Kybernetika 58 no. 2, 237-253, 2022

Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations

Ralph Gerard B. Sangalang, Diether Jhay S. Masangcay, Cleo Martin R. Torino and Diane Jelyn C. GutierrezDOI: 10.14736/kyb-2022-2-0237

Abstract:

A control system architecture design for an underwater ROV, primarily Class I - Pure Observation underwater ROV is presented in this paper. A non-linear plant model was designed using SolidWorks 3D modeling tool and is imported to MATLAB as a 3D model. The non-linear modeled plant is linearized using the MATLAB linear analysis toolbox to have a linear approximate model of the system. The authors designed controllers for the linear plant model of underwater ROV. PID controllers are utilized as a controller of the modeled plant. The PID tuning tools by MATLAB are utilized to tune the controller of the plant model of underwater ROV. The researchers test the control design of underwater ROV using MATLAB Simulink by analyzing the response of the system and troubleshoot the control design to achieve the objective parameters for the control design of underwater ROV.

Keywords:

modeling, control, underwater ROV, kinematics

Classification:

93D06

References:

  1. B. O. Arnesen, A. M. Lekkas and I. Schjølberg: 3D path following and tracking for an inspection class ROV. In: Proc. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers 2017, pp. 1-10.   DOI:10.1115/omae2017-61170
  2. F. A. Azis, M. S. M. Aras, M. Z. A. Rashid, M. N. Othman and S. S. Abdullah: Problem identification for underwater remotely operated vehicle (ROV): A case study. Procedia Engrg. 41 (2012), 554-560.   DOI:10.1016/j.proeng.2012.07.211
  3. I. Bayusari, A. M. Alfarino, H. Hikmarika, Z. Husin, S. Dwijayanti and B. Y. Suprapto: Position control system of autonomous underwater vehicle using PID controller. In: Proc. 2021 Eighth International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE 2021.   DOI:10.23919/eecsi53397.2021.9624231
  4. A. C. B. Chiella, C. H. F. dos Santos, L. R. H. Motta, J. G. Rauber and D. C. Diedrich: Control strategies applied to autonomous underwater vehicle for inspection of dams. In: Proc. 2012 Seventeenth International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE 2012, pp. 320-324.   DOI:10.1109/mmar.2012.6347898
  5. C. S. Chin: Systematic modeling and model-based simulation of a remotely operated vehicle using MATLAB and Simulink. Int. J. Model. Simul. Sci. Comput. 2 (2011), 4, 481-511.   DOI:10.1142/s1793962311000566
  6. Ch. Chin and M. Lau: Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control. J. Marine Sci. Appl. 11 (2012), 2, 150-163.   DOI:10.1007/s11804-012-1117-2
  7. S. Cohan: Trends in ROV development. Marine Technol. Soc. J. 42 (2002), 38-43.   DOI:10.4031/002533208786861335
  8. T. I. Fossen and O. E. Fjellstad: Nonlinear modelling of marine vehicles in 6 degrees of freedom. Math. Modell. Systems 1 (1995), 17-27.   DOI:10.1080/13873959508837004
  9. L. G. García-Valdovinos, T. Salgado-Jiménez, M. Bandala-Sánchez, L. Nava-Balanzar, R. Hernández-Alvarado and J. A. Cruz-Ledesma: Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Advanced Robotic Systems 11 (2014), 1.   DOI:10.5772/56810
  10. Hydromechanics Subcommittee:     CrossRef
  11. P. Jagtap, P. Raut, P. Kumar, A. Gupta, N. M. Singh and F. Kazi: Control of autonomous underwater vehicle using reduced order model predictive control in three dimensional space. IFAC - PapersOnLine 49 (2016), 1, 772-777.   DOI:10.1016/j.ifacol.2016.03.150
  12. M. H. Khodayari and S. Balochian: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Marine Sci. Technol. 20 (2015), 3, 559-578.   DOI:10.1007/s00773-015-0312-7
  13. K. D. Le, H. D. Nguyen and D. Ranmuthugala: Development and control of a low-cost, three-thruster, remotely operated underwater vehicle. Int. J. Automat. Technol. 9 (2015), 1, 67-75.   DOI:10.20965/ijat.2015.p0067
  14. A. Marzbanrad, J. Sharafi, M. Eghtesad and R. Kamali: Design, construction and control of a remotely operated vehicle (ROV). In: Proc. ASME 2011 International Mechanical Engineering Congress and Exposition, volume 7, ASMEDC 2011.   DOI:10.1115/imece2011-65645
  15. S. Rasa and R. Vasquez: Development of a low-level control system for the ROV visor3. Int. J. Navigat. Observ. (2016), 1-12.   DOI:10.1155/2016/8029124
  16. F. Song, P. E. An and A. Folleco: Modeling and simulation of autonomous underwater vehicles: Design and implementation. IEEE J. Oceanic Engrg. 28 (2003), 283-296.   DOI:10.1109/joe.2003.811893
  17. S. Vahid and K. Javanmard: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via PPD controller with state feedback. Int. J. Coastal Offshore Engrg. 4 (2016).   CrossRef