.1947347 0.2095846 0.2244344 0.2392843 0.2541341 0.2689840 0.2838338
3 0.16916910 0.1732106 0.1772522 0.1812937 0.1853353 0.1893768 0.1934184 0.1974599 0.2015015 0.2055430 0.2095846
4 0.18044704 0.1813400 0.1822330 0.1831260 0.1840190 0.1849119 0.1858049 0.1866979 0.1875909 0.1884838 0.1893768
5 0.18326653 0.1834311 0.1835956 0.1837602 0.1839247 0.1840892 0.1842538 0.1844183 0.1845829 0.1847474 0.1849119

Tab. 1. The first five approximation values to ruin probability when

Yi ∼ Exp(2), u = λ = c = 1 and initial values ψ0 = 0.0, 0.1, . . . , 1.0.

Therefore, in this example, we know the exact ruin probability, we can observe in 5
iterations we have a good approximation (there is convergence) to ruin probability for
all initial values. However, when the exact ruin probability is unknown it is important
to have an idea about the speed of convergence.

To illustrate the speed of convergence given by part 3 of Remark 3.9, the upper
bounds are reported in Tables 2 and plotted in Figure 2.

Fig. 2. The first five upper bounds values αn(ψ0(1), ψ(1)) when

Yi ∼ Exp(2) and α = 0.5.

n ψ0 = 0.0 ψ0 = 0.1 ψ0 = 0.2 ψ0 = 0.3 ψ0 = 0.4 ψ0 = α = 0.5 ψ0 = 0.6 ψ0 = 0.7 ψ0 = 0.8 ψ0 = 0.9 ψ0 = 1.0

0 0.500000 0.4000 0.300000 0.20000 0.100000 0.500000 0.60000 0.700000 0.800 0.900000 1.00000
1 0.250000 0.2000 0.150000 0.10000 0.050000 0.250000 0.30000 0.350000 0.400 0.450000 0.50000
2 0.125000 0.1000 0.075000 0.05000 0.025000 0.125000 0.15000 0.175000 0.200 0.225000 0.25000
3 0.062500 0.0500 0.037500 0.02500 0.012500 0.062500 0.07500 0.087500 0.100 0.112500 0.12500
4 0.031250 0.0250 0.018750 0.01250 0.006250 0.031250 0.03750 0.043750 0.050 0.056250 0.06250
5 0.015625 0.0125 0.009375 0.00625 0.003125 0.015625 0.01875 0.021875 0.025 0.028125 0.03125

Tab. 2. The first five upper bounds values αn(ψ0(u), ψ(u)) when

Yi ∼ Exp(2), u = 1, α = 0.5 and initial values

ψ0 = k = 0.0, 0.1, . . . , 1.0.
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Finally, we generated random values of the equilibrium distribution of the exponential
distribution with parameter β = 2. The corresponding estimators via Monte Carlo and
its 95% confidence intervals are reported in Table 3. The fast speed of the variance
reduction of the Monte Carlo estimators can be observed, based on the speed of the
reduction of the confidence intervals.

n MC Estimator Lower limit CI Upper limit CI

1 0.2905000 -0.09094541 0.6719454
2 0.2147500 0.02402730 0.4054727
3 0.1943125 0.09895115 0.2896739
4 0.1900312 0.14235057 0.2377119
5 0.1892344 0.16539404 0.2130747

Tab. 3. Estimators via Monte Carlo and its 95% confidence intervals

using a sample of size 1000.

In the Figure 3 the Monte Carlo estimators and its 95% confidence intervals are
plotted.

Fig. 3. Iterations of ruin probabilities when the claim sizes are

Exp(2).
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4. RUIN PROBABILITY APPROXIMATION USING THE CONTINUITY OF THE
RUIN PROBABILITY

In this section, we will study the conditions for obtaining the continuity of the ruin
probability in the context defined in (3). The result obtained is stated in Theorem
4.2. Moreover, the results obtained in this paper generate an upper bound such as that
given in (4), under the fact that the function φ in (4) is the identity function, i. e.,
φ(s) = s and the probabilistic metric δ in (4) is the Kantorovich probabilistic metric in
our result. Such upper bound can be used as an estimate for the difference between the
ruin probability (2) and its approximate obtained by the BFPT.

Moreover, we study continuity conditions of the ruin probability between surplus
processes as it was presented in (3). We use the continuity to establish that a certain
type of convergence between the claim sizes distribution implies convergence, in some
sense, of the ruin probability.

4.1. Continuity of the ruin probability

In order to obtain an approximation of the ruin probability (2), we propose that if the
distribution function F of the claim sizes of the surplus process (1) can be approximated
(in a certain sense ) by a sequence of distribution functions {Fm}m≥1, then we can
approximate to the ruin probability (2) by the sequence of ruin probabilities of the
surplus processes associated with the {Fm}m≥1, these are the distribution functions of
the corresponding claim sizes.

For each element of the sequence {Fm}m≥1, we consider a sequence of surplus pro-
cesses Cm = {Cm}m≥1 (Cm = {Cmt }t≥0) defined by

Cmt := u+ ct−
Nt∑
i=1

Y mi , (14)

where u, c and {Nt}t≥0 is as in (1), for eachm fix, the claim sizes {Y mi }i≥1 is a sequence of
non-negative, iid random variables with distribution functions {Fm}m≥1. The ruin time
for mth surplus process (14) is denoted by τm and the corresponding ruin probability
by ψm. Moreover, we suppose that for all m ≥ 1 the parameters corresponding to the
surplus processes (14) satisfy Assumption 3.1 with µm = E(Y m) and αm := λµm

c .
To obtain the continuity of the ruin probability we should establish conditions to

guarantee that the sequence of ruin probabilities {ψm}m≥1 converges (in a certain sense)
to the ruin probability (2). To get these conditions, we define the following sequence
of maps {Tm}m≥1 in the functions set Y equipped with the metric Kolmogorov ρ (see
Definition 3.6).

Definition 4.1. For all g ∈ Y, each m ≥ 1, u ≥ 0, and the surplus process (14), the
contraction mapping (6) becomes in the next operator

Tmg(u) :=
λ

c

(∫ ∞
u

F̄m(x)dx+

∫ u

0

g(u− x)F̄m(x)dx

)
.

It is easy to prove that for each m ≥ 1, the sequence {Tm}m≥1 from Definition 4.1
satisfies the Lemma 3.7, i. e.:
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1. If g ∈ Y then Tmg ∈ Y.

2. For g1, g2 ∈ Y then ρ(Tmg1, Tmg2) ≤ αmρ(g1, g2), where αm = λµm
c .

Hence, by the BFPT for contraction mappings we have that for each m ≥ 1, there
exists a unique function ψm ∈ Y for the mth iteration such that Tmψm = ψm and ψm
is the limit of the functions

ψm,n := Tmψm,n−1 = Tnmψm,0 n ≥ 1,

for some arbitrary initial solution ψm,0 ∈ Y and Tm from Definition 4.1.
Finally, the BFPT shows that for each m ≥ 1: ψm is the unique solution to the

integral equation given in Definition 4.1.
In order to apply the BFPT to approximate the ruin probability ψ given in (2),

using the ruin probability ψm associated with the surplus process (14), we will proceed
analogous to the iterative sequence defined in (8). For each m ≥ 1, consider the iteration
functions (approximate ruin probabilities) defined as

ψm,n(u) :=
λ

c

(∫ ∞
u

F̄m(x)dx+

∫ u

0

ψm,n−1(u− x)F̄m(x)dx

)
, u ≥ 0, n ≥ 1, (15)

where ψm,0 is some arbitrary initial solution of Y. Then, we have that

lim
m→∞

lim
n→∞

ψm,n = lim
m→∞

ψm = ψ, (16)

where ψm is the ruin probability for the surplus process (14).
The main result of this section is the next theorem, which shows that the ruin proba-

bility ψ, see (2), can be approximated by the ruin probabilities defined in (15) and that
the expression (16) is satisfied.

Theorem 4.2. Let ψ,ψm ∈ Y be the ruin probabilities for the surplus processes (1)

and (14) respectively. If Fm
d−→ F (convergence in distribution) and under Assumptions

3.1, then we have

lim
m→∞

ρ(ψ,ψm) = 0,

where ρ is the Kolmogorov metric.

To prove Theorem 4.2 we will use the properties of the Kantorovich metric κ (see Def-
inition 4.3) and some results (see propositions 3.4-3.6), which will apply to the sequence
of the random variables {Y mi }m≥1 (i fixed) given in (14).

Let X=X(R) be the space of all real-valued non-negative random variables X with
E(|X|) <∞, and F the set of their distribution functions.

Definition 4.3. For each FX ,FY ∈ F, the Kantorovich metric κ(FX , FY ) is defined by

κ(FX , FY ) :=

∫
R
|FX(x)− FY (x)|dx, X, Y ∈ X.
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Proposition 4.4. Suppose that X ∈ X and that ε > 0, then there is a constant that
depens on X, K(X) ∈ [0,∞) such that E(|X|1{|X|>K(X)}) < ε.

For a proof see [22].

Proposition 4.5. Let {Xn}n≥1 be a sequence of non-negative random variables uni-
formly integrable (UI) such thatXn converges in distribution toX, then limn→∞E(Xn) =
E(X) <∞.

For a proof see [13].

Proposition 4.6. The Kantorovich metric κ metricizes convergence in distribution,
and the convergence of the first moments in the space X, i. e., limn→∞ κ(Fn, F ) = 0 if
and only if

1. Fn
d−→ F , and

2. limn→∞ E|Xn| = E|X|.

For a proof see [18].

Now, we give a proof of Theorem 4.2.

P r o o f . For some arbitrary m ≥ 1 fixed, let ψ,ψm be the corresponding ruin proba-
bilities of surplus processes (1) and (14). Since that T and Tm given in Definition 3.5,
and Definition 4.1 are contraction mappings, by the BPFT, we have that ψ = Tψ and
ψm = Tmψm, then

ρ(ψ,ψm) = ρ(Tψ, Tmψm)

by the triangle inequality, we have

ρ(ψ,ψm) ≤ ρ(Tψ, Tψm) + ρ(Tψm, Tmψm),

since T is a contractive operator

ρ(ψ,ψm) ≤ αρ(ψ,ψm) + ρ(Tψm, Tmψm),

(1− α)ρ(ψ,ψm) ≤ ρ(Tψm, Tmψm),

ρ(ψ,ψm) ≤ 1

1− α
ρ(Tψm, Tmψm). (17)

where α is given in Assumption 3.1.
The next step is to find an upper bound for the inequality (17). By the Definition

3.6 we have that

ρ(Tψm, Tmψm) = supu>0|Tψm(u)− Tmψm(u)|

= supu>0

∣∣∣∣λc
(∫ ∞

u
(F̄ (x)− F̄m(x))dx+

∫ u

0
ψm(u− x)(F̄ (x)− F̄m(x))dx

)∣∣∣∣
≤

λ

c
supu>0

(∫ ∞
u
|F̄ (x)− F̄m(x)|dx+

∫ u

0
|ψm(u− x)||(F̄ (x)− F̄m(x))|dx

)
≤

λ

c
supu>0

(∫ ∞
0
|F̄ (x)− F̄m(x)|dx

)
≤

λ

c

∫ ∞
0
|Fm(x)− F (x)|dx. (18)
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Using inequalities (17) and (18) we have

ρ(ψ,ψm) ≤ λ

c(1− α)

∫ ∞
0

|Fm(x)− F (x)|dx. (19)

Taking the limit as m approaches infinity

lim
m→∞

ρ(ψ,ψm) ≤ λ

c(1− α)
lim
m→∞

∫ ∞
0

|Fm(x)− F (x)|dx.

By Definition 4.3, we have

lim
m→∞

ρ(ψ,ψm) ≤ λ

c(1− α)
lim
m→∞

κ(Fm, F ).

Since {Y m}m≥1 ∈ L1 for all m ≥ 1, by Proposition 4.4 the sequence {Y m}m≥1 are

UI. Moreover, since Y m
d−→ Y (convergence in distribution), then by Proposition 4.5 we

have that E(Ym)→ E(Y ) <∞.
Finally, as limm→∞ Fm = F and limm→∞ E(Ym) = E(Y ) < ∞, by the Proposition

4.6 we have that limm→∞ κ(Fm, F ) = 0, then

lim
m→∞

ρ(ψ,ψm) = 0.

�

Remark 4.7. If we eliminate the assumption that Fm converges to F in Theorem 4.2,
then the expression (19)

ρ(ψ,ψm) ≤ λ

c(1− α)

∫ ∞
0

|Fm(x)− F (x)|dx,

provides an inequality for the continuity estimate for the ruin probability, in the context
defined in (4), i. e., we can rewrite the equation (19) in terms of the Kantorovich metric
(see Definition 4.3) as

ρ(ψ,ψm) ≤ λ

c(1− α)
κ(Fm, F ) = K̄κ(Fm, F ),

where K̄ = λ
c(1−α) > 0 is the continuity constant, then ρ(ψ,ψm)→ 0 if κ(Fm, F )→ 0.

4.2. Approximation of the ruin probability using the continuity via Erlang
mixture and PH distributions

In this section, we use the representation PH for the Erlang mixture (ErM) distributions
to calculate the ruin probability when the claim sizes are ErM distributed. Moreover,
using Theorem 4.2 we show that the ruin probability (2) for a CL model with any
distribution of the claim sizes can be seen as a limit of ruin probabilities of a CL model
with ErM distributions of the claim sizes and the corresponding PH representation.
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4.2.1. Erlang mixture and PH distributions

We start introducing some definitions and results that we will use to develop our method
to approximate the ruin probability.

Definition 4.8. The random variable Y has an Erlang distribution with parameters
k ∈ N, and η > 0 (Y ∼ Er(k, η)) if its density function is

fY (y) =
ηkyk−1e−ηy

Γ(k)
, y > 0.

Definition 4.9. We say that a random variable Y has an Erlang mixture distribution
with parameters π = (π1, π2, . . .) for πk ≥ 0,

∑∞
k=1 πk = 1, and η > 0 (we write

Y ∼ ErM(π, η)) if its density function is

fY (y) =

∞∑
k=1

πkfE(y; k, η), y > 0,

where fE(y; k, η) is the density function a random variable with Erlang distribution of
parameters k and η.

The next proposition shows that ErM distributions are dense in the space of conti-
nuous distributions having support in [0,∞). For a proof of this result see [14].

Proposition 4.10. Let F be a distribution function with support in [0,∞). Let {Fn}n≥1
be a sequence of distribution functions defined by

Fn(x) :=

∞∑
m=1

πm,nFE(x;m,n),

where FE(x;m,n) is the Erlang distribution function with parameters (m,n) evaluated
in x ∈ R and

πm,n = F (
m

n
)− F (

m− 1

n
).

Then
lim
n→∞

Fn(x) = F (x).

If F has bounded support, then convergence is uniform.

On the other hand, let {Xt}t≥0 be a Markov jump process (MJP) (for details of
MJP see [4]) with finite-state space E = {1, 2, . . . , n, n + 1}, initial distribution ω =
(ω1, ω2, . . . , ωn+1),

∑n
k=1 ωk = 1, and intensity matrix Λ. If we assume that the state

{n+ 1} is the unique absorbing state, then the infinitesimal generator has the following
structure

Λ =

(
Q r
0 0

)
,

where Q (phase-type generator or subintensity matrix) is a square matrix of order n,
r = −Qe (exit vector) (e is a n-dimensional colum vector of ones) and 0 is a row vector
of dimension n with all its entries zero.
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Definition 4.11. Let Y be the random variable which models the time it takes for the
process {Xt}t≥0 to reach the absorbing state {n+ 1}, i. e.

Y := inf{t ≥ 0;Xt = n+ 1},

we say that Y has PH distribution with initial distribution ω = (ω1, ω2, . . . , ωn) and
subintensity matrix Q. We write Y ∼ PH(ω,Q).

Proposition 4.12. Phase-type distribution forming a dense class of distribution within
the class of distributions on [0,∞) .

For a proof of Proposition 4.12 see [4].

Corollary 4.13. If Y ∼ ErM(π, η) with
∑n
k=1 πk = 1, then Y has a PH distribution

with representation ω = (ω1,ω2, . . . ,ωn) where ωk is a row vector of dimension k with
the first enter equals to πk and all others entries zero and

Q =



−η 0 0 0 0 0 0 0 · · ·
0 −η η 0 0 0 0 0 · · ·
0 0 −η 0 0 0 0 0 · · ·
0 0 0 −η η 0 0 0 · · ·
0 0 0 0 −η η 0 0 · · ·
0 0 0 0 0 −η 0 0 · · ·
0 0 0 0 0 0 −η η · · ·
...

...
...

...
...

...
. . .

. . .
. . .

· · · · · · · · · · · · · · · · · · · · · · · · −η


is a square matrix of order n(n+1)

2 .

The next proposition gives an analytic solution of the ruin probability (2) when the
claim sizes are distributed PH.

Proposition 4.14. Let C be the surplus process (1) where c = 1 and the claim sizes
Yi ∼ PH(ω,Q), then the ruin probability is

ψ(u) = γe(Q+rγ)ue,

where γ = λωQ−1.

For a proof of Proposition 4.14 see [2].

4.2.2. Method to approximate the ruin probability using the continuity of Theorem
4.2

Since the ruin probability (2) can be calculated if the claim sizes have PH distribution
(see Proposition 4.14), we can find the phase-type representation of an Erlang mixture
distribution (see Corollary 4.13) and if Y is a random variable with support in [0,∞)
there is a succession of Erlang mixture distribution that converges to Y in distribution
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(see Proposition 4.10). Then, based on Theorem 4.2, we propose the algorithm following
to approximate the ruin probability (2) for any distribution of the claim sizes.

Let C be the surplus process (1) where F is the distribution function of the claim sizes
{Yi}i≥1. Let {Fn}n=1 be the succession of distribution functions such that limn→∞Fn(x) =
F (x) (see Proposition 4.10).

Definition 4.15. Given ε > 0, we define the finite sequence {Fn,k}kn=1 by

Fn,k(x) :=

k∑
m=1

πm,nFE(x;m,n),

where πm,n := F (mn )− F (m−1n ), and k ∈ N such that 1−
∑k
m=1 πm,n,k < ε. Moreover,

we define πn,k := (π1,n, π2,n, . . . , πk,n).

The algorithm to approximate to ruin probability (2) works as follows.

Algorithm 1 Approximation of ruin probability

1: Choose ε > 0.
2: Find n ∈ N such that Fn(x) ≈ F (x) for all x ∈ R, where Fn is the nth distribution

function of the Proposition 4.10. We calculate the percentiles of both distributions
and we choose the n such that 95% of the difference of the absolute value of the
percentiles is less than ε.

3: Find k ∈ N such that 1 −
∑k
m=1 πm,n < ε and that |µn,k − µ| < ε, where

µn,k := E[Yn,k] and Yn,k is the random variable with distribution function Fn,k
(see Definition 4.15).

4: Find the PH distribution (PH(ω,Q)) for the random variable with distribution
Fn,k, see Corollary 4.13.

5: ψ(u)
.
= γe(Q+rγ)ue, where γ and r are as in Proposition 4.14 and ω and Q are the

parameters of the Step 4.

4.3. Numerical examples

Example 4.16. Exponential distribution. Consider the surplus process (1) and we
suppose that the claim sizes have exponential distribution. In particular, Yi ∼ Exp(10)
(i ≥ 1), and u = λ = c = 1, then α = 0.1 .

To apply the Algorithm 1, if we choose, ε = 0.0001 then n = 142 (step 2) and the
approximation of ruin probability is 0.3309169. In this case, the exact ruin probability
is ψ(1) = 0.3310915. In Figure 4 the approximations to the ruin probability for n from
39 to 200 are plotted.



272 J. MARTÍNEZ SÁNCHEZ AND F. BALTAZAR-LARIOS

Fig. 4. The iterations from 39 to 200 of approximation values to ruin

probability when Yi ∼ Exp(10), u = λ = c = 1 and the true value

ψ(1) = 0.3310915.

On the other hand, in Figure 5 the approximations to the mean of claim sizes for n
from 39 to 200 are plotted.

Fig. 5. The iterations from 39 to 200 of approximation values to

mean of claim sizes when Yi ∼ Exp(10), µ = λ = c = 1 and the true

value α = 0.1.
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Example 4.17. Weibull distribution. We consider that the claim sizes have Weibull
distribution with parameters r, β > 0, i. e., the distribution function is given by FY (y) =
1 − e−(βy)r , y > 0. When 0 < r < 1 this distribution is heavy-tailed, the adjustment
does not exist coefficient and there is not known explicit formula for the ruin probability.
We consider the case when r = 0.5, β = 1, u = 10, λ = 0.5, c = 1.1 and then α = 0.9090.

In order to apply Algorithm 1 we chose ε = 0.001. We used the approximation of
Panjer (see [17]) as the exact value of this probability (ψp(10) = 0.7507). Table 4 shows
the first five approximations using Algorithm 1.

n k ψn(10) |ψn(10)− ψp(10)| µn |µn − µ|
1 39 1 0.2493 2.565646 0.565646
2 78 1 0.2493 2.209561 0.209561
3 116 0.8484282 0.0977282 2.096162 0.096162
4 155 0.7811964 0.0304964 2.04296 0.04296
5 194 0.75475 0.00405 2.011808 0.011808

Tab. 4. The first five approximation values to ruin probability when

Yi ∼ Weibull(0.5, 1), r = 0.5, β = 1, u = 10, λ = 0.5, c = 1.1, and initial

values k = number of phases.

5. CONCLUSIONS

In this paper, two new methods were proposed to approximate the ruin probability for
the Cramér-Lundberg model, under quite flexible assumptions of this model. Using the
properties of the contracting operators and the Banach’s Fixed-Point Theorem it was
possible to obtain a succession of iterative functions that approximate to this ruin pro-
bability very well. Another contribution is that we have been able to establish conditions
for the distribution of the claim sizes that guarantee the continuity of the ruin probability.
Particularly, we used the continuity of the ruin probability to propose the second method
of approximation in the Algorithm 1.

The numerical results support the theoretical results mentioned above. In the first
method, the proposed approximation for the ruin probability in the case where the
distribution of the claim sizes is exponential, using the iterative functions provided by
the Banach’s Fixed-Point Theorem, provide a fairly acceptable convergence, in addition,
the method we used is efficient regardless of the initial solution that we chose, i. e., if the
initial solution is very close (or far) from the analytical solution, the method converges
very fast (or very slow). One of the limitations of this method is that, in general, it is
not very easy to have an expression for the nth function in the Banach’s Fixed-Point
Theorem for some arbitrary distribution of claim size.

On the other hand, in order to use Theorem 4.2, a fairly efficient algorithm is pre-
sented. We presented examples of distributions of claim sizes with light and heavy-tailed.
Finally, these new methods are very easy to implement.
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A. APPENDIX

In this appendix Banach’s Fixed-Point Theorem is introduced.

Definition A.1. A fixed point of a function T : X → X is an element of X that is
mapped to itself by the function T , that is

Tx = x.

Definition A.2. Let (X, d) be a metric space. A mapping T : X → X is a contraction
on X if there exists a positive constant α < 1 such that d(Tx, Ty) ≤ αd(x, y) for all
x, y ∈ X.

Theorem A.3. Banach’s Fixed-Point Theorem. Let (X, d) be a complete metric space
and let T : X → X be a contraction on X. Then T has a unique fixed point x∗ ∈ X,
and limn→∞T

nx = x∗ for each x ∈ X, where Tnx = T (Tn−1x) = T (T (Tn−2x)) = · · · =
T (T · · · (Tx)) for n = 1, 2, . . . .

For a proof see [10].

B. APPENDIX

We will prove the statement of expression (12) by mathematical induction.

P r o o f . Base case: To obtaint ψ1 we apply the operator T defined in (8) to ψ0 = k,
then

ψ1(u) = Tψ0(u)

=
λ

c

(∫ ∞
u

e−βxdx+

∫ u

0

ke−βxdx

)
= α

(
k + e−βx − ke−βx

)
.

The last equality shows that the statement holds for n = 1, and u ≥ 0 (fixed) in
expression (12).

Inductive step: We suppose that expression (12) holds for n = m. Now we have

ψm+1(u) = Tψm(u)

=
λ

c

∫ u

0
[αmk + e−β(u−x)(α

m−1∑
j=0

(λ(u− x)/c)j

j!
− αnk

m−1∑
j=0

(β(u− x))j

j!
)]e−βxdx+

e−βu

β


= αm+1k + αe−βu

m∑
j=0

(λu/c)j

j!
− αne−βuk

m∑
j=0

(βu)j

j!

The last equality shows that the statement holds for n = m + 1, and u ≥ 0 (fixed) in
expression (12). �
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