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BIOCHEMICAL NETWORK OF DRUG-INDUCED
ENZYME PRODUCTION: PARAMETER ESTIMATION
BASED ON THE PERIODIC DOSING RESPONSE
MEASUREMENT

Volodymyr Lynnyk, Štěpán Papáček and Branislav Rehák

The well-known bottleneck of systems pharmacology, i. e., systems biology applied to phar-
macology, refers to the model parameters determination from experimentally measured datasets.
This paper represents the development of our earlier studies devoted to inverse (ill-posed) prob-
lems of model parameters identification. The key feature of this research is the introduction
of control (or periodic forcing by an input signal being a drug intake) of the nonlinear model
of drug-induced enzyme production in the form of a system of ordinary differential equations.
First, we tested the model features under periodic dosing, and subsequently, we provided an
innovative method for a parameter estimation based on the periodic dosing response measure-
ment. A numerical example approved the satisfactory behavior of the proposed algorithm.
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1. INTRODUCTION

Similar to other scientific domains, the expenses related to in silico modeling in pharma-
cology need not to be extensively apologized. Vis à vis both in vitro and in vivo exper-
iments, physiologically-based pharmacokinetic (PBPK) and pharmacodynamic models
represent an appealing tool for the assessment of drug safety before its approval, as well
as a viable option in designing dosing regimens [26]. The PBPK models aim to provide
quantitative descriptions of the absorption, distribution, metabolism, and excretion of
chemicals in organisms, based on key physiological, biochemical and physicochemical
factors of these processes [13]. Shortly, PBPK models represent the scientific extrap-
olations of dose-response analysis for humans, which is the major advantage of these
models as such analysis in vivo is only possible for other species (e. g., rodents), and
results remain far from validation for humans.

The application of PBPK models for the determination of internal (tissue) doses of
chemicals, concerning differences in species, routes, and kinetics, has been undertaken
since the 80s of last century [4, 6]. The PBPK models extrapolation has been explored
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in application to variability among individuals in a population [1, 2] as well as to the
different life stages [5] and drug-drug interactions [8, 22]. In order to simulate dose met-
rics of relevance to risk assessment, the PBPK models should reflect a balance between
the parsimony and plausibility principles [13]. The model structure should contain the
minimal but essential elements characterizing a system (i. e., parsimony principle) and
reflect the physiological reality, be consistent with the current state of knowledge (i. e.,
plausibility principle). The knowledge on the mechanisms of absorption, distribution,
metabolism [9] and excretion for the particular chemical should be reflected in the PBPK
model equations [10].

There are three major components of the PBPK model, concerning the system-specific
properties, the drug properties, and the structural specificity [23]. The organ mass or
volume, the blood flow, and the tissue composition represent system-specific properties.
The drug properties are enzymatic stability, plasma-protein binding affinity, transporter
activities, membrane permeability, and tissue affinity. The structural model is repre-
sented by the body’s organs and tissues (compartments) anatomically arranged and
linked by blood.

A hydrophilic chemical distributes homogeneously over the entire compartment, and
a one-compartment model might be sufficient in this case [13]. A multicompartmental
approach is needed for the chemicals with different pharmaco-kinetics in the different
tissues. The tissues similarity in chemical concentration versus time course behavior
is based on the blood perfusion rate: the richly perfused tissues and the poorly per-
fused ones. This approach should be considered for the model simplification and its
consistency with the intended purpose and the underlying data because the model com-
plexity and the number of compartments do not correlate with the accuracy of the model
approximation.

The relevant processes in the compartment are described based on the chemical law of
mass action and other biophysical laws, which finally take the form of non-linear ordinary
differential equations (ODEs), whose size is equal to the total number of substances
(further denoted as state variables). Finally, we point out that the estimation of unknown
kinetic parameters (in our case, these include permeability coefficients, association and
disassociation rates, elimination and production rates, etc.) is a major bottleneck in the
ODE model building process in systems pharmacology and metabolic engineering [12].

To be specific, the goal of this paper is to highlight the new aspects related to the in
silico computer modeling and simulations involved in PBPK models. On a (nonlinear)
model introduced by Luke et al. [14] and further developed by Duintjer Tebbens et al. [7],
we shall demonstrate the feasibility of the developed innovative method for parameter
estimation. A periodic signal feeds the model; the response is approaching a periodic
signal (for t → ∞) as well. Preliminary results in this direction were presented in [17].
This paper contains an extended and more detailed presentation of this topic.

Contribution of the paper

• The precise nonlinear description in the form of nonlinear ODEs with periodic
input is used as a base for the parameter identification algorithm, hence improving
precision in comparison with (usually employed) linear models.
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• A parameter identification algorithm based on the system’s time-varying (almost
periodic) response. This is in contrast with methods that make use of responses
on one-time doses of the drug (such methods have been used so far).

These features constitute the novelty contained in this paper.

Outline of the paper: In the next section 2, the model is described in detail. Sec-
tion 3 presents related numerical experiments discusses the relevance of our results and
possible consequences of the analysis for more general cases. The last section concludes
our work and points out some future goals.

Symbols: The symbol R denotes the set of real numbers, C stands for the set of
complex numbers, i is the imaginary unit.

2. MODEL FORMULATION

In this study, the problem of output regulation via a periodic input, being a drug intake,
is presented. This feature makes the model more realistic. For more details, the reader
is referred to other papers devoted to mathematical modeling of drug-induced enzyme
production networks, see [14, 7] and references within there. All necessary information
for the setting of model equations describing the action of pregnane X receptor (PXR)
causing the xenobiotic (drug) metabolizing enzyme induction are schematically given
in Figure 1. Moreover, in Tables 1 and 2, the particular processes are displayed. The
substances there are the state variables involved. The model parameters are the rate
constants which can be taken from previously published papers; their values are reported
in Table 3. To be specific, the sources of the values are taken from [14] (denoted by
“Luke” in Table 3), [7] (denoted by “JDT”) and [25] (denoted by “Svecova”).

Fig. 1. Graph representation of the biochemical network associated

with drug metabolism and the PXR-mediated drug-induced enzyme

production process. Species nodes (identified by letters) are drawn as

circles, and reaction nodes identified by numbers represent reactions

and transport between species nodes. The grey species node DNA is

not involved in the ODE system here presented.
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No. Description of the respective process within the network Parameters
1 Xenobiotic (e. g. drug rifampicin) enters the cell (by permeation) k1
2 PXR binds to drug, formation of PR dimer (reversible) k2, k4
3 PR dimer binds to DNA (increasing transcription) k5
4 mRNA background production k7
5 mRNA degradation k6
6 translation of mRNA (CYP3A4 production) k8
7 degradation of CYP3A4 protein k9
8 drug degradation (metabolizing by CYP3A4) k3

Tab. 1. The transport and reaction processes description with

respective model parameters.

No. Description of the respective state variable Old name
1 Xenobiotic (drug) concentration – exterior Xext

2 Xenobiotic concentration – interior Xint

3 PXR concentration PXR
4 PR dimer concentration PR
5 mRNA concentration mRNA
6 CYP3A4 protein concentration CYP3A4

Tab. 2. The description of model state variables.

Introducing the new notation for state variables, i. e. for a size six vector x according
to

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

 ≡


Xext(t)
Xint(t)
PXR(t)
PR(t)

mRNA(t)
CYP3A4(t)

 ,

then the system of differential equations describing the process under study can be
written as follows

dx(t)

dt
=


x′1(t)
x′2(t)
x′3(t)
x′4(t)
x′5(t)
x′6(t)

 = Ax(t) +B(t) +


ad(t)

0
0
0
0
0

 , (1)
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JDT-Param. Value Unit Source New name
kup 6.55 · 10−3 min−1 Luke k1
kdis 1.03·10−4 min−1 Luke k4
kmRNA 39.3 min−1 Luke k5
kmRNA,deg 0.04 min−1 Luke k6
kcyp 2.5 min−1 Luke k8
kcyp,deg 2.7 · 10−4 min−1 Luke k9
kassoc kdis/ksv µM−1min−1 Svecova k2
kmet 2.47·10−5 µM−1min−1 Luke k3
kmRNA,back 1.36·10−7 µM min−1 JDT k7
sPXR 9.47 · 10−7 µM Luke k0
ksv 5.6 µM Svecova ksv
d(t) 0– 20 µMmin−1 Luke&JDT ad(t)
aper 0– 20 µM dose per period aper

Tab. 3. The values of model parameters.

with the constant matrix (the linear part of the system)

A =


−k1 k1 0 0 0 0
k1 −k1 0 k4 0 0
0 0 0 k4 0 0
0 0 0 −k4 0 0
0 0 0 k5 −k6 0
0 0 0 0 k8 −k9

 , (2)

and the vector representing nonlinear (quadratic) and constant (zero order) parts

B(t) =


0

−k2 · x2(t)x3(t)− k3 · x2(t)x6(t)
−k2 · x2(t)x3(t)
k2 · x2(t)x3(t)

k7
0

 , (3)

the initial conditions are

x(0) =


x1(0)
x2(0)
x3(0)
x4(0)
x5(0)
x6(0)

 =



0
0
k0
0
k7

k6
k7k8

k6k9

 . (4)

Elsewhere, e. g. in [7], the initial condition x1(0) represented the amount of drug just
after initially applied dose (x1(0) = 10 µM). Here, the input (drug dosing) is modeled
via a periodic function, and the initial state of drug concentration is the steady state
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without dosing, i. e. x1(0) = 0; the other components of initial state remain the same,
i. e. x3(0) = k0 = 9.47 · 10−7µM, x5(0) = k7

k6
= 7.075 · 10−6µM and x6(0) = k7k8

k6k9
=

6.55·10−2µM, which are the initial concentration for PXR and steady state concentrations
for mRNA and CYP3A4, respectively.

Remark 2.1. The function ad(t) (see the last but one row of Table 3) represents the
dosing rate (units [µM/min]) of drug added into the system, and kup[1/min] is the
first order diffusion coefficient encompassing the permeability coefficient and area of
the membrane, kassoc [1/min], and kdis [1/min] are corresponding association, and dis-
sociation constants, respectively. An important parameter (shown in [7]) is the total
concentration (binded and free) of PXR, i. e. sPXR, here denoted as k0 [µM ].

Remark 2.2. Our setting of the input variable, i. e., using a dosing function, is more
general than it is made otherwise, e. g., in [14], where the dosing function ad(t) is not
used. Instead, the administered dose is incorporated by putting the initial value of
Xext to equal this dose (thus, it is only the Cauchy initial value problem that can be
analyzed).

Experimental data & what can be measured

In principle, there are two possible datasets

1. Time series of fold induction of mRNA
(
state variable x5(t)

)
while the drug ri-

fampicin is being applied (either in one bolus or periodically).

2. A table of data relating x5(t∗) vs. aper, i. e. dose dependent induction of mRNA
(state variable x5(t)) in the absence or presence of a total amount of one bolus
(1, 2, 5, 10, 15, 20 µM) of drug rifampicin, for a specific time instant, e. g. for
t∗ < T = 24 (in hours after dosing).

Further, in this paper, we deal with time series, case 1, only.
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Fig. 2. Periodic dosing: Time series data for daily dosing of 20 µM of

rifampicin (applied during 1 minute). Left: States x1(t) Right: Data

for x2(t) over 5 days time span.
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Fig. 3. Periodic dosing: Time series data for daily dosing of 20 µM of

rifampicin. Left: States x3(t) Right: Data for x4(t) over 5 days time

span.
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Fig. 4. Periodic dosing: Time series data for daily dosing of 20 µM of

rifampicin. Left: States x5(t) Right: Data for x6(t) over 5 days time

span.

3. IDENTIFICATION OF MODEL PARAMETERS

The main objective of developing an identification method was its reliability. To achieve
this goal, it is necessary to excite all identified system modes sufficiently. A response to
an aperiodic input or initial conditions does not satisfy this requirement. This happens
because the system exhibits fast and slow dynamics. The effects of the fast dynamics
would be hard to catch by the aperiodic signal as they attenuate rapidly. Thus, a method
based on a periodic excitation was proposed. This achieves a permanent excitation of
the whole dynamics of the system. Moreover, periodic excitation also corresponds well
to the practical operating conditions of the system as in practice; the dosing is usually
periodic. In the proposal of the identification algorithm, we assume that the periodic
excitation has been conducted for a sufficiently long time so that the transient part of
the response is attenuated enough. Hence the identification is based on the investigation
of the periodic signals.
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The model parameters in the resulting dynamical system (1), comprised in matrices
(2) – (3), are the rate constants that can be taken from previously published papers;
their values are reported in the Table 3.

In general, the values of some model parameters ki, i = 1, . . . , 9 cannot be easily
obtained. This is applied above all for the parameters k3 and k0; let see Figure 9 in [14],
where the sensitivity of the state variable mRNA (our state variable x5(t)) concerning
the model parameters is drawn1. While the parameter k0 estimation was extensively
studied in [7], here, we focus on the drug metabolization constant – parameter k3, see
the last row of Table 1, and for the literature (nominal) value, let see Table 3.

An algorithm for estimation of the parameter k3 is described. A similar procedure
can be developed for the identification of other model parameters.

Estimation of the drug metabolization constant (parameter k3) – algorithm
description

Let us briefly describe the proposed procedure: The response of the system to the
periodic input (the periodic dosing) converges to a periodic function, let see Figures 2, 3

and 4. Hence, one can apply the fast Fourier transform (FFT) to the system’s response
with a small error. However, the results of the FFT are dependent on the parameter
k3. Nevertheless, the function that describes the relationship between parameter k3 and
these coefficients can be approximated. Another fact that needs to be considered is the
limited availability of certain quantities: only the values of the function x5 (representing
the temporal dependency of the mRNA concentration) are measurable in practice. Hence
the identification algorithm is dependent solely on values of the function x5.

Now the procedure is described in a more detailed way. First, we make the following
assumption:

Assumption 3.1. Assume the value of parameter k3 lies in the interval [k3,min, k3,max] ⊂
[0,∞).

Remark 3.2. Assumption 3.1 is quite natural in practice. Usually, the bounds on
the value of the constant to be estimated are known; the purpose of the identification
algorithm is to deliver a precise mode value of this parameter.

As we are going to deal with solutions of (1) (especially with x5) with different values
of k3 in the subsequent text, the following notation will be helpful.

Notation: Let Assumption 3.1 hold. Denote by x5,k the solution x5 of (1) with
parameter k3 satisfying k3 = k.

Choose an integer N > 1 and define a sequence {ki3 | i = 1, . . . , N} so that k
(1)
3 =

k3,min < · · · < k
(i)
3 < k

(i+1)
3 < · · · < k

(N)
3 = k3,max.

Assume also the response of the periodic function ad(t) and (4) converges to a periodic
signal with the period denoted by T . This period is determined only by the input period
(the dosing) and is independent of the value of the constant k3. This follows from the

1 This issue of parameter identifiability is closely related to the condition number (regularity) of the
sensitivity matrix [3]; however, it is out of the scope of our present study.
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fact that the periodic dosing can be regarded as an output of a periodic system. Such
a system is naturally neutrally stable ([11, 19, 21]). As equations (1) describe a stable
system, the center-manifold theory yields that the response of (1) converges to a periodic
function with a period equal to the period of the dosing, see, e. g., [24] or [18]. This fact
has been used by the authors for the identification of model parameters of a biological
system (algae bioreactor) in [20] and [16].

From the above considerations follows that, for ε > 0, there exists t > 0 so that
|x

5,k
(i)
3

(τ)− x
5,k

(i)
3

(τ +mT )| ≤ ε for every m ∈ N, τ ≥ t and every i = 1, . . . , N .

Let t > 0 be as above. For every i = 1, . . . , N define x̄i = x
5,k

(i)
3
|[t,t+T ]. Then, an

integer M > 0 is chosen and for every i, the FFT is applied to the sequence x̄i(tj) where

tj = t+
T

M − 1
(j − 1), j = 1, . . . ,M. (5)

For every i, the result is a sequence of Fourier coefficients ξi,j ∈ C, i = 1, . . . , N ,
j = 1, . . .M .

The next step is to apply the polynomial approximation of coefficients ξi,j . This
means, for every j = 1, . . . ,M , real-valued polynomials of one real variable ρj(κ), ιj(κ)
are sought so that the cost functional

J(j) =

N∑
i′=1

‖ρj(k(i
′)

3 ) + iιj(k
(i′)
3 )− ξi′,j)‖2 (6)

is minimized.
The order of the approximating polynomials ρ and ι must be determined a priori and

carefully chosen. If the degree of these polynomials is too low, the approximation is not
precise enough. On the other hand, raising the degree too much overly increases the
demand for storing their coefficients. The specific choice thus depends on the available
soft- and hardware, and universal advice cannot be given.

The procedure described so far is conducted using simulations; hence it does not re-
quire any experimental data. However, suppose experimental data (denoted as x5) with
the same period of dosing are available. In that case, one can estimate the parameter k3
governing the experimental system as follows: taking the equal value of t as it was used
in simulations, let us denote x̄ = x5|[t,t+T ]. Then, apply the FFT on the sequence x̄(tj)
where the points tj satisfy (5). Denote the result of this application of the FFT by ξj .

Then, one searches for a parameter k ∈ [k3,min, k3,max] so that

M∑
j=1

‖ρj(k) + iιj(k)− ξj‖2 (7)

is minimized. The choice of the optimization algorithm is then a technical problem.

Numerical example

Let us demonstrate the algorithm described in the previous section on the following
example having some similarities with [20]. First, for the purpose of this paragraph,
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denote by k3,nom the value 2.47 · 10−5 which is the value of the parameter k3 presented
in Table 3. For the purpose of this paper, it will be called the “nominal value”.

Then, the simulations were computed for 10 different values of the parameter k3,
thus i = 10. To be specific, the simulations were conducted for 0.25k3,nom, 0.5k3,nom,
0.75k3,nom, 0.8k3,nom, k3,nom, 1.05k3,nom, 1.25k3,nom, 1.5k3,nom, 1.75k3,nom, and finally
2k3,nom. In all these computations the input was periodic with period T = 1 day. The
software package Simulink was used to obtain the simulations [15].

By inspecting the simulations, one can see that after t = 4 day, the system’s response
does only insignificantly differ from a periodic signal. Hence the restrictions of the
solutions of (1) on the interval corresponding to the fifth day were used to obtain the
Fourier coefficients.
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Fig. 5. The real part (top) and imaginary parts (bottom) of Fourier

coefficients ξ4,j corresponding to k3 = 0.8k3,nom (marked by ×) and

ξ7,j which correspond to k3 = 1.25k3,nom (marked by +). The second

index j (in ξi,j) refers to the Fourier coefficient number (in x-axis).

The total number of Fourier coefficients for one value of i was M = 144. This
choice requires finding 288 polynomials approximating both real and imaginary parts of
all 144 Fourier coefficients. Choosing a suitable number of Fourier coefficients used to
estimate the parameter k3 will be investigated soon. A too high value of the number
of Fourier coefficients is burdensome and time-consuming; on the other hand, if there
are not enough Fourier coefficients to approximate, the results can be unsatisfactory.
A similar situation occurs in choosing the degree of the approximating polynomial. In
our example, it turned out that a suitable choice was to use polynomials of the third
order. For the sake of illustration, Figure 5 shows the real part (top) and imaginary
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Fig. 6. Numerical process of the functional (7) minimization. The

data were generated using the value of parameter k3 (in y-axis as

multiples of k3,nom) as 0.9k3,nom.

parts (bottom) of coefficients ξ4,j (corresponding to k3 = 0.8k3,nom) and ξ7,j (which
corresponds to k3 = 1.25k3,nom).

As no real-world data were available, the value k3 = 0.9 · k3,nom which is 90% of the
value from Table 3 was used to emulate the measured values, i. e., the simulation using
this value of parameter k3 was conducted. Again, the restriction of the function x5 on
the interval corresponding to the fifth day was used to obtain the Fourier coefficients.

Then the minimization algorithm with the cost functional defined by (7) was started.
Here, the minimization was computed with the help of the function fminsearch which is a
part of the Matlab package. The algorithm yields as a resulting value k3 = 0.894 ·k3,nom.
How the iterations converge to this value illustrates Figure 6. Here, the number of
iterations is on the x-axis while the resulting value of k3 (expressed as the multiple of
k3,nom) is on the y-axis. It can be seen that the minimization procedure yields the result
after approximately 20 iterations.

When dealing with periodic signals, we mainly focused on finding the behavior im-
posed by the first several harmonics as these usually characterize the periodic signal well.
Hence the method based on the Fourier coefficients was developed. This is the main
reason why the FFT-based algorithm was used. The fact that the FFT is an efficient
algorithm encouraged us to develop this kind of algorithm. Note that the algorithm is
based on the least-squares optimization method. This method itself is dependent on
several parameters that have a significant influence on its efficiency and speed. Hence a
more detailed comparison in terms of speed, computational complexity, etc., is omitted.
Moreover, in the context of this paper, this is a rather technical matter.
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4. CONCLUSION AND OUTLOOK

Resuming, on the paradigmatic example of rifampicin metabolism and the PXR-mediated
Xenobiotic Metabolizing Enzyme (XME) induction process, see Figure 1, we exposed an
appealing tool of control engineering applied to systems biology, i. e., regulation based
on the periodic input signal, being the xenobiotic (drug rifampicin) dosing. After test-
ing the model features under periodic and nonrecurring dosing, we finally proposed an
innovative method for a parameter estimation based on the periodic dosing response
measurement. The method dwells on the application of the fast Fourier transform on
the response of the system together with the polynomial approximation of Fourier co-
efficients. The problem of choosing a suitable number of Fourier coefficients used for
estimation of the respective model parameters is left to the near future. A numerical
example documented the satisfactory behavior of the proposed algorithm.
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