Kybernetika 58 no. 2, 218-236, 2022

Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances

Zhaoxu Wang, Chao Zhai, Hehong Zhang, Gaoxi Xiao, Guanghou Chen and Yulin XuDOI: 10.14736/kyb-2022-2-0218


In this work, we study coordination control and effective deployment of thyristor-controlled series compensation (TCSC) to protect power grids against disruptive disturbances. The power grid consists of flexible alternate current transmission systems (FACTS) devices for regulating power flow, phasor measurement units (PMUs) for detecting system states, and control station for generating the regulation signals. We propose a novel coordination control approach of TCSC devices to change branch impedance and regulate the power flow against unexpected disturbances on buses or branches. More significantly, a numerical method is developed to estimate a gradient vector for generating regulation signals of TCSC devices and reducing computational costs. To describe the degree of power system stress, a performance index is designed based on the error between the desired power flow and actual values. Moreover, technical analysis is presented to ensure the convergence of the proposed coordination control algorithm. Numerical simulations are implemented to substantiate that the coordination control approach can effectively alleviate the stress caused by contingencies on IEEE 24 bus system, as compared to the classic PID control. It is also demonstrated that the deployment of TCSCs can alleviate the system stress greatly by considering both impedance magnitude and active power on branches.


coordination control, power systems, thyristor-controlled series compensation(TCSC), disruptive disturbances


  1. M. Begovic, D. Novosel, D. Karlsson, C. Henvill and G. Michel: Wide-area protection and emergency control. Proc. T. IEEE 93 (2005), 876-891.   DOI:10.1109/JPROC.2005.847258
  2. R. Bi, T. Lin, R. Chen, J. Ye, X. Zhou and X. Xu: Alleviation of post-contingency overloads by SOCP based corrective control considering TCSC and MTDC. IET Gener. Transmiss. Distr. 12 (2018), 2155-2164.   DOI:10.1049/iet-gtd.2017.1393
  3. Z. Bie, Y. Lin, G. Li and F. Li: Battling the extreme: A study on the power system resilience. Proc. T. IEEE 105 (2017), 1253-1566.   DOI:10.1109/JPROC.2017.2679040
  4. S. Biswas and K. P. Nayak: A new approach for protecting TCSC compensated transmission lines connected to DFIG-based wind farm. IEEE Trans. Industr. Inform. 17 (2021), 5282-5291.   DOI:10.1109/TII.2020.3029201
  5. S. Bruno, G. De and M. La: Transmission grid control through TCSC dynamic series compensation. IEEE Trans. Power Syst. 31 (2016), 3202-3211.   DOI:10.1109/TPWRS.2015.2479089
  6. L. Chang, Y. Liu, Y. Jing, X. Chen and J. Qiu: Semi-globally practical finite-time ${H}_{\infty}$ control of TCSC model of power systems based on dynamic surface control. IEEE Access. 8 (2020), 10061-10069.   DOI:10.1109/ACCESS.2020.2964265
  7. Z. Chen and L. Shu: Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 123-144.   DOI:10.1155/2022/3436530
  8. Y. Chen, J. Wang, A. D. Domínguez-García and P. W. Sauer: Measurement-based estimation of the power flow Jacobian matrix. IEEE Trans. Smart Grid 7 (2015), 2507-2515.   DOI:10.1109/TSG.2015.2502484
  9. T. Duong, J. Yao and V. Truong: A new method for secured optimal power flow under normal and network contingencies via optimal location of TCSC. Int. J. Electr. Power Energy Syst. 52 (2013), 68-80.   DOI:10.1016/j.ijepes.2013.03.025
  10. V. Durković and A. Savić: ATC enhancement using TCSC device regarding uncertainty of realization one of two simultaneous transactions. Int. J. Electr Power Energy Syst. 115 (2020), 105497.   DOI:10.1016/j.ijepes.2019.105497
  11. A. Halder, N. Pal and D. Mondal: Transient stability analysis of a multimachine power system with TCSC controller - A zero dynamic design approach. Int. J. Electr Power Energy Syst. 97 (2018), 51-71.   DOI:10.1016/j.ijepes.2017.10.030
  12. S. Hameed, B. Das and V. Pant: A self-tuning fuzzy PI controller for TCSC to improve power system stability. Electr. Pow. Syst. Res. 78 (2008), 1726-1735.   DOI:10.1016/j.epsr.2008.03.005
  13. R. Hemmati, H. Faraji and Y. N. Beigvand: Multi objective control scheme on DFIG wind turbine integrated with energy storage system and FACTS devices: Steady-state and transient operation improvement. Int. J. Electr. Power Energy Syst. 135 (2022), 107519.   DOI:10.1016/j.ijepes.2021.107519
  14. J. Hu: On Robust Consensus of Multi-Agent Systems with Communication Delays Volume. Kybernetika 45 (2009), 768-784.   CrossRef
  15. J. Hu, G. Chen and H. Li: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643.   CrossRef
  16. Y. Liu, Q. Wu and X. Zhou: Coordinated switching controllers for transient stability of multi-machine power systems. IEEE Trans. Power Syst. 31 (2016), 3937-3949.   DOI:10.1109/TPWRS.2015.2495159
  17. Y. Luo, S. Zhao, D. Yang and H. Zhang: A new robust adaptive neural network backstepping control for single machine infinite power system with TCSC. IEEE/CAA J. Automat. Sinica 7 (2020), 48-56.   DOI:10.1109/JAS.2019.1911798
  18. H. Kumar and P. Singh: Coordinated control of TCSC and UPFC to aid damping oscillations in the power system. Int. J. Electron. 106 (2019), 1938-1963.   DOI:10.1080/00207217.2019.1636296
  19. T. Nguyen and F. Mohammadi: Optimal placement of TCSC for congestion management and power loss reduction using multi-objective genetic algorithm. Sustainability 12 (2020), 2813.   DOI:10.3390/su12072813
  20. M. Panteli and P. Mancarella: The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience. IEEE Pow. Energy Mag. 13 (2015), 58-66.   DOI:10.1109/MPE.2015.2397334
  21. T. Prakash, P. V. Singh and S. R. Mohanty: A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays. Int. J. Electr Power Energy Syst. 105 (2019), 131-141.   DOI:10.1016/j.ijepes.2018.08.014
  22. R. Rocchetta and E. Patelli: Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision. Int. J. Electr. Power Energy Syst. 98 (2018), 219-232.   DOI:10.1016/j.ijepes.2017.11.047
  23. A. Rosso, C. A. Canizares and V. M. Dona: A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 18 (2003), 1487-1496.   DOI:10.1109/TPWRS.2003.818703
  24. B. Shafik, H. Chen, I. Rashed and A. Sehiemy: Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access. 7 (2019), 36934-36947.   DOI:10.1109/ACCESS.2019.2905266
  25. V. Terzija, G. Valverde, D, Cai. P, Regulski, V. Madani, J. Fitch, S. Skok, M. Begovic and A. Phadke: Wide-area monitoring, protection, and control of future electric power networks. Proc. T. IEEE 99 (2011), 80-93.   DOI:10.1109/JPROC.2010.2060450
  26. J. Xu, R. Yao and F. Qiu: Mitigating cascading outages in severe weather using simulation-based optimization. IEEE Trans. Power Syst. 39 (2021), 204-213.   DOI:10.1109/tpwrs.2020.3008428
  27. C. Zhai, G. Xiao, M. Meng, H. Zhang and B. Li: Identification of catastrophic cascading failures in protected power grids using optimal control. J. Energ. Engrg. 147 (2021), 6020001.   DOI:10.1061/(ASCE)EY.1943-7897.0000731
  28. C. Zhai, G. Xiao, H. Zhang, P. Wang and T. Pan: Identifying disruptive contingencies for catastrophic cascading failures in power systems. Int. J. Electr. Power Energy Syst. 123 (2020), 106214.   DOI:10.1016/j.ijepes.2020.106214
  29. C. Zhai and Y. Hong: Decentralized sweep coverage algorithm for multi-agent systems with workload uncertainties. Automatica 49 (2013), 2154-2159.   DOI:10.1016/j.automatica.2013.03.017
  30. C. Zhai, G. Xiao, H. Zhang and T. Pan: Cooperative control of TCSC to relieve the stress of cyber-physical power system. In: International Conference on Control, Automation, Robotics and Vision 2018, pp. 4849-4854.   DOI:10.1186/s13662-018-1910-6
  31. C. Zhai, H. Zhang, G. Xiao and T. Pan: A model predictive approach to protect power systems against cascading blackouts. Int. J. Electr. Power Energy Syst. 113 (2019), 310-321.   DOI:10.1016/j.ijepes.2019.05.029
  32. C. Zhang, X. Wang, Z. Ming, Z. Cai and H. Linh: Enhanced nonlinear robust control for TCSC in power system. Math. Probl. Eng. 2018 (2018), 1416059.   DOI:10.1155/2018/3495096