Kybernetika 58 no. 1, 43-63, 2022

On the T-conditionality of T-power based implications

Zuming PengDOI: 10.14736/kyb-2022-1-0043

Abstract:

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^{T}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^{T}$ is $T^{\ast}$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^{\ast}$ such that the power based implication $I^{T}$ is $T^{\ast}$-conditional.

Keywords:

t-norms, $T$-power based implications, $T$-conditionality, generalized modus ponens

Classification:

03E72, 03B52

References:

  1. C. Alsina and E. Trillas: When ($S, N$)-implications are ($T , T_{1}$)-conditional functions ?. Fuzzy Sets Systems 134 (2003), 305-310.   DOI:10.1016/S0165-0114(02)00178-1
  2. M. Baczyński, P. Grzegorzewski, R. Mesiar, P. Helbin and W. Niemyska: Fuzzy implications based on semicopulas. Fuzzy Sets Systems 323 (2017), 138-151.   DOI:10.1016/j.fss.2016.09.009
  3. M. Baczyński and B. Jayaram: Fuzzy Implications, Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg 2008.   CrossRef
  4. B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg 2013.   CrossRef
  5. H. Bustince, M. Pagola and E. Barrenechea: Construction of fuzzy indices from fuzzy DI-subsethood measures: application to the global comparison of images. Inform. Sci. 177 (2007), 906-929.   DOI:10.1016/j.ins.2006.07.021
  6. R. M. Clouaire: A fast generalized modus ponens. BUSEFAL 18 (1984), 75-82.   DOI:10.5107/sccj.18.75
  7. D. Driankov, H. Hellendoorn and M. Reinfrank: An Introduction to Fuzzy Control. Springer, Berlin, Heidelberg 1993.   CrossRef
  8. J. C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support, Theory and Decision Library, Serie D: System Theory, Knowledge Engineering and Problem Solving. Kluwer Academic Publishers, Dordrecht 1994.   CrossRef
  9. P. Grzegorzewski: Probabilistic implications. Fuzzy Sets Systems 226 (2013), 53-66.   DOI:10.1016/j.fss.2013.01.003
  10. H. Hellendoorn: The generalized modus ponens considered as a fuzzy relation. Fuzzy Sets and Systems 46 (1992), 29-48.   DOI:10.1016/0165-0114(92)90264-5
  11. P. Hilletofth, M. Sequeira and A. Adlemo: Three novel fuzzy logic concepts applied to reshoring decision-making. Expert Systems Appl. 126 (2019), 133-143.   DOI:10.1016/j.eswa.2019.02.018
  12. J. Ivánek: Selection and correction of weighted rules based on lukasiewicz's fuzzy logic with evaluated syntax. Kybernetika 53 (2017), 113-128.   DOI:10.5771/0023-5652-2017-191-113
  13. E. Kerre and M. Nachtegael: Fuzzy Techniques in Image Processing. Springer, New York 2000.   CrossRef
  14. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.   CrossRef
  15. A. Kolesárová, S. Massanet, R. Mesiar, J. V. Riera and J. Torrens: Polynomial constructions of fuzzy implication functions: The quadratic case. Inform. Sci. 494 (2019), 60-79.   DOI:10.1016/j.ins.2019.04.040
  16. W. H. Li, F. Qin and A. F. Xie: Modus Ponens property of $T$-power based implications. Fuzzy Sets Systems 431 (2022), 129-142.   DOI:10.1016/j.fss.2021.08.006
  17. M. Mas, M. Monserrat and J. Torrens: Modus Ponens and Modus Tollens in discrete implications. Int. J. Approx. Reasoning 49 (2008), 422-435.   DOI:10.1016/j.ijar.2008.04.002
  18. S. Massanet, J. Recasens and J. Torrens: Fuzzy implication functions based on powers of continuous t-norms. Int. J. Approx. Reasoning 83 (2017), 265-279.   DOI:10.1016/j.ijar.2017.01.014
  19. S. Massanet, J. Recasens and J. Torrens: Corrigendum to "Fuzzy implication functions based on powers of continuous t-norms" [Int. J. Approx. Reason. 83 (2017) 265-279]. Int. J. Approx. Reasoning 104 (2019), 144-147.   DOI:10.1016/j.ijar.2018.11.008
  20. S. Massanet, J. Recasens and J. Torrens: Some characterizations of $T$-power based implications. Fuzzy Sets Systems 359 (2019), 42-62.   DOI:10.1016/j.fss.2018.08.007
  21. M. Mizumoto and H. J. Zimmermann: Comparison of fuzzy reasoning methods. Fuzzy Sets Systtems 8 (1982), 253-283.   DOI:10.1016/S0165-0114(82)80004-3
  22. R. F. Peralta, S. Massanet and A. Mir: On strict $T$-power invariant implications: Properties and intersections. Fuzzy Sets Systems 423 (2021), 1-28.   DOI:10.1016/j.fss.2020.09.003
  23. Z. Peng: A new family of (A, N)-implications: construction and properties. Iranian J. Fuzzy Systems 17 (2020), 2, 129-145.   CrossRef
  24. Z. Peng: The study on semicopula based implications. Kybernetika 56 (2020), 4, 662-694.   DOI:10.14736/kyb-2020-4-0662
  25. M. Pota, M. Esposito and G. D. Pietro: Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers. International Journal of Approximate Reasoning 93 (2018) 88-102.   DOI:10.1016/j.ijar.2017.10.022
  26. A. Pradera, S. Massanet, D. Ruiz and J. Torrens: On the use of conjunctors with a neutral element in the modus ponens inequality. Int. J. Comput. Intell. Systems 13 (2020), 1, 201-211.   DOI:10.2991/ijcis.d.200205.002
  27. E. Trillas, C. Alsina and A. Pradera: On MPT-implication functions for fuzzy logic. Rev. R. Acad. Cienc. Ser. A. Mat. (RACSAM) 98 (2004), 1, 259-271.   CrossRef
  28. E. Trillas, C. Alsina, E. Renedo and A. Pradera: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Systems 20 (2005), 313-326.   DOI:10.1002/int.20068
  29. E. Trillas and L. Valverde: On implication and indistinguishability in the setting of fuzzy logic. Read. Fuzzy Sets Intell. Systems (1993), 97-104.   DOI:10.1016/b978-1-4832-1450-4.50013-4
  30. R. R. Yager: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193-216.   DOI:10.1016/j.ins.2003.04.001
  31. P. Yan and G. Chen: Discovering a cover set of ARsi with hierarchy from quantitative databases. Inform. Sci. 173 (2005), 319-336.   DOI:10.1016/j.ins.2005.03.003
  32. L. A. Zadeh: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernet. 3 (1973), 28-44.   DOI:10.1109/TSMC.1973.5408575