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SOME LIMIT BEHAVIOR FOR LINEAR COMBINATIONS
OF ORDER STATISTICS

Yu Miao and Mengyao Ma

In the present paper, we establish the moderate and large deviations for the linear com-
binations of uniform order statistics. As applications, the moderate and large deviations for
the k-th order statistics from uniform distribution, Gini mean difference statistics and the k-th
order statistics from general continuous distribution are obtained.
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1. INTRODUCTION

Consider independent observations X1, X2, . . . , Xn on a distribution function F , and
denote the ordered values by Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n. Many important statistics may
be expressed as linear combinations of the ordered values, that is, in the form

Tn =

n∑
i=1

cn,iXn,i (1.1)

for some choice of constants cn,1, cn,2, . . . , cn,n. Tn is also called L-statistics, which may
have the following more general form:

Tn =

n∑
i=1

cn,ih(Xn,i)

where h is some measurable function.
The asymptotic behavior and applications of Tn have been studied widely. Law of

large numbers: Wellner [30, 31] proved a strengthened version of the Glivenko–Cantelli
theorem for the uniform empirical distribution function, by which the law of large num-
bers for linear functions of order statistics is established. Sen [23] gave the almost sure
convergence of certain functions of order statistics having some special properties. van
Zwet [28] obtained a strong law of large numbers for linear combinations of order statis-
tics under integrability conditions only, which generalized previous results of Wellner
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[30, 31] and Sen [23]. Mason [18] gave some necessary and sufficient conditions for strong
law of large numbers to hold for certain classes of linear functions of order statistics.
Helmers et al. [14] obtained the strong convergence of generalized L-statistics. Aaronson
et al. [1] studied the strong law of large numbers for L-statistics for ergodic stationary
processes. Central limit theorem: Chernoff et al. [7] gave the asymptotic distribution
of linear combinations of functions of order statistics. Stigler [25, 26] proved a central
limit theorem by using Hájek projections. Bjerve [4], Helmers [12, 13] established the
Berry-Esseen-type bounds for linear combinations of order statistics. A very complete
version of the central limit theorem with necessary and sufficient conditions is proved
in Mason and Shorack [19, 20], via empirical processes theory. For weaker conditions
on the function h, a central limit theorem and a law of the iterated logarithm can be
found in Li et al. [15]. Large deviation principle: Vandemaele and Veraverbeke [29],
Callaert et al. [6], Bentkus and Zitikis [3], Aleshkyavichene [2], Gribkova [11] discussed
the Camér type large deviations for (trimmed) linear combinations of order statistics.
Boistard [5] established the large deviation for L-statistics. Tchirina [27], Jiang [16],
Grané and Tchirina [10], Jiang et al. [17] studied the large deviation properties for
L-statistics under exponentiality.

In the present paper, we consider the moderate and large deviations for the lin-
ear combinations of uniform order statistics. As applications, the moderate and large
deviations for the k-th order statistics from uniform distribution, Gini mean difference
statistics and the k-th order statistics from general continuous distribution are obtained.
In Section 2, we give some known results and lemmas. Our main results are stated in
Section 3 and the applications are given in Section 4.

2. SOME KNOWN RESULTS AND LEMMAS

In this section, we give some known results and lemmas for order statistics. Let
U1, U2, . . . , Un be a sequence of random variables with the uniform distribution on the
interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ,≤ Un,n be the corresponding order statistics. Let
β(p, q), where p, q > 0, denote the Beta distribution with parameters (p, q), i.e., the
density function of β(p, q) is

fβ(p,q)(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1, x ∈ (0, 1).

It is easy to check that the random variable Un,k has the Beta distribution with param-
eters (k, n− k + 1), i. e.,

fUn,k(x) =
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
xk−1(1− x)n−k, x ∈ (0, 1). (2.1)

From (2.1) and the following equality,∫ 1

0

xm+k−1(1− x)n−k dx =
(n− k)!(m+ k − 1)!

(m+ n)!

where m is a positive integer, we can obtain the m-th moment of Un,k

EUmn,k =
n!(m+ k − 1)!

(k − 1)!(m+ n)!
,
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which yields the expectation and the variance of Un,k,

EUn,k =
k

n+ 1
, V ar(Un,k) =

k(n− k + 1)

(n+ 1)2(n+ 2)
. (2.2)

Let us recall the Gamma distribution with parameters (a, λ), i. e., if X ∼ Γ(a, λ), then
its density function is

fΓ(a,λ)(x) =
λa

Γ(a)
xa−1e−λx, x > 0 (2.3)

and its characteristic function is

φ(t) =

(
λ

λ− it

)a
.

It is well known that

Un,k
d
=

X1 + · · ·+Xk

X1 + · · ·+Xn+1

and

Un,k
d
=

Y 2
1 + · · ·+ Y 2

2k

Y 2
1 + · · ·+ Y 2

2(n+1)

,

where X1, X2, . . . , Xn+1 is a sequence of i.i.d. random variables with standard expo-
nential distribution and Y1, Y2, . . . , Yn+1 is a sequence of i.i.d. random variables with
standard normal distribution.

The following results, which was obtained by Plachky and Steinebach [22], show that
the one-sided large deviation principle holds.

Lemma 2.1. (Plachky and Steinebach [22]) Let {Wn, n ≥ 1} be a sequence of real-
valued random variables on a probability space with probability measure P, which sat-
isfies the following assumptions:

1. for all t ∈ [0, T1), T1 > 0, ∫
etWn dP <∞;

2. for 0 ≤ T0 < T1 and for all t ∈ (T0, T1),

1

n
log

∫
etWn dP <∞→ c0(t) ∈ R.

Then for any real sequence {dn, n ≥ 1} with dn → d ∈ A, where

A =
{
c
′

0(h) : c
′

0(h) exists and is continuous on

the right and strictly monotonic for h ∈ (T0, T1)
}
,

it holds that
1

n
logP(Wn > ndn)→ exp (c0(h)− hd)

where the limit is equal to inft>0{exp(c0(t)− td)}.
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Lemma 2.2. (Boistard [5]) Let b be a continuous function on [0, 1] and bn,k be some
coefficients such that

lim
n→∞

max
1≤k≤n

∣∣∣∣bn,k − b(kn
)∣∣∣∣ = 0.

Suppose that 1− b(t) > 0 for all t. Then for large n, bn,k < 1, 1 ≤ k ≤ n and

lim
n→∞

1

n

n∑
k=1

log(1− bn,k) =

∫ 1

0

log(1− b(t)) dt.

3. MODERATE AND LARGE DEVIATION PRINCIPLES FOR UNIFORM
RANDOM VARIABLES

In this section, we establish the moderate and large deviation principles for the linear
combinations of uniform order statistics.

Theorem 3.1. Let U1, U2, . . . , Un be a sequence of random variables with the uniform
distribution on the interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corresponding
order statistics. Let Tn =

∑n
i=1 cn,iUn,i, where {cn,i, 1 ≤ i ≤ n} is an array of constants.

Suppose that {bn, n ≥ 1} is a sequence of positive numbers such that

bn →∞,
bn√
n
→ 0,

bn√
n

max
1≤k≤n

|Bn,k −Dn| → 0,

and
1

n

n∑
k=1

B2
n,k −D2

n → σ2,

where

Bn,k =

n∑
i=k

cn,i, Dn =
1

n+ 1

n∑
k=1

Bn,k

and σ2 is a positive constant. Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
n

bn
|Tn − ETn| > r

)
= − r2

2σ2
.

P r o o f . It is easy to check

Tn =

n∑
i=1

cn,iUn,i =

n∑
i=1

cn,i
X1 + · · ·+Xi

X1 + · · ·+Xn+1
=

n∑
k=1

Bn,kXk

X1 + · · ·+Xn+1
. (3.1)

By defining Bn,n+1 = 0, then from (2.2), we have

ETn =
1

n+ 1

n∑
i=1

icn,i =
1

n+ 1

n+1∑
i=1

Bn,i.
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So we can rewrite
√
n
bn

(Tn − ETn) as follows

√
n

bn
(Tn − ETn) =

√
n

bn(n+ 1)

∑n+1
k=1 Bn,kXk −

∑n+1
k=1 Bn,k

∑n+1
k=1 Xk

n+1∑n+1
k=1 Xk
n+1

. (3.2)

Let us define

T̃n :=

n+1∑
k=1

(Bn,k −Dn)Xk

then for any λ ∈ R, from the condition

bn√
n

max
1≤k≤n+1

|Bn,k −Dn| → 0,

we have
1

b2n
logE exp

(
λbn√
n
T̃n

)
=

1

b2n
logE exp

(
λbn√
n

n+1∑
k=1

(Bn,k −Dn)Xk

)

=
1

b2n

n+1∑
k=1

logE exp

(
λbn√
n

(Bn,k −Dn)Xk

)

=− 1

b2n

n+1∑
k=1

log

(
1− λbn(Bn,k −Dn)√

n

)

=
λ

bn
√
n

n+1∑
k=1

(Bn,k −Dn) +
λ2

2n

n+1∑
k=1

(Bn,k −Dn)2

+O

(
bn
n3/2

n+1∑
k=1

(Bn,k −Dn)3

)
.

It is easy to check that

n+1∑
k=1

(Bn,k −Dn) = 0 and
1

n

n+1∑
k=1

(Bn,k −Dn)2 =
1

n

n+1∑
k=1

B2
n,k −

n+ 1

n
D2
n → σ2.

So we have
1

b2n
logE exp

(
λbn√
n
T̃n

)
→ λ2σ2

2

which implies, by the Gärtner-Ellis theorem [9], that for any r > 0,

1

b2n
logP

(
1

bn
√
n

∣∣∣T̃n∣∣∣ ≥ r)→ − r2

2σ2
. (3.3)
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Furthermore, for any ε > 0, we give the following exponential inequalities: for any
0 < λ < 1,

P

(
1

n+ 1

n+1∑
k=1

(Xk − 1) > ε

)
≤
(

1

1− λ
e−λ(1+ε)

)n+1

which, by taking λ = ε
1+ε , yields

P

(
1

n+ 1

n+1∑
k=1

(Xk − 1) > ε

)
≤
(
(1 + ε)e−ε

)n+1
. (3.4)

By similar proofs, for any 0 < ε < 1 and λ > 0, we have

P

(
1

n+ 1

n+1∑
k=1

(Xk − 1) < −ε

)
≤
(

1

1 + λ
eλ(1−ε)

)n+1

which, by taking λ = ε
1−ε , yields

P

(
1

n+ 1

n+1∑
k=1

(Xk − 1) < −ε

)
≤ ((1− ε)eε)n+1

. (3.5)

From the inequalities (3.4), (3.5) and the following inequalities: for any 0 < ε < 1

log(1 + ε) < ε− ε2

2(1 + ε)
, log(1− ε) < −ε− ε2

2
,

we have
1

b2n
logP

(
1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ > ε

)
→ −∞. (3.6)

Hence for any r > 0 and 0 < ε < 1, we get

P
(√

n

bn
|Tn − ETn| > r

)
≤P

(
1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ > ε

)

+ P

(√
n

bn
|Tn − ETn| > r,

1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ ≤ ε
)

≤P

(
1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ > ε

)
+ P

(
1

bn
√
n

∣∣∣T̃n∣∣∣ ≥ r(1− ε))
which implies by (3.3) and (3.6),

lim sup
n→∞

1

b2n
logP

(√
n

bn
|Tn − ETn| > r

)
≤ −r

2(1− ε)2

2σ2
. (3.7)
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Similarly we have

lim inf
n→∞

1

b2n
logP

(√
n

bn
|Tn − ETn| > r

)
≥ lim inf

n→∞

1

b2n
logP

(√
n

bn
|Tn − ETn| > r,

1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ ≤ ε
)

≥ lim inf
n→∞

1

b2n
log

[
P
(

1

bn
√
n

∣∣∣T̃n∣∣∣ ≥ r(1 + ε)

)
− P

(
1

n+ 1

∣∣∣∣∣
n+1∑
k=1

(Xk − 1)

∣∣∣∣∣ > ε

)]

=− r2(1 + ε)2

2σ2
.

(3.8)

From (3.7) and (3.8) and by the arbitrariness of ε, Theorem 3.1 can be proved. �

The following results are about the moderate deviation principle for the trimmed
sums.

Theorem 3.2. Let U1, U2, . . . , Un be a sequence of random variables with the uniform
distribution on the interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corresponding
order statistics. Let

Tn =

βn∑
i=αn

cn,iUn,i,

where {cn,i, 1 ≤ i ≤ n} is an array of constants, 0 < αn < βn ≤ n are some integers.
Suppose that {bn, n ≥ 1} is a sequence of positive numbers such that

bn →∞,
bn√
n
→ 0,

bn√
n

max
1≤k≤n

∣∣∣D̃n,k

∣∣∣→ 0,

and

1

n

[
(αn − 1)B2

n,αn +

βn∑
k=αn

B2
n,k

]
− n+ 1

n
D2
n → σ2,

where Bn,k =
∑βn
i=k cn,i and σ2 is a positive constant,

Dn =

βn∑
k=αn

Bn,k + (αn − 1)Bn,αn

n+ 1

and

D̃n,k =


Bn,αn −Dn, 1 ≤ k ≤ αn − 1

Bn,k −Dn, αn ≤ k ≤ βn
−Dn, βn + 1 ≤ k ≤ n+ 1

.

Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
n

bn
|Tn − ETn| > r

)
= − r2

2σ2
.
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P r o o f . It is easy to check

Tn =

βn∑
i=αn

cn,iUn,i =

βn∑
i=αn

cn,i
X1 + · · ·+Xi

X1 + · · ·+Xn+1

=S−1
n+1

[
Bn,αn

αn−1∑
k=1

Xk +

βn∑
k=αn

Bn,kXk

]
,

(3.9)

where Sn+1 = X1 + · · ·+Xn+1, and from (2.2), we have

ETn =
1

n+ 1

βn∑
i=αn

icn,i =
1

n+ 1

[
(αn − 1)Bn,αn +

βn∑
k=αn

Bn,k

]
.

So we can rewrite
√
n
bn

(Tn − ETn) as follows

√
n

bn
(Tn − ETn)

=

√
n

bn(n+ 1)

βn∑
k=αn

Bn,kXk +Bn,αn
αn−1∑
k=1

Xk −

(
βn∑

k=αn

Bn,k+(αn−1)Bn,αn

)
Sn+1

n+1∑n+1
k=1 Xk
n+1

=

√
n

bn(n+ 1)

βn∑
k=αn

(Bn,k −Dn)Xk + (Bn,αn −Dn)
αn−1∑
k=1

Xk −Dn

n+1∑
k=βn+1

Xk

∑n+1
k=1 Xk
n+1

(3.10)

where

Dn =

βn∑
k=αn

Bn,k + (αn − 1)Bn,αn

n+ 1
.

Let us define

T̃n :=

n+1∑
k=1

D̃nXk,

where

D̃n,k =


Bn,αn −Dn, 1 ≤ k ≤ αn − 1

Bn,k −Dn, αn ≤ k ≤ βn
−Dn, βn + 1 ≤ k ≤ n+ 1

.

Then for any λ ∈ R, from the condition

bn√
n

max
1≤k≤n+1

|D̃n,k| → 0,
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we have
1

b2n
logE exp

(
λbn√
n
T̃n

)
=

1

b2n
logE exp

(
λbn√
n

n+1∑
k=1

D̃n,kXk

)

=
1

b2n

n+1∑
k=1

logE exp

(
λbn√
n
D̃n,kXk

)

=− 1

b2n

n+1∑
k=1

log

(
1− λbnD̃n,k√

n

)

=
λ

bn
√
n

n+1∑
k=1

D̃n,k +
λ2

2n

n+1∑
k=1

D̃2
n,k +O

(
bn
n3/2

n+1∑
k=1

D̃3
n,k

)
.

It is easy to check that
n+1∑
k=1

D̃n,k = 0

and

1

n

n+1∑
k=1

D̃2
n,k =

1

n

[
(αn − 1)Bn,αn +

βn∑
k=αn

B2
n,k

]
− n+ 1

n
D2
n → σ2.

So we have
1

b2n
logE exp

(
λbn√
n
T̃n

)
→ λ2σ2

2

which implies, by the Gärtner-Ellis theorem [9], that for any r > 0,

1

b2n
logP

(
1

bn
√
n

∣∣∣T̃n∣∣∣ ≥ r)→ − r2

2σ2
. (3.11)

Next, by the similar proofs in Theorem 3.1, the desired result can be obtained. �

The following result is the large deviation principles for the linear combinations of
uniform order statistics.

Theorem 3.3. Let U1, U2, . . . , Un be a sequence of random variables with the uniform
distribution on the interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corresponding
order statistics. Let Tn =

∑n
i=1 cn,iUn,i, where {cn,i, 1 ≤ i ≤ n} is an array of constants.

Assume that

Bn,k =

n∑
i=k

cn,i, Dn =
1

n+ 1

n+1∑
i=1

Bn,i.

(1) Suppose that there is a positive number a1 > 0 such that

max
1≤k≤n

(Bn,k −Dn) ≤ a1,
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and there exists a function Λ1(λ, r), such that for any 0 < r < a1, λ ∈ [0, (a1 − r)−1],

lim
n→∞

1

n

n∑
k=1

log
1

1− λ(Bn,k −Dn − r)
= Λ1(λ, r).

Assume that 0 ∈ A1r where

A1r =
{

Λ
′

1(h, r) : Λ
′

1(h, r) exists and is continuous on

the right and strictly monotonic for h ∈ [0, (a1 − r)−1]
}
.

Then for any 0 < r < a1, we have

lim
n→∞

1

n
logP (Tn − ETn > r) = inf

λ>0
Λ1(λ, r).

(2) Suppose that there is a positive number a2 > 0 such that

max
1≤k≤n

(Dn −Bn,k) ≤ a2,

and there exists a function Λ2(λ, r), such that for any 0 < r < a2, λ ∈ [0, (a2 − r)−1],

lim
n→∞

1

n

n∑
k=1

log
1

1− λ(Dn −Bn,k − r)
= Λ2(λ, r).

Assume that 0 ∈ A2r where

A2r =
{

Λ
′

2(h, r) : Λ
′

2(h, r) exists and is continuous on

the right and strictly monotonic for h ∈ [0, (a2 − r)−1]
}
.

Then for any 0 < r < a2, we have

lim
n→∞

1

n
logP (Tn − ETn < −r) = inf

λ>0
Λ2(λ, r).

P r o o f . It is easy to check

Tn =

n∑
i=1

cn,iUn,i =

n∑
i=1

cn,i
X1 + · · ·+Xi

X1 + · · ·+Xn+1
=

n∑
k=1

Bn,kXk

X1 + · · ·+Xn+1
. (3.12)

By defining Bn,n+1 = 0, then from (2.2), we have

ETn =
1

n+ 1

n∑
i=1

icn,i =
1

n+ 1

n+1∑
i=1

Bn,i = Dn.
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Moreover, for any 0 < r < a1, we have

P (Tn − ETn > r) = P

(
n∑
k=1

(Bn,k −Dn − r)Xk > 0

)

and for any 0 < r < a2, we get

P (Tn − ETn < −r) = P

(
n∑
k=1

(Dn −Bn,k − r)Xk > 0

)
.

It is not difficult to show that for any λ ∈ [0, (a1 − r)−1],

Λ1n(λ, r) :=
1

n
logE exp

(
n∑
k=1

λ(Bn,k −Dn − r)Xk

)
→ Λ1(λ, r)

and for any λ ∈ [0, (a2 − r)−1],

Λ2n(λ, r) :=
1

n
logE exp

(
n∑
k=1

λ(Dn −Bn,k − r)Xk

)
→ Λ2(λ, r).

From the theorem of Plachky and Steinebach (see Lemma 2.1), the desired results can
be obtained. �

4. SOME APPLICATIONS

In the section, we give some applications, such as, the kth order statistics, Gini mean
difference statistics.

4.1. The kth uniform order statistics

In this subsection, we consider the large and moderate deviations for the kth uniform
order statistics. Some related properties for the ratios of order statistics from uniform
distributions are discussed recently (see Xu et al. [33], Xu and Miao [35]).

Proposition 4.1. Let U1, U2, . . . , Un be a sequence of random variables with the uni-
form distribution on the interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corre-
sponding order statistics. Let {kn, n ≥ 1} be a sequence of positive constants such that
kn = np + o(n), where p ∈ (0, 1). Suppose that {bn, n ≥ 1} is a sequence of positive
numbers such that

bn →∞,
bn√
n
→ 0.

Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
n

bn

∣∣∣∣Un,kn − kn
n+ 1

∣∣∣∣ > r

)
= − r2

2p(1− p)
.
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P r o o f . In fact, we choose the constants in the definition of the random variable Tn
in such a way: cn,kn = 1, cn,i = 0 (i 6= kn). In this case, we have Bn,1 = Bn,2 = · · · =
Bn,kn = 1, Bn,kn+1 = · · · = Bn,n = 0, Tn = Un,kn , ETn = kn

n+1 and

1

n

n∑
k=1

B2
n,k −

(
1

n+ 1

n∑
k=1

Bn,k

)2

→ p(1− p).

Hence from Theorem 3.1, Proposition 4.1 can be obtained. �

Proposition 4.2. Let U1, U2, . . . , Un be a sequence of random variables with the uni-
form distribution on the interval (0, 1) and Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corre-
sponding order statistics. Let {kn, n ≥ 1} be a sequence of positive constants such that
kn = np+ o(n), where p ∈ (0, 1). Then for any 0 < r < (1− p), we have

lim
n→∞

1

n
logP (Un,kn − p > r) = p log

p+ r

p
+ (1− p) log

1− p− r
1− p

and for any 0 < r < p, we have

lim
n→∞

1

n
logP (Un,kn − p < −r) = p log

p− r
p

+ (1− p) log
1− p+ r

1− p
.

P r o o f . As the proof of Proposition 4.1, we choose the constants in the definition of
the random variable Tn in such a way: cn,kn = 1, cn,i = 0 (i 6= kn). In this case,
we have Bn,1 = Bn,2 = · · · = Bn,kn = 1, Bn,kn+1 = · · · = Bn,n = 0, Tn = Un,kn ,
ETn = kn

n+1 → p. Hence for any λ ∈ [0, (1− p− r)−1], we have

Λ1(λ, r) =− lim
n→∞

1

n

n∑
i=1

log [1− λ(Bn,i −Dn − r)]

=− lim
n→∞

1

n

kn∑
i=1

log

[
1− λ

(
1− kn

n+ 1
− r
)]

− lim
n→∞

1

n

n∑
i=kn+1

log

[
1 + λ

(
kn
n+ 1

+ r

)]
=− p log [1− λ (1− p− r)]− (1− p) log [1 + λ (p+ r)]

and for any λ ∈ [0, (p− r)−1], we have

Λ2(λ, r) =− lim
n→∞

1

n

n∑
i=1

log [1− λ(Dn −Bn,i − r)]

=− lim
n→∞

1

n

kn∑
i=1

log

[
1− λ

(
kn
n+ 1

− 1− r
)]

− lim
n→∞

1

n

n∑
i=kn+1

log

[
1− λ

(
kn
n+ 1

− r
)]

=− p log [1 + λ (1 + r − p)]− (1− p) log [1− λ (p− r)] .
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By simple calculation, we have

∂Λ1(λ, r)

∂λ
= 0 =⇒ λ1 =

r

(p+ r)(1− p− r)

and
∂Λ2(λ, r)

∂λ
= 0 =⇒ λ2 =

r

(p− r)(1 + r − p)
.

From Theorem 3.3, Proposition 4.2 can be obtained. �

4.2. The kth order statistics for continuous random variables

A number of results for order statistics corresponding to continuous distribution func-
tions can be obtained by means of Smirnov’s transformation from the results for uniform
order statistics. For a random variable X with arbitrary distribution function F , let

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

By the right continuity of F , it follows that F (F−1(u)) ≥ u and F−1(F (x)) ≤ x. Thus,
u ≤ F (x) iff F−1(u) ≤ x. Hence for 0 ≤ F (x) ≤ 1,

P(X ≤ x) = F (x) = P(U ≤ F (x)) = P(F−1(U) ≤ x)

where U is a standard uniform distribution. Let X1, X2, . . . , Xn be a sequence of i.i.d.
random variables with a continuous and strictly increasing distribution function F , and
denote the ordered values by Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n. Let U1, U2, . . . , Un be a
sequence of random variables with the uniform distribution on the interval (0, 1) and
Un,1 ≤ Un,2 ≤ · · · ,≤ Un,n be the corresponding order statistics. Hence for any x ∈ R
we have

P(Xn,k ≤ x) = P(F (Xn,k) ≤ F (x)) = P(Un,k ≤ F (x)).

Furthermore, it is well known that (see David and Nagaraja [8, (2.3.7)]),

(Xn,1, . . . , Xn,n)
d
= (F−1(Un,1), . . . , F−1(Un,n)). (4.1)

There are some references to consider the large deviations, moderate deviations and
Bahadur’s asymptotic efficiency for the kth order statistics (see Miao et al. [21], Xu et
al. [32], Xu and Miao [34], Yao et al. [36])

Proposition 4.3. Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables having
common continuous and strictly increasing distribution function F with the density f(x)
such that supx:f(x)>0 |f

′
(x)| ≤ M , where M is a positive constant, and Xn,1 ≤ Xn,2 ≤

· · · ≤ Xn,n be the corresponding order statistics. Let {kn, n ≥ 1} be a sequence of
positive constants such that kn = np+ o(n), where p ∈ (0, 1). Suppose that {bn, n ≥ 1}
is a sequence of positive numbers such that

bn →∞,
bn√
n
→ 0.
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Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
n

bn

∣∣∣∣Xn,kn −G
(

kn
n+ 1

)∣∣∣∣ > r

)
= −r

2[f(G(p))]2

2p(1− p)

where G(x) = F−1(x).

P r o o f . Because of Xn,kn
d
= F−1(Un,kn), we have

P
(
Xn,kn >

rbn√
n

+G

(
kn
n+ 1

))
=P
(
Un,kn > F

(
rbn√
n

+G

(
kn
n+ 1

)))
=P
(
Un,kn >

kn
n+ 1

+
rbn√
n
f

(
G

(
kn
n+ 1

))
+
r2b2nθ1

2n

)
and

P
(
Xn,kn < −

rbn√
n

+G

(
kn
n+ 1

))
=P
(
Un,kn < F

(
−rbn√

n
+G

(
kn
n+ 1

)))
=P
(
Un,kn <

kn
n+ 1

− rbn√
n
f

(
G

(
kn
n+ 1

))
+
r2b2nθ2

2n

)
where |θ1| ≤M and |θ2| ≤M . From Proposition 4.1, the desired results can be obtained.

�

Proposition 4.4. Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables having
common continuous and strictly increasing distribution function F , and Xn,1 ≤ Xn,2 ≤
· · · ≤ Xn,n be the corresponding order statistics. Let {kn, n ≥ 1} be a sequence of
positive constants such that kn = np + o(n), where p ∈ (0, 1). Then for any r > 0, we
have

lim
n→∞

1

n
logP

(
Xn,kn −G

(
kn
n+ 1

)
> r

)
= p log

F (r +G(p))

p
+ (1− p) log

1− F (r +G(p))

1− p

and

lim
n→∞

1

n
logP

(
Xn,kn −G

(
kn
n+ 1

)
< −r

)
= p log

F (G(p)− r)
p

+ (1− p) log
1− F (G(p)− r)

1− p

where G(x) = F−1(x).
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P r o o f . Because of Xn,kn
d
= F−1(Un,kn), we have

P
(
Xn,kn > r +G

(
kn
n+ 1

))
=P
(
Un,kn > F

(
r +G

(
kn
n+ 1

)))
=P
(
Un,kn − p > F

(
r +G

(
kn
n+ 1

))
− p
)

and

P
(
Xn,kn < −r +G

(
kn
n+ 1

))
=P
(
Un,kn < F

(
−r +G

(
kn
n+ 1

)))
=P
(
Un,kn − p < F

(
−r +G

(
kn
n+ 1

))
− p
)
.

From Proposition 4.2, the desired results can be obtained. �

4.3. Gini statistics

Let us consider the following Gini’s mean difference

Gn =

∑n
i,j=1 |Ui − Uj |
n(n− 1)

,

where {Ui, i ≥ 1} be i.i.d. random variables with the uniform distribution on the interval
(0, 1) . Let Un,1 ≤ Un,2 ≤ · · · ≤ Un,n be the corresponding order statistics.

Proposition 4.5. Assume that {bn, n ≥ 1} is a sequence of positive numbers such that

bn →∞,
bn√
n
→ 0.

Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
n

bn
|Gn − EGn| > r

)
= −45r2

2
.

P r o o f . It is easy to see that

n∑
i,j=1

|Ui − Uj | =2

n∑
1≤i<j≤n

|Ui − Uj |

=2

n∑
1≤i<j≤n

|Un,i − Un,j | = 2

n−1∑
i=1

n∑
j=i+1

(Un,j − Un,i)

=2

n∑
i=1

(2i− n− 1)Un,i.
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Let

cn,i =
2(2i− n− 1)

n(n− 1)
and Bn,k =

n∑
i=k

cn,i,

then we have

Gn =

n∑
i=1

cn,iUn,i.

It is not difficult to check that

Dn =
1

n+ 1

n∑
k=1

Bn,k =
1

n

n∑
k=1

2(k − 1)(n− k + 1)

n(n− 1)
=

1

3
,

EGn =

n∑
i=1

cn,i
i

n+ 1
=

1

3
,

1

n

n∑
k=1

B2
n,k =

2

3

2n− 1

n− 1
− 2 +

4

30

(2n− 1)(3n2 − 3n− 1)

n2(n− 1)
→ 2

15
,

bn√
n

max
1≤k≤n

|Bn,k −Dn| → 0,

and
1

n

n∑
k=1

B2
n,k −D2

n →
1

45
.

So, from Theorem 3.1, Proposition 4.5 can be obtained. �

Proposition 4.6. Then for any 0 < r < 1
6 , we have

lim
n→∞

1

n
logP (Gn − EGn > r) = inf

λ>0

∫ 1

0

log
1

1− λ(2x− 2x2 − 1
3 − r)

dx.

and for any 0 < r < 1
3 , we have

lim
n→∞

1

n
logP (Gn − EGn < −r) = inf

λ>0

∫ 1

0

log
1

1− λ( 1
3 − 2x+ 2x2 − r)

dx.

P r o o f . It is easy to see that

Gn − EGn =

n∑
i=1

cn,i (Un,i − EUn,i) =

n∑
i=1

cn,i

(
Un,i −

i

n+ 1

)
where

cn,i =
2(2i− n− 1)

n(n− 1)
.
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It is not difficult to check that for any ε > 0, and for all n large enough, we have

max
1≤k≤n

(Bn,k −Dn) ≤ 1

6
+ ε, max

1≤k≤n
(Dn −Bn,k) <

1

3

where

Bn,k =

n∑
i=k

cn,i =
2(k − 1)(n− k + 1)

n(n− 1)
, Dn =

1

3
.

Now by Lemma 2.2, for any 0 < r < 1
6 , λ ∈ [0, ( 1

6 − r)
−1], we have

lim
n→∞

1

n

n∑
k=1

log
1

1− λ(Bn,k −Dn − r)
=

∫ 1

0

log
1

1− λ(2x− 2x2 − 1
3 − r)

dx

and for any 0 < r < 1
3 , λ ∈ [0, ( 1

3 − r)
−1],

lim
n→∞

1

n

n∑
k=1

log
1

1− λ(Dn −Bn,k − r)
=

∫ 1

0

log
1

1− λ( 1
3 − 2x+ 2x2 − r)

dx.

From Theorem 3.3, Proposition 4.6 can be obtained. �
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