Kybernetika 57 no. 6, 958-969, 2021

Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions

Yong Su and Radko MesiarDOI: 10.14736/kyb-2021-6-0958


Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones.


homogeneity, aggregation functions, quasi-homogeneity, invariantness




  1. J. Aczél: Lectures on Functional Equations and their Applications. Acad. Press, New York 1966.   CrossRef
  2. C. Alsina, M. J. Frank and B. Schweizer: Associative Functions. Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006.   CrossRef
  3. J. J. Dujmovic: Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158.   DOI:10.3406/ameri.1998.1400
  4. B. R. Ebanks: Quasi-homogeneous associative functions. Int. J. Math. Math. Sci. 21 (1998), 351-358.   CrossRef
  5. Y. Even and E. Lehrer: Decomposition-integral: unifying Choquet and the concave integrals. Economic Theory 56 (2014), 1, 33-58.   DOI:10.1007/s00199-013-0780-0
  6. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, New York 2009.   CrossRef
  7. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publisher, Dordrecht 2000.   CrossRef
  8. L. Lima, B. Bedregal, H. Bustince, E. Barrenechea and M. Rocha: An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355-356 (2016), 328-347.   DOI:10.1016/j.ins.2015.11.031
  9. R. E. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.   CrossRef
  10. G. Mayor, R. Mesiar and J. Torrens: On quasi-homogeneous copulas. Kybernetika 44 (2008), 6, 745-755.   DOI:10.1007/s00466-009-0406-3
  11. R. Mesiar, J. Li and E. Pap: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364.   DOI:10.1016/j.ijar.2012.07.008
  12. R. Mesiar and T. Rückschlossová: Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63-73.   DOI:10.1016/j.fss.2003.10.032
  13. T. Rückschlossová and R. Rückschloss: Homogeneous aggregation operators. Kybernetika 42(3) (2006), 279-286.   CrossRef
  14. A. Xie, Y. Su and H. Liu: On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems 287 (2016), 203-212.   DOI:10.1016/j.fss.2014.11.026
  15. Y. Su, W. Zong and R. Mesiar: Characterization of homogeneous and quasi-homogeneous binary aggregation functions. Fuzzy Sets and Systems, in press.   DOI:10.1016/j.fss.2021.04.020