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DISTRIBUTED AGGREGATIVE OPTIMIZATION
WITH QUANTIZED COMMUNICATION

Ziqin Chen and Shu Liang

In this paper, we focus on an aggregative optimization problem under the communication
bottleneck. The aggregative optimization is to minimize the sum of local cost functions. Each
cost function depends on not only local state variables but also the sum of functions of global
state variables. The goal is to solve the aggregative optimization problem through distributed
computation and local efficient communication over a network of agents without a central
coordinator. Using the variable tracking method to seek the global state variables and the
quantization scheme to reduce the communication cost spent in the optimization process, we
develop a novel distributed quantized algorithm, called D-QAGT, to track the optimal variables
with finite bits communication. Although quantization may lose transmitting information, our
algorithm can still achieve the exact optimal solution with linear convergence rate. Simulation
experiments on an optimal placement problem is carried out to verify the correctness of the
theoretical results.

Keywords: distributed aggregative optimization, multi-agent network, quantized commu-
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1. INTRODUCTION

Distributed optimization has gained much research attention due to its wide appli-
cations in multi-agent network systems, such as resource allocation [12, 28], machine
learning [18, 25] and cloud computing [1]. In distributed optimization, each agent only
uses local data and transmits information with its neighbors to minimize a global cost
function cooperatively. To solve it, many efficient algorithms have been proposed,
such as consensus-based algorithms [3, 4, 19, 24, 29] and dual-decomposition-based al-
gorithms [8, 11,22,26].

However, when the number of agents grows, neighboring communication is much
slower than computation, which induces a bottleneck to run the above distributed opti-
mization algorithm [10]. Therefore, developing communication-efficient algorithms be-
comes a new research hotspot. Quantization techniques aim to compress information by
reducing the number of bits per communication, and have been successfully applied to
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several large-scale engineering tasks recently [15, 17]. With regards to distributed opti-
mization problems, the static quantization method has been utilized in [20, 31], which
find the optimal solution with some fixed error bound. For removing the quantization er-
rors, the 3-bit dynamic quantization method with an adjustable quantization level was
developed in [27]. It enables distributed quantized subgradient algorithms to achieve
the exact optimal solution. After that, various distributed quantized optimization al-
gorithms have arisen, including distributed alternating direction method of multipliers
with dynamic quantization methods [16], distributed quantized gradient tracking al-
gorithms [9] and distributed subgradient descent algorithms with amplified-differential
compression methods [30].

It should be noted that the local cost function studied in the aforementioned works
only depends on its own state variable, like the form as fi(xi) associated with inequality
constraints xi = xj , i 6= j. However, in many practical applications, such as the multi-
agent formation control, optimal placement problems and transportation networks, local
cost functions fi are not only determined by its own variable xi but also influenced by any
other agents’ variables xj . Hence, a novel framework for distributed optimization, called
aggregative optimization, was investigated in [2, 13, 14]. The form of the aggregative
optimization is often described as follows,

min
x∈RNn

f(x) :=

N∑
i=1

fi (xi, χ(x)) ,

χ(x) :=

∑N
i=1 gi (xi)

N
,

(1)

where x = [xi]i∈{1,...,N} is the global state variable with the local state variable xi ∈ Rn.
The term χ(x) : RNn → Rr is an aggregative variables associated with all agent’s
state variables. In the distributed aggregative optimization, the local cost function
fi (xi, χ(x)) : RNn → R and gi(xi) : Rn → Rr are only privately known by agent i.

For solving the problem (1), the related work [14] proposes the distributed aggregative
gradient tracking (D-AGT) algorithm with infinity precision communication. However,
in many complex and harsh environments, the existence of communication data rate
bottleneck causes that the D-AGT algorithm can not be directly applied. So far as
we know, the main difficulties of distributed aggregative optimization with quantized
communication may lie in the following three points: i) Each local cost function fi
depends on aggregative variables χ(x), while the gobal aggregative variables and their
gradient can not be access to any individual agent i. ii) Only finite bits quantized vari-
ables are transmitted between neighboring agents, and it further provides less available
information for each agent i. iii) Quantization introduces noise to algorithm updates
and thus deteriorates convergence in general. Based on these difficulties, the distributed
quantized algorithm for solving aggregative optimization in (1) has not been proposed.
Motivated by the above facts, the contributions of this paper are summarized as follows.

• This paper studies distributed aggregative optimization problem (1). Particularly,
the local cost function of each agent depends both on its own variable and the
aggregative variable, which is the global information that any individual agent can
not know. This problem can cover much transitional optimization problems in [1,
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4, 18, 19, 24, 28, 29]. Meanwhile, the communication bottleneck is also considered.
The only finite number of bits are allowed to interact between the neighboring
agents, making it possible to employ the practical bandwidth constraints situation
rather than just the infinity communication [2, 13,14].

• Based on the classical gradient descent algorithm and the quantized technique,
we propose a distributed quantized aggregative gradient tracking (D-QAGT) algo-
rithm for solving the problem (1). The novel algorithm uses the variable tracking
method to estimate the global aggregative term and its corresponding gradient
such that it can converge to the optimal solution at the linear convergence rate.
Furthermore, the proposed D-QAGT is a communication-efficient algorithm that
significantly saving in the communication overhead.

• A practical optimal placement problem is used in simulation to demonstrate the
convergence of the D-QAGT algorithm. Numerical tests show that under 5-bits
transmission in each communication step, the proposed D-QAGT algorithm could
keep the same linear convergence with the D-AGT algorithm in [14], which utilizes
infinity precision communication.

This paper is organized as follows. Section 2 introduces some related preliminaries on
basic notations, graph theory and formulates the distributed aggregative optimization
problem via two examples. Second 3 provides the proposed distributed algorithm and
analyzes its convergence performance. Then, Section 4 gives a numerical experiment
and Section 5 concludes the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Basic notations and notions

Denote by Rn the set of real vectors with n-dimension, Rn+ the set of vectors with
nonnegative coordinates of n-dimension and Rn×m the set of real matrices with n-rows
and m-columns. Denote by N an integer set. Let ‖ · ‖ and ⊗ be the standard Euclidean
norm and the Kronecker product, respectively. Denote by 1N and 0N the column vectors
of N dimension with all entries being 1 and 0, respectively. Let In be the compatible
identity matrix with dimension n. For any vector x, y ∈ Rn, let xT be the transpose of
x. Denote by [xi]i∈Ω the column vector by stacking up xi associated with i ∈ Ω. For
any square matrix H, denote by ρ(H) the spectral radius.

For a differentiable function f(x) : Rn → R, its gradient∇xf(x) = col{ ∂f∂xi
}i∈{1,...,n} ∈

Rn. We say that a function f is µ-strongly convex for µ > 0 if for any x, y ∈ Rn,
f(y) ≥ f(x)+〈∇f(x), y−x〉+ µ

2 ‖x−y‖
2, a function f is m-Lipschitz if ‖∇xf(x)‖ ≤ m, a

function f is l-smooth for any l > 0 if for any x, y ∈ Rn, ‖∇xf(x)−∇yf(y)‖2 ≤ l‖x−y‖2
and a function f(x) is radially unbounded on Rn if for every xn ∈ Rn such that
‖xn‖ → ∞, we also have f(xn)→∞.

2.2. Graph theory

A directed and strongly connected graph of a multi-agent system is denoted by G =
(E ,V), where the node set V = {1, . . . , N} and the edge set E ⊆ V × V. (j, i) ∈ E with
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i 6= j means that agent j can sent information to i. Denote Ni = {j ∈ V : (j, i) ∈ E}
is the neighbor set of agent i. The adjacency matrix A = (aij) ∈ RN×N is defined by
aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. Let di = |Ni| denote the degree of node i
and D be the N ×N diagonal matrix such that Dii = di. Then, the Laplacian matrix is
denoted by LG = D−A. It is necessary to display the following assumption and lemma.

Assumption 1. The graph G is directed and strongly connected, and the adjacency
matrix A ∈ RN×N is doubly stochastic, i.e, 1TNA = 1TN and A1N = 1N .

Lemma 2.1. Horn et al. [7] Under Assumption 1, the following properties hold.

i) (A⊗ In)( 1
N 1N1TN ⊗ In) = ( 1

N 1N1TN ⊗ In)(A⊗ In) = 1
N 1N1TN ⊗ In.

ii) ‖A− 1
N 1N1TN‖ < 1.

iii) ‖A− IN‖ ≤ 2.

iv) ‖(A⊗ In)x− ( 1
N 1N1TN ⊗ In)x‖ ≤ ‖A− 1

N 1N1TN‖‖x− ( 1
N 1N1TN ⊗ In)x‖.

2.3. Problem formulations

For aggregative optimization problem (1), the goal of the agents is to collectively seek
an optimal solution of the global function, which is the sum of the local cost functions.
It is different from the aggregative game [5, 6], where each agent selfishly minimizes its
own local cost function. In the most situation, the global performance of (1) may be
better than that of the aggregative game, which is illustrated by the following example.

Example 1. (Bandwidth sharing problem) Consider N users in the bandwidth sharing
problem, in which each user wants to have part of a shared resource. Assume that the
maximum capacity of a shared channel says 1 and the strategy of each user i, i ∈ {V} is
to send xi units of flow along the channel for some value xi ∈ [0, 1]. If the total bandwidth∑N
i=1 xi ≥ 1, no user gets any benefit. If

∑N
i=1 xi < 1, then the local payoff function of

each user i is fi(xi, χ(x)) = xi(1−χ(x)) with χ(x) =
∑
j∈N xj . Based on [23], when each

user selfishly maximizes its own payoff, the optimal strategy for user i, i ∈ {1, . . . , N}
is x∗i = 1/(N + 1). Thus, the Nash equilibrium is [1/(N + 1); . . . ; 1/(N + 1)]. In this
aggregative game, the local payoff of each user i is fi = (1/(N + 1))2 and the global

payoff is
∑N
i=1 fi = N/(N + 1)2.

However, If all users cooperate to maximize the global payoff function, the optimal
solution is computed as x∗ = [1/2N ; . . . ; 1/2N ]. In this setting, the local payoff of

each user i is fi = 1/4N and the global payoff is
∑N
i=1 fi = 1/4 > N/(N + 1)2. This

example indicates that all agents will perform better in a cooperative manner compared
with the aggregative game in a noncooperative manner, which motivates us to study the
aggregative optimization as (1).

Note that in the cooperation process among agents, neighboring infinite precision
communication often incurs expensive communication overheads. In order to solve (1)
with the cost of all communications as low as possible, we adopt quantized communi-
cation. The main idea of quantization is to map the input data to a countable set of
code values. More specifically, we use a simple yet effective uniform quantizer to divide
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the input domain into the same size quantization cells, in which a unique code value
represents all elements within a cell. For a pair of (j, i) ∈ E , agent j transmits this
code value to its neighbors i, and the agents i recovers the state of agent j based on
the received code value. To illustrate the problem (1) with quantized communication
better, we present the following optimal placement example.

Example 2. (Optimal placement problem) Consider N agents to protect a target
at position p0 ∈ R2

+. We hope that some weighted center of all agents could track
the target p0. Denote the position of agent i by xi ∈ R2

+ and the weight center of

all agents by χ(x) =
∑N
i=1

√
Nx2

i /N . Then the problem is cast as problem (1) with∑N
i=1 fi(xi, χ(x)) =

∑N
i=1 αi‖χ(x)− p0‖2, where αi > 0 is the weight constant.

In the distributed framework, χ(x) is the global information and cannot be known
directly for all agents. Hence, χi ∈ R2, i ∈ {1, . . . , N} is leveraged for each agent i to
track the χ(x), and χi need to be interacted between neighbors over network graph G.
However, transmitting χi would consume amount of bandwidth resource, so we quantize
χi before transmitting it. Particularly, by using quantizer Q(·), each coordinate of real
value χi is mapped into a countable set of code values. i. e., Q(χi) : R2

+ → N2
+. Then

agent i just transmits the code of quantized message Q(χi) rather than that of the raw
vectors χi so as to the reduction of communication cost. More details on the design of
the quantization scheme will be given subsequently.

To move forward, we define f(x, z) =
∑N
i=1 fi(xi, zi) : RNn+Nr → R for any

x = [xi]i∈V ∈ RNn and z = [zi]i∈V ∈ RNr. The gradients of f(x, z) is defined by
∇xf(x, z) = [∇xifi(xi, zi)]i∈V and ∇zf(x, z) = [∇zifi(xi, zi)]i∈V , respectively. We
make the following necessary assumption.

Assumption 2. The functions arisen in (1) satisfy

i) The cost function f is differentiable, µ-strongly convex and locally l1-smooth.

ii) ∇zf(x, z) is locally l2-Lipschitz continuous.

iii) For all i ∈ V, gi(xi) are differentiable and ∇xi
gi(xi) ∈ Rn×r is locally bounded,

i. e., ‖∇xi
gi(xi)‖ ≤ l3

N for some positive l3.

Note that Property i) means that ∇f and

∇xf(x, z) +∇xg(x)1N ⊗
1

N

N∑
i=1

∇zifi(xi, zi), (2)

are locally l1-Lipschitz continuous with g(x) = [gi(xi)]i∈V : RNn → RNr. At the same
time, Property iii) ensures that ‖∇xg(x)‖ ≤ l3.

3. MAIN RESULT

In this section, we present the design of distributed quantized algorithm and give its
convergence analysis.
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3.1. Distributed quantized algorithm design

For solving the problem (1), each agent j, j ∈ V holds two states χj ∈ Rr and yj ∈ Rr

to track the average χ(x) and the gradient sum 1
N

∑N
j=1∇χfj(xj , χ(x)), respectively.

Meanwhile, each agent quantizes χj and yj for the information interaction. Thus, each
agent is associated with an encoder and its neighbors possess the corresponding decoder.
Firstly, the uniform quantizer q(·) installed in the encoder is introduced as follows.

Quantizer: A uniform quantizer is described by the function q(·) : R→ N, in which

q(x) =


0, if − 1

2 ≤ x ≤
1
2 ,

i, if 2i−1
2 < x ≤ 2i+1

2 , i = 1, . . . , L,

L, if x > 2L+1
2 ,

−q(−x), if x < − 1
2 .

(3)

At each time instant, the encoder outputs one symbol from a finite and possibly set Sk
to the neighbors. Then, the data rate is defined as follows.

Definition 3.1. The communication data rate to quantify the information rate at which
the channel supports is defined in the asymptotically average sense

R = lim inf
k→∞

1

k

k∑
j=1

log2 (|Sj |) (4)

where |Sj | denotes the cardinality of set Sj .

In practice, it is not necessary to transmit any information when the output of the
quantizer is zero, thus, the communication process of each agent is required to transmit
dlog2 (|Sj |)e = dlog2(2L)e bits at most for the above 2L+ 1-level quantizer (3).

Next, we design an encoder-decoder scheme for each pair of agents (j, i), j ∈ Ni.
For clarify, define Q(a) = [q(ai)]i∈{1,...,N} ∈ RN for the vector a = [ai]i∈{1,...,N} ∈ RN .
Agent j quantizes its states χj and yj , then transmits the code of Q(χj) and Q(yj) to
its neighbors i. Agent i receives the code of Q(χj) and Q(yj) and estimates the states
of agent j denoted by χ̂j and ŷj , j ∈ Ni.

Remark 3.2. In the dynamic quantized control, the scaling function represents the
quantized precision and is designed as a decaying sequence to adaptively adjust the
encoder. For convergence analysis of the proposed algorithm, the scaling function must
be designed carefully such that the agents gradually increase the accuracy of states
recovery of its neighbors and the quantization error gradually decays to zero. Noted
that for different agent i, the scaling function li(k) can be designed differently, which
is only needed to satisfy (5) and (15). It does not bring additional difficulty in the
convergence analysis of our algorithm, but it causes the notation to be much more
complicated. For clarity, we use an unified notation l(k) for different agent i. For much
same reason, we also use the l(k) instead of lχj (k) or lyj (k) for vectors χj or yj .
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Encoder: The encoder is installed in agent j, j ∈ V.

Agent j generates r-dimensional quantized outputs sχj(k) and syj(k), and then transmits
them to neighbors i for any k ∈ N,

sχj(0) = Q

(
χj(0)

l(0)

)
, syj(0) = Q

(
yj(0)

l(0)

)
, l(k) = l(0)γk, (5)

sχj(k + 1) := Q

(
χj(k + 1)− χ̂j(k)

l(k + 1)

)
, (6)

syj(k + 1) := Q

(
yj(k + 1)− ŷj(k)

l(k + 1)

)
, (7)

where l(k) is the decaying scaling function with any positive initial constant l(0) > 0. The
rate of the scaling function γ is given in the following (15).

Decoder: The decoder is installed in agent i, j ∈ Ni.

Agent i receives r-dimensional quantized outputs sχj(k) and syj(k) from its neighbors
j, j ∈ Ni, and then recovers its neighbors’ states χ̂j and ŷj as follows,

χ̂j(0) = l(0)sχj(0), ŷj(0) = l(0)syj(0), (8)

χ̂j(k + 1) = l(k + 1)sχj(k + 1) + χ̂j(k), (9)

ŷj(k + 1) = l(k + 1)syj(k + 1) + ŷj(k), k ∈ N, (10)

where the design of l(k) is the same as the encoder.

Tab. 1. Dataset Similarity Measurement Based on Euclidean

Distance.

Agent i receives quantized outputs sχj and syj from its neighbors j, and then esti-
mates its neighbors’s states through a decoder defined as follows.

Based on the quantized communication associated with the above encoder-decoder
pair, for i ∈ V, the ith agent updates its real-valued state xi ∈ Rn via the following
distributed quantized algorithm.

It should be noted that the Q-DAGT algorithm combines the classical gradient
descent algorithm, the variables tracking techniques and quantization communication
methods. It is the first proposed to solve the aggregative network optimization problem
with the communication bottleneck.

Remark 3.3. Compared with the existed D-AGT algorithm in [14], in which the actual
neighbors’ states of χj and yj , j ∈ Ni are needed, our D-QAGT algorithm just relies on
the quantized communication via using the estimated neighbors’ states χ̂j and ŷj , j ∈
Ni. These estimated states come from discrete-time communication with finite bits
at each round of communication. Regarding this fact, the D-QAGT algorithm can
significantly save the communication resources and resolve a finite bandwidth bottleneck,
which broadens the range of applications of the D-AGT algorithm.
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Algorithm 1: Distributed Quantized Aggregative Gradient Tracking (D-QAGT)

For any k ∈ N, each agent i, i ∈ V updates its states xi, χi and yi as follows,

xi(k + 1) =xi(k)− α [∇xifi(xi(k), χi(k)) +∇xigi(xi(k))yi(k)] , (11)

χi(k + 1)=

N∑
j=1

aijχ̂j(k) + gi(xi(k + 1))− gi(xi(k)) + χi(k)− χ̂i(k), (12)

yi(k + 1)=
N∑
j=1

aij ŷj(k)+∇χifi(xi(k+1), χi(k+1))−∇χifi(xi(k), χi(k))+yi(k)−ŷi(k),(13)

where the stepsize α is given in the following (14).

The parameters in Algorithm 1 and Encoder-Decoder scheme are chosen as follows.

• The initial states xi(0), χi(0) and yi(0) satisfy

i) ‖xi(0)− x∗‖∞ ≤ c0.
ii) χi(0) = gi(xi(0)) and ‖χi(0)‖∞ ≤ c1.
iii) yi(0) = ∇χi

fi(xi(0), χi(0)) and ‖yi(0)‖∞ ≤ c2.

• The stepsize α satisfies

α ∈
(

0,
µ(1− κ)2

l3(µ+ l1 + l2l3)((1− κ)(l1 + l2 + l2l3) + 2l2l3)

)
, (14)

with the constant κ = ‖A− 1
N 1N1TN‖ < 1, which derived from Lemma 2.1.

• The rate of the scaling function γ satisfies

γ ∈ (ρ(H), 1) , (15)

where ρ(H) is the spectral radius of H(α) defined as

H(α) =

 (1− µα) αl1 αl3
αl1l3(1 + l3) κ+ αl1l3 αl23
αl1l2(1 + l3)2 αl1l2(1 + l3) + 2l2 κ+ αl2l3(1 + l3)

 . (16)

Remark 3.4. Noted that in quantized control of the multi-agent systems, the upper
bound of the initial states is needed to estimate the upper bound of the tracking errors.
These errors determines the design of the scaling function, which is required to satisfy
the unsaturation of the quantizer. Similarly, in distributed aggregative optimization
problem, the tracking errors rely on the upper bound of the initial states of xi(0), χi(0)
and yi(0). Thus, we still need the upper bounds of these variables.
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3.2. Convergence analysis

In this section, we present the convergence analysis for the D-QAGT algorithm. For
explicit illustration, we introduce the following notations:

x = [xi]i∈V ∈ RNn, L = (LG ⊗ Ir) ∈ RNr×Nr,
χ = [χi]i∈V ∈ RNr, y = [yi]i∈V ∈ RNr,

χ̄ =
1

N

N∑
i=1

χi ∈ Rr, ȳ =
1

N

N∑
i=1

yi ∈ Rr,

χ̂ = [χ̂i]i∈V ∈ RNr, ŷ = [ŷi]i∈V ∈ RNr,
eχ = χ− χ̂ ∈ RNr, ey = y − ŷ ∈ RNr,

g(x) = [gi(xi)]i∈V ∈ RNr, ∇xg(x) = [∇xigi(xi)]i∈V ∈ RNn×Nr,
∇xf(x,χ) = [∇xi

fi(xi, χi)]i∈V ∈ RNn, ∇χf(x,χ) = [∇χi
fi(xi, χi)]i∈V ∈ RNr.

By using L = INr − (A⊗ Ir), we first formulate a compact form of dynamics (11) – (13)
as the follows,

x(k + 1) = x(k)− α [∇xf(x(k),χ(k)) +∇xg(x(k))y(k)] , (17)

χ(k + 1) =Leχ(k) + g(x(k + 1))− g(x(k)) + (A⊗ Ir)χ(k), (18)

y(k + 1) =Ley(k)+∇χf(x(k+1),χ(k+1))−∇χf(x(k),χ(k))+(A⊗ Ir)y(k). (19)

Next, we establish the equivalence of the fixed point of the D-QAGT algorithm and
the optimal solution to the problem (1).

Lemma 3.5. Denote x∗, χ∗ and y∗ as the fixed points of (17) – (19). Under Assump-
tions 1 and 2, x∗ is the optimal solution to problem (1).

P r o o f . Based on Assumption 1 on 1TNrL = 0TN , we multiply 1
N 1TNr on both side of

(18) and (19) to obtain that

χ̄(k + 1) = χ̄(k) +
1

N

N∑
i=1

gi(xi(k + 1))− 1

N

N∑
i=1

gi(xi(k)), (20)

ȳ(k + 1) = ȳ(k)+
1

N

N∑
i=1

∇χi
fi(xi(k+1), χi(k+1))− 1

N

N∑
i=1

∇χi
fi(xi(k), χi(k)). (21)

It follows from a simple recursion that

χ̄(k)− 1

N

N∑
i=1

gi(xi(k)) = χ̄(0)− 1

N

N∑
i=1

gi(xi(0)), (22)

ȳ(k)− 1

N

N∑
i=1

∇χi
fi(xi(k), χi(k)) = ȳ(0)− 1

N

N∑
i=1

∇χi
fi(xi(0), χi(0)). (23)
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Combing with χi(0) = gi(xi(0)) and yi(0) = ∇χifi(xi(0), χi(0)),

χ̄(k) =
1

N

N∑
i=1

gi(xi(k)) = χ(x), (24)

ȳ(k) =
1

N

N∑
i=1

∇χifi(xi(k), χi(k)). (25)

By substituting the fixed point x∗, χ∗ and y∗ into (17) – (19),

∇xf(x∗,χ∗) +∇xg(x∗)y∗ = 0Nn, (26)

Lχ∗ = 0Nr, Ly∗ = 0Nr, (27)

where eχ∗ = ey∗ = 0Nr are used. Noticing from (27) that there exist χ∗i = χ∗j = χ∗ and
y∗i = y∗j = y∗. Meanwhile, in view of (24) – (25),

χ∗ = χ̄∗ =
1

N

N∑
i=1

gi(x
∗
i ) = χ(x∗), (28)

y∗ = ȳ∗ =
1

N

N∑
i=1

∇χfi(x∗i , χ(x∗)). (29)

Based on Assumption 2, we compute the gradient of f(x) in x∗ as follows,

∇xf(x∗) = ∇xf(x∗,1N ⊗ χ∗) +∇xg(x∗)[1N ⊗
1

N

N∑
i=1

∇χi
fi(x

∗
i , χ
∗
i )],

= ∇xf(x∗,1N ⊗ χ∗) +∇xg(x∗) [1N ⊗ y∗] ,
= 0Nn, (30)

where (28) and (29) are used in the second equality and (26) is used in the third equality.
(30) implies that x∗ is the optimal solution to problem (1). �

Remark 3.6. The optimal condition (27) implies that the fixed points χ∗ = 1N ⊗ χ∗
and y∗ = 1N ⊗ y∗. Meanwhile, (28) – (29) means that χ∗ = 1N ⊗ χ(x∗) and y∗ =

1N ⊗ 1
N

∑N
i=1∇χfi(x∗i , χ(x∗)). Hence, in the D-QAGT algorithm, χi(k) is leveraged for

agent i to track t*he global information χ(x) and yi(k) is leveraged for agent i to seek

the gradient sum 1
N

∑N
i=1∇χfi(xi, χ(x)).

Then, the following lemmas give the convergence analysis framework of the D-QAGT
algorithm with two intermediate results.

Lemma 3.7. Define Θ(k) = [‖x(k) − x∗‖; ‖χ(k) − 1N ⊗ χ̄(k)‖; ‖y(k) − 1N ⊗ ȳ(k)‖]
and E(k) = [0; 2‖eχ(k)‖; 2l2‖eχ(k)‖ + 2‖ey(k)‖]. Under Assumptions 1 and 2 and
considering the iterations on (11) – (13), the following inequality holds

Θ(k + 1) ≤ H(α)Θ(k) + E(k). (31)

Furthermore, the spectral radius ρ(H) < 1.
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P r o o f . See Appendix 6.1. �

The 3-dimensions vector Θ(k) describes the distance between the iteration x(k), χ(k),
y(k) and the fixed point x∗, χ∗, y∗, respectively. Lemma 3.7 provides the upper bound
of Θ(k), which is related to the stepsize matrix H(α) and the quantization error vector
E(k). Hence, we present the following lemma for analyzing the convergence of ‖Hk(α)‖.

Lemma 3.8. Under Assumptions 1 and 2 and considering the iterations on (11) – (13),
for any ε ∈ (0,min(γ − ρ(H), 2‖H(α)‖)), the following inequality holds

‖Hk(α)‖ ≤ c3(ρ(H) + ε)k, (32)

where the constant c3 = 3
√

3max{ 4‖H(α)‖2
ε2 , ε2

4‖H(α)‖2 }.

P r o o f . See Appendix 6.2. �

Note that the chosen of the constant ε can ensure ρ(H) + ε < 1 due to γ ∈ (ρ(H), 1).
Then Lemma 3.7 provides the linear convergence of ‖Hk(α)‖. Summarizing the above
lemmas, we give the convergence of the D-QAGT algorithm in the following theorem.

Theorem 3.9. Under Assumptions 1 and 2, if the number of the quantization levels

2L+ 1 ≥ 2 max{ζC0 + 3C1

l0γ
,

√
4c21 + 4c22
l0

}+ 1, (33)

with

ζ = max{αl1l2(1 + l3) + αl1l3(1 + l3), l2 + αl1l2 + αl1l3 + 2, αl3l2 + αl23 + 2}, (34)

C0 = c3

√
Nnc20 + 4Nr(c21 + c22) +

c3C1

γ − ρ(H)− ε
, (35)

C1 = 2(l2 + 1)
√
Nrl0, (36)

and ε ∈ (0,min(γ − ρ(H), 2‖H(α)‖)), then x = [xi]i∈V generated by the D-QAGT
algorithm can converge to the optimizer of problem (1) at a linear convergence rate.

P r o o f . We prove Theorem 3.9 by proving the following inequalities hold simultane-
ously.

‖Θ(k)‖ ≤ C0γ
k, (37)

‖E(k)‖ ≤ C1γ
k, (38)

where Θ(k) and E(k) are defined the same as Lemma 3.7.
When k = 0, based on the definition of Θ(k) and the initial values of xi(0), χi(0) and

yi(0), we have that

‖Θ(0)‖ ≤
√
Nnc20 + 4Nr(c21 + c22). (39)
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It follows from c3 > 1 and c3C1

γ−ρ(H)−ε > 0 that

‖Θ(0)‖ ≤ c3
√
Nnc20 + 4Nr(c21 + c22) +

c3C1

γ − ρ(H)− ε
= C0,

which ensures that (37) holds at k = 0.
When k ∈ N+, we assume that (37) and (38) hold for any k ≤ k1, k1 ∈ N+. We first

prove that (37) holds for k = k1 + 1. Iterating (31) yields

Θ(k1 + 1) ≤ Hk1+1(α)Θ(0) +

k1∑
i=0

Hi(α)E(k1 − i). (40)

Substituting (32) into (40) and using (38) holds for any k ≤ k1, k1 ∈ N+, we have that

‖Θ(k1 + 1)‖ ≤ c3γ̄k1+1‖Θ(0)‖+

k1∑
i=0

c3γ̄
i‖E(k1 − i)‖,

≤ c3γ̄k1+1‖Θ(0)‖+

k1∑
i=0

c3γ̄
iC1γ

k1−i,

≤ (c3‖Θ(0)‖+
aC1

γ − γ̄
)γk1+1, (41)

where γ̄ = ρ(H(α)) + ε. Based on the definition of C0, it follows that

‖Θ(k1 + 1)‖ ≤ C0γ
k1+1. (42)

Then, we prove (38) for k = k1 + 1. Define

W (k + 1) = [χ(k + 1)− χ̂(k);y(k + 1)− ŷ(k)].

For k = k1 + 1, taking norm on W (k1 + 1) yields that

‖W (k1 + 1)‖ = ‖χ(k1 + 1)− χ̂(k1)‖+ ‖y(k1 + 1)− ŷ(k1)‖,
≤ ‖χ(k1 + 1)− χ(k1)‖+ ‖y(k1 + 1)− y(k1)‖+ ‖eχ(k)‖+ ‖ey(k)‖. (43)

Considering the first term of (43), in light of ‖A − IN‖ = ‖ − L‖ ≤ 2, it follows from
(18) that

‖χ(k1 + 1)− χ(k1)‖
≤ ‖(A− IN )(χ(k1)− 1N ⊗ χ̄(k1)) + (IN −A)eχ(k1)‖+ l3‖x(k1 + 1)− x(k1)‖,
≤ 2‖χ(k1)− 1N ⊗ χ̄(k1)‖+ 2‖eχ(k1)‖+ l3‖x(k1 + 1)− x(k1)‖. (44)

Substituting (60) into (44) yields

‖χ(k1 + 1)− χ(k1)‖
≤ αl1l3(1 + l3)‖x(k1)− x∗‖+ (αl1l3 + 2)‖χ(k1)− 1N ⊗ χ̄(k)‖

+ αl23‖y(k1)− 1N ⊗ ȳ(k1)‖+ 2‖eχ(k1)‖. (45)
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Similarly, considering the second term of (43) and using (60) again, it follows from (19)
that

‖y(k1 + 1)− y(k1)‖
≤ ‖(IN −A)(y(k1)− 1N ⊗ ȳ(k1))‖+ ‖(A− IN )ey(k1) +∇χf(x(k1 + 1),χ(k1 + 1))

−∇χf(x(k1),χ(k1))‖,
≤ 2‖y(k1)− 1N ⊗ ȳ(k1)‖+ 2‖ey(k1)‖+ l2‖x(k1 + 1)− x(k1)‖+ l2‖χ(k1 + 1)− χ(k1)‖,
≤ αl1l2(1 + l3) ‖x(k1)− x∗‖+ (l2 + αl1l2)‖χ(k1)− 1N ⊗ χ̄(k1)‖

+ (2 + αl3l2)
∥∥y(k1)− 1N ⊗ ȳ(k1)

∥∥+ 2‖ey(k1)‖. (46)

Combing with (45) and (46), we bound ‖W (k1 + 1)‖ as

‖W (k1 + 1)‖
≤ (αl1l2(1 + l3) + αl1l3(1 + l3)) ‖x(k1)− x∗‖+ (l2 + αl1l2 + αl1l3 + 2)

‖χ(k1)− 1N ⊗ χ̄(k1)‖+ (αl3l2 + αl23 + 2) ‖y(k1)− 1N ⊗ ȳ(k1)‖
+ 3‖ey(k1)‖+ 3‖eχ(k1)‖. (47)

Since (37) and (38) hold for any k = k1, we conclude that

‖W (k + 1)‖ ≤ ζΘ(k1) + 3(‖eχ(k1)‖+ ‖ey(k1)‖),
≤ (ζC0 + 3C1)γk1 . (48)

It further yields
‖W (k1 + 1)‖∞

l(k1 + 1)
≤ ‖W (k1 + 1)‖

l(k1 + 1)
≤ ζC0 + 3C1

l0γ
, (49)

which means that ‖W (k1+1)‖∞
l(k1+1) ≤ L and the quantizer is unsaturated at k = k1 + 1 by

recalling from the definition of L in (33). According to the design of the encoder in (6)
and (7), when the quantizer is unsaturated at k1+1, there are |χ̂im(k1+1)−χim(k1+1)| ≤
l(k1+1)

2 , m = 1, . . . , r and |ŷim(k1 + 1)− yim(k1 + 1)| ≤ l(k1+1)
2 , m = 1, . . . , r with χim

and yim are the m-elements of the vector χi and yi. Hence, based on the definition of
eχ and ey, we have ‖eχ(k1 + 1)‖∞ ≤ l(k1 + 1) and ‖ey(k1 + 1)‖∞ ≤ l(k1 + 1). Together
with the definition of E(k), one has that

‖E(k1 + 1)‖ ≤ (2 + 2l2)‖eχ(k1 + 1)‖+ 2‖ey(k1 + 1)‖,
≤ (2 + 2l2)(‖eχ(k1 + 1)‖+ ‖ey(k1 + 1)‖),

≤ (1 + l2)
√
Nrl(k1 + 1) = C1γ

k1+1. (50)

To sum up, based on (42) and (50), we conclude that (37) and (38) hold for k = k1 + 1.
Following by the principle of induction, we can conclude that (37) and (38) hold for any
k ∈ N. Based on the definition of Θ(k), it can guarantee the linear convergence rate of
x(k), which ends the proof. �
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Remark 3.10. Noted that the exponentially decaying scaling function in (5) is used
for achieving exponential convergence of the D-QAGT algorithm. In the convergence
process, for avoiding the quantizer saturated, l(k) could not converge too fast. Hence, the
design convergence rate γ of the scaling function l(k) matches that of the tracking errors
Θ(k). Theorem 3.9 proves ‖Θ(k)‖ ≤ C0γ

k for any k ∈ N. Based on the definition of Θ(k),
it should be noted that ‖x(k) − x∗‖ ≤ ‖Θ(k)‖ ≤ C0γ

k, which ensures the convergence
rate of the D-QAGT algorithm is at least γ. Furthermore, since γ ∈ (ρ(H), 1), the linear
convergence rate of the D-QAGT algorithm is no less than ρ(H).

In addition, according to the selection of the quantization levels 2L + 1 in (33), the
required maximum data rate for ensuring the linear convergence of the D-QAGT is

R =
⌈

log2(2 max{ ζC0+3C1

l0ρ(H) ,

√
4c21+4c22
l0

}+ 1)
⌉
.

4. SIMULATION

To evaluate the performance of the proposed algorithm, we verify its communication
saving in the optimal placement problem. In an optimal placement problem, assume
that there are M = 5 entities, which are located at r1 = [3; 5], r2 = [6; 9], r3 =
[9; 8], r4 = [6; 2] and r5 = [9; 2]. There are distributed across N = 5 free entities, each of
that privately knows some of the fixed M entities. The aim is to determine the optimal
position x = [xi]i∈{1,...,5} of the free entities for minimizing the sum of all distance from
the current position of each free entity to a corresponding fixed entitys position and the
distances from each agent to the weighted center of all free entities. In this case, the
cost function of each free entity is modeled as follows

fi(xi, χ(x)) = γi‖xi − ri‖2 + ‖xi − χ(x)‖2, i ∈ {1, . . . , 5}, (51)

where γi = 100 represents the weight constant and χ(x) =
√∑5

i=1 x
2
i /N . The com-

munication graph among the free entities is randomly chosen to be strongly connected
and the communication channel between free entities exists finite bandwidth constraints.
The stepsize is chosen as α = 0.01 in the D-QAGT algorithm.

The scaling functions is chosen as l(k) = 10e−0.1k and the quantization levels is chosen
as L = 10. Figure 1 shows that the evolution of xi(k) associated with iterations k = 100.
The results shows that all free entities in the plane converge to their optimal positions
x∗ = [x∗i ]i∈{1,...,5}. Figure 2 shows that the evolution of χi(k). The results shows that

the estimate χi(k) of each free entity converges to the optimal χ(x∗) =
√∑5

i=1(x∗i )
2/N .

In order to show the linear convergence, we take a performance index J as J(t) =
eγk‖f(x) − f(x∗)‖ with γ = 0.1. The trajectory of J(t) for the D-QAGT is shown in
Figure 3(a). The results illustrates linear convergence of D-QAGT with a rate no less
than the constant 0.1. To compare the convergence with the related D-AGT algorithm
in [14], in which the communication channel is ideal, the evolutions of f(x) =

∑5
i=1 fi(x)

for D-AGT and D-QAGT are shown in Figure 3(b). The results shows that the influence
of quantization on the convergence speed is slight under the quantization levels L = 10.



Distributed aggregative optimization with quantized communication 137

0 10 20 30 40 50 60 70 80 90 100
Iteration k

0

2

4

6

8

10

Th
e 

fir
st

 c
oo

rd
in

at
e 

of
  x

i

x
1

x
2

x
3

x
4

x
5

(a) The first coordinate of xi(k).

0 10 20 30 40 50 60 70 80 90 100
Iteration k

0

2

4

6

8

10

12

Th
e 

se
co

nd
 c

oo
rd

in
at

e 
of

  x
i

x
1

x
2

x
3

x
4

x
5

(b) The second coordinate of xi(k).

Fig. 1. The evolution of xi(k) ∈ R2, i ∈ {1, . . . , 5}. The optimal

positions of each agent are x∗1 = [1.2376; 5.2393], x∗2 = [3.2178; 9.1997],

x∗3 = [6.1881; 8.2096], x∗4 = [9.1584; 2.2690] and x∗5 = [5.1980; 4.2492].
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(a) The first coordinate of χi(k) v.s. iteration.

0 10 20 30 40 50 60 70 80 90 100
Iteration k

-5

0

5

10

15

20

25

30

Th
e 

se
co

nd
 c

oo
rd

ia
te

 o
f  

i

1 2 3 4 5

(b) The second coordinate of χi(k) v.s. itera-
tion.

Fig. 2. The evolution of the estimate χi(k) ∈ R2, i ∈ {1, . . . , 5}. The

optimal aggregative information is χ(x∗) = [11.1803; 13.0437].
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Fig. 3. (a) represents the trajectory of the performance function

J(t). (b) represents the convergence trajectories of f(x) for D-QAGT

(blue line) and D-AGT (red line), respectively.
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5. CONCLUSION

This paper proposed a novel distributed quantized algorithm to solve the aggregative
optimization problem, in which agents collectively minimize the sum of the local cost
function that depends on the global aggregative variable. Particularly, we combined gra-
dient descent and variables tracking methods to estimate the global aggregative variable,
and also introduced the quantization technology to overcome communication bottleneck.
By using dynamic encoder-decoder schemes, the influence of quantization errors is elim-
inated so that the linear convergence of the proposed Q-DGAT algorithms is achieved.
Future works would include exploiting multiple information compression technologies for
distributed aggregative optimization problems, such as sparsification and even-trigger
technologies.

6. APPENDIX

6.1. Proof of Lemma 3.7

For explicit illustration, we prove the Lemma 3.7 by the following two steps.

Step 1. We first bound ‖x(k+ 1)−x∗‖, ‖χ(k+ 1)− 1N ⊗ χ̄(k+ 1)‖ and ‖y(k+ 1)−
1N ⊗ ȳ(k + 1)‖, respectively.

• Invoking (17) into ‖x(k + 1)− x∗‖ yields that

‖x(k + 1)− x∗‖
=
∥∥x(k)− x∗ − α [∇xf (x(k),χ(k)) +∇xg (x(k))y(k)]

∥∥,
≤
∥∥x(k)−x∗−α

[
∇xf (x(k),1N⊗χ̄(k))+∇xg (x(k))[1N⊗

1

N

N∑
i=1

∇χ̄fi (xi(k), χ̄(k))]
]

+ α∇xf (x∗)
∥∥+ α

∥∥∇xf (x(k),χ(k)) +∇xg (x(k)) (1N ⊗ ȳ(k))

−∇xf (x(k),1N ⊗ χ̄(k))−∇xg (x(k)) [1N ⊗
1

N

N∑
i=1

∇χ̄fi (xi(k), χ̄(k))]
∥∥

+ α
∥∥∇xg (x(k))y(k)−∇xg (x(k)) (1N ⊗ ȳ(k))

∥∥. (52)

Following from Lemma 3 in [14], for a µ-strongly convex and l-smooth function
f : Rn → R, there is

‖x− α∇xf(x)− (y − α∇yf(y))‖ ≤ (1− µα)‖x− y‖, ∀x, y ∈ Rn,

with α ∈ (0, 1/l]. Recalling (24) that χ̄(k) = χ(x(k)) and using ∇xf(x(k)) =

∇xf(x(k),1N ⊗ χ̄(k)) + ∇xg(x(k))
[
1N ⊗ 1

N

∑N
i=1∇χ̄fi(xi(k), χ̄(k))

]
, we bound

the first term of the right of (52) as follows,

∥∥x(k)−α
[
∇xf (x(k),1N ⊗ χ̄(k))+∇xg (x(k)) [1N ⊗

1

N

N∑
i=1

∇χ̄fi (xi(k), χ̄(k))]
]

− (x∗ − α∇xf (x∗))
∥∥ ≤ (1− µα)‖x(k)− x∗‖. (53)
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Similarly, using (25) and Assumption 2, the second term of the right of (52) is
bounded as

α
∥∥(∇xf (x(k),χ(k)) +∇xg (x(k)) (1N ⊗ ȳ(k)))− (∇xf (x(k),1N ⊗ χ̄(k))

+∇xg (x(k)) [1N ⊗
1

N

N∑
i=1

∇χ̄fi (xi(k), χ̄(k))])
∥∥

≤ αl1‖χ(k)− 1N ⊗ χ̄(k)‖. (54)

Combining with (53) and (54), in light of ‖∇xg (x(k)) ‖ ≤ l3, we conclude that

‖x(k + 1)− x∗‖ ≤ (1− µα) ‖x(k)− x∗‖+ αl1‖χ(k)− 1N ⊗ χ̄(k)‖
+ αl3‖y(k)− 1N ⊗ ȳ(k)‖. (55)

• Invoking (18) into χ(k + 1)− 1N ⊗ χ̄(k + 1) yields that∥∥χ(k + 1)− (
1

N
1N1TN ⊗ Ir)χ(k + 1)

∥∥
=
∥∥Leχ(k) + g(x(k + 1))− g(x(k)) + (A⊗ Ir)χ(k)− (

1

N
1N1TN ⊗ Ir)[

Leχ(k) + g(x(k + 1))− g(x(k)) + (A⊗ Ir)χ(k)
]∥∥,

≤
∥∥(A⊗ Ir)χ(k)− (

1

N
1N1TN ⊗ Ir)(A⊗ Ir)χ(k)

∥∥+
∥∥INr − (

1

N
1N1TN ⊗ Ir)

∥∥∥∥Leχ(k)
∥∥+

∥∥INr − (
1

N
1N1TN ⊗ Ir))

∥∥∥∥g(x(k + 1))− g(x(k))
∥∥, (56)

where the fact that INr − L = A ⊗ Ir and 1N ⊗ χ̄(k) = ( 1
N 1N1TN ⊗ Ir)χ(k) are

used. Based on Lemma 2.1 and ‖INr − 1
N 1N1TN ⊗ Ir‖ = 1, it follows that∥∥χ(k + 1)− (

1

N
1N1TN ⊗ Ir)χ(k + 1)

∥∥
≤ κ

∥∥χ(k)− (
1

N
1N1TN ⊗ Ir)χ(k)

∥∥+
∥∥IN −A∥∥∥∥eχ(k)

∥∥+
∥∥g(x(k + 1))− g(x(k))

∥∥,
≤ κ

∥∥χ(k)− (
1

N
1N1TN ⊗ Ir)χ(k)

∥∥+ 2‖eχ(k)‖+ l3‖x(k + 1)− x(k)‖, (57)

where κ = ‖A − 1/N1N1TN‖ < 1. We now compute the upper bound of ‖x(k +
1)− x(k)‖. Invoking (17) into ‖x(k + 1)− x(k)‖ yields that

‖x(k + 1)− x(k)‖ = α ‖∇xf (x(k),χ(k)) +∇xg (x(k))y(k)‖

≤ α
∥∥∇xf (x(k),χ(k))+∇xg (x(k)) (

1

N
1N1TN ⊗ Ir)y(k)−∇xf (x∗,1N ⊗ χ∗)

−∇xg (x∗)
[
1N⊗

1

N

N∑
i=1

∇χifi (x∗i , χ
∗
i )
]∥∥+α∥∥∇xg (x(k))

(
y(k)−(

1

N
1N1TN⊗Ir)y(k)

)∥∥,
= α

∥∥∇xf (x(k),χ(k)) +∇xg (x(k)) (1N ⊗ ȳ(k))−∇xf (x∗,1N ⊗ χ∗)−∇xg (x∗)[
1N ⊗

1

N

N∑
i=1

∇χi
fi (x∗i , χ

∗
i )
]∥∥+ α

∥∥∇xg (x(k)) (y(k)− 1N ⊗ ȳ(k))
∥∥.
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It follows from Assumption 2 that

‖x(k + 1)− x(k)‖
≤ αl1 (‖x(k)− x∗‖+ ‖χ(k)− 1N ⊗ χ∗‖) + αl3 ‖y(k)− 1N ⊗ ȳ(k)‖ ,

≤ αl1
(
‖x(k)−x∗‖+

∥∥χ(k)−(
1

N
1N1TN ⊗ Ir)χ(k)

∥∥)+ αl3 ‖y(k)− 1N ⊗ ȳ(k)‖

+ αl1
∥∥(

1

N
1N1TN ⊗ Ir)χ(k)− 1N ⊗ χ∗

∥∥. (58)

Using again ( 1
N 1N1TN ⊗ Ir)χ(k) = 1N ⊗ χ̄(k), we compute the upper bound of the

last term in (58) as follows,∥∥(
1

N
1N1TN ⊗ Ir)χ(k)− 1N ⊗ χ∗

∥∥2
=
∥∥1N ⊗ (χ̄(k)− χ∗)

∥∥2

= N
∥∥ 1

N

N∑
i=1

(gi (xi(k))− gi (x∗i ))
∥∥2 ≤ 1

N

( N∑
i=1

‖gi (xi(k))− gi (x∗i )‖
)2
,

≤ 1

N

( N∑
i=1

l3 ‖xi(k)− x∗i ‖
)2 ≤ l23 N∑

i=1

‖xi(k)− x∗i ‖
2

= l23 ‖x(k)− x∗‖2 . (59)

Substituting (59) into (58), we conclude that

‖x(k + 1)− x(k)‖ ≤ αl1(1 + l3) ‖x(k)− x∗‖+ αl1
∥∥χ(k)− (

1

N
1N1TN ⊗ Ir)χ(k)

∥∥
+ αl3

∥∥y(k)− (
1

N
1N1TN ⊗ Ir)y(k)

∥∥. (60)

Further, substituting (60) into (57), we conclude that∥∥χ(k + 1)− 1N ⊗ χ̄(k + 1)
∥∥

≤ (κ+αl1l3)
∥∥χ(k)−1N ⊗ χ̄(k)

∥∥+2‖eχ(k)‖+αl1l3(1+l3)‖x(k)−x∗‖
+ αl23‖y(k)− 1N ⊗ ȳ(k)‖. (61)

• Invoking (19) into y(k + 1)− 1N ⊗ ȳ(k + 1) yields that

‖y(k + 1)− (
1

N
1N1TN ⊗ Ir)y(k + 1)‖ ≤ κ‖y(k)− (

1

N
1N1TN ⊗ Ir)y(k)‖

+ ‖∇χf(x(k + 1),χ(k + 1))−∇χf(x(k),χ(k))‖+ 2‖ey(k)‖. (62)

Using (12), via Assumption 2, we obtain that

‖∇χf(x(k + 1),χ(k + 1))−∇χf(x(k),χ(k))‖
≤ l2

(
‖x(k + 1)− x(k)‖+ ‖χ(k + 1)− χ(k)‖

)
,

≤ l2
(
‖x(k+1)−x(k)‖+‖Leχ(k)+g(x(k+1))−g(x(k))+(A⊗ Ir)χ(k)−χ(k)‖

)
,

≤ l2
(
‖x(k + 1)− x(k)‖+ ‖Leχ(k) + g(x(k + 1))− g(x(k))

+ (A⊗ Ir − INr)(χ(k)− (
1

N
1N1TN ⊗ Ir)χ(k))‖

)
,

≤ l2(1+l3)‖x(k+1)−x(k)‖+2l2‖χ(k)−(
1

N
1N1TN⊗Ir)χ(k)‖+2l2‖eχ(k)‖.

(63)



Distributed aggregative optimization with quantized communication 141

Substituting (63) into (62), one has that

‖y(k + 1)−1N ⊗ ȳ(k + 1)‖
≤ (κ+αl2l3(1+l3))‖y(k)−1N ⊗ ȳ(k)‖+αl1l2(1+l3)2‖x(k)− x∗‖+(αl1l2

(1+l3)+2l2)‖χ(k)−1N ⊗ χ̄(k)‖+2l2‖eχ(k)‖+2‖ey(k)‖. (64)

Step 2. To sum up, we have bounded the ‖x(k+ 1)−x∗‖, ‖χ(k+ 1)−1N ⊗ χ̄(k+ 1)‖
and ‖y(k + 1) − 1N ⊗ ȳ(k + 1)‖. Based on the definition of Θ(k), by substituting the
upper bound of the norm of each coordinate, we conclude that

Θ(k + 1) ≤ H(α)Θ(k) + E(k). (65)

We now prove ρ(H) < 1. Let λ(α) be the eigenvalue of H(α). It is obvious that 1 is a
simple eigenvalue of H(0) and ν = [1; 0; 0] is 1’s corresponding left and right eigenvectors.

According to [7] and Lemma 5 in [14], there is dλ(α)
dα |α=0 = −µ < 0, which means that

the spectral radius of H(α) is less than 1 for sufficiently small positive α. Furthermore,
the strongly connected graph makes the related H(α) is irreducible [21]. Combining
with Lemmas 1-2 in [14] can ensure that 1 will be a simple eigenvalue of H(α) as α
increases from zero to some positive value. By computing det(I −H(α)) = 0, we obtain
that

α =
µ(1− κ)2

l3(µ+ l1 + l2l3)
(
(1− κ)(l1 + l2 + l2l3) + 2l2l3

) .
Hence, when α ∈

(
0, µ(1−κ)2

l3(µ+l1+l2l3)((1−κ)(l1+l2+l2l3)+2l2l3)

)
, all eigenvalues of H(α) have

absolute values less than 1.

6.2. Proof of Lemma 3.8

By Shur theorem, there exists an unitary matrix U = [u1, u2, u3] ∈ R3×3 such that
UHH(α)U is an upper triangular matrix as the following form

UHH(α)U =

 λH1 T12 T13

0 λH2 T23

0 0 λH3

 ,
where T12 = uH1 H(α)u2, T13 = uH1 H(α)u3 and T23 = uH2 H(α)u3. Further define D =
diag(1, η, η2) with η = ε/2‖H(α)‖, then it follows that

D−1UHH(α)UD =

 λH1 T12η T13η
2

0 λH2 T23η
0 0 λH3

 .
It should be noted that max{‖T12‖, ‖T13‖, ‖T23‖} ≤ ‖H(α)‖ such that

‖D−1UHH(α)UD‖∞ ≤ ρ(H(α)) + ε,

‖D−1UHHk(α)UD‖∞ ≤ ‖(D−1UHH(α)UD)k‖∞ ≤ (ρ(H(α)) + ε)k. (66)
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We can calculate ‖Hk(α)‖∞ as follows

‖Hk(α)‖∞ = ‖UDD−1UHHk(α)UDD−1UH‖∞,
≤ ‖U‖∞‖UH‖∞‖D−1‖∞‖D‖∞(ρ(H(α)) + ε)k,

≤ 3max{4‖H(α)‖2

ε2
,

ε2

4‖H(α)‖2
}(ρ(H(α)) + ε)k, (67)

which further yields that

‖Hk(α)‖ ≤
√

3‖Hk(α)‖∞ = 3
√

3max{4‖H(α)‖2

ε2
,

ε2

4‖H(α)‖2
}(ρ(H(α)) + ε)k. (68)
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