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LOCAL LINEAR ESTIMATION OF CONDITIONAL
CUMULATIVE DISTRIBUTION FUNCTION IN
THE FUNCTIONAL DATA: UNIFORM CONSISTENCY
WITH CONVERGENCE RATES

Chaima Hebchi and Abdelhak Chouaf

In this paper, we investigate the problem of the conditional cumulative of a scalar response
variable given a random variable taking values in a semi-metric space. The uniform almost
complete consistency of this estimate is stated under some conditions. Moreover, as an appli-
cation, we use the obtained results to derive some asymptotic properties for the local linear
estimator of the conditional quantile.
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1. INTRODUCTION

The conditional estimation is an important field in statistics which dates back to Stone
[26] and has been widely studied in the real case. It is useful in all domains of statistics,
such as time series, survival analysis and growth charts among others, see Koenker [18,
19] for a review. There exist extensive literature and various nonparametric approaches
in conditional estimation for independent samples and dependent non-functional or func-
tional observations. Among the lot of papers dealing with conditional estimation in finite
dimension, one can refer for example to key works of Stute [27], Samanta [25], Portnoy
[21], Koul and Mukherjee [20], Berlinet et al. [3], Honda [16], Gannoun et al. [15] and
Yu et al. [33]. This paper is concerned with conditional distribution estimation when
the data are both independent and the covariates are of functional nature. We use
local polynomials with kernel weights as estimation method and we state the uniform
almost complete convergence of F x which is the estimator of the conditional distribution
function of Y given X = x.

Noting that, these questions of the modelization statistic of functional data has known
a growing interest among theoretical and applied statisticians (see Bosq [5], Ramsay and
Silverman [23] for the parametric model, Ferraty and Vieu, [13], for the nonparametric
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case). In this context, of functional statistics, the estimation of the conditional cumu-
lative distribution function has great importance. It is involved in many applications,
such as reliability or survival analysis. Moreover, as the conditional distribution and its
derivative (the conditional density function) provide information about the relationship
between X and Y , they lead to some prediction methods, such as the conditional mode,
the conditional median or the conditional quantiles. The literature on this topic is quite
important (see Ferraty et al. [13] for a list of references). In this vast variety of papers,
the authors use the Nadaraya–Watson techniques as estimation method which is a par-
ticular case of (1) by taking b = 0. However, it is well known that a local polynomial
smoothing has various advantages over the kernel method, in particular, this method
has superior bias properties to the previous one (see Fan and Gijbels [11] for an exten-
sive discussion on the comparison between both methods, in the multivariate case). In
the nonfunctional case, the local polynomial fitting has been the subject of considerable
study. Key references on this topic are Fan [10], Fan and Gijbels [11], Fan and Yao [12]
and the references therein.

However, only a few results are available for local linear modeling in functional statis-
tics. Indeed, the first result in this topic were obtained by Baillo and Grané [2].

They studied the local linear estimator of the regression function when the explana-
tory variable takes values in a Hilbert space. However, The general case where regressors
are not Hilbertian has been considered by Barrientos-Marin et al. [1]. Recall that in
the i.i.d setting, Barrientos–Marin et al. [1] introduced the local linear estimator of
the regression operator of a scalar response Y on an explanatory functional variable X,
this method had several advantages like making the estimator computation easy and
fast while keeping good predictive performance. In this pioneering work, the authors
obtained the almost complete convergence (with rate) of the proposed estimate. We
return to Boj et al. [4] for another alternative version for the functional local linear
modeling. More recently, Demongeot et al. [7] consider the local polynomial modeling
of the conditional density function when the explanatory variable is functional and the
quadratic error of this estimator has been treated by Rachdi et al. [22]. Thereafter, the
almost-complete convergence with rates of the local linear estimator of the conditional
cumulative distribution is stated by Demongeot et al. [9].

In fact, as the conditional distribution and its derivative (the conditional density
function) provide information about the relationship between X and Y , they lead to
some prediction methods, such as the conditional mode, the conditional median and
the conditional quantiles. Recall that in the i.i.d setting, Barrientos-Marin et al. [1]
introduced the local linear estimator of the regression operator of a scalar response Y on
an explanatory functional variable X, as this method had several advantages like making
the estimator computation easy and fast while keeping good predictive performance
Demongeot et al. [8] and Rachdi et al. [22] have used this method to estimate the
conditional density. Thereafter, the almost-complete convergence with rates of the local
linear estimator of the conditional cumulative distribution is stated by Demongeot et
al. [9].

In the iid setting, our work focus on the local linear estimation of the conditional
cumulative distribution for functional data. In section 2, we started by clarifying our
model and under some assumptions mentioned in section 3 the main asymptotic results
are stated in section 4. In section 5, we will exploit these results to the conditional
quantile estimation.
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2. THE MODEL

In the study of the conditional distribution for functional data, we observe n pairs
(Xi, Yi) for i = 1, . . . , n identically distributed as (X,Y ), the latter is valued in F × R,
where F is a semi-metric space equipped with a semi-metric d. We suppose for x ∈ F
that there exists a regular version of conditional probability of Y given X = x, which
is absolutely continous with respect the Lebesgue measure on R. this work aims to
state the uniform almost complete convergence of F̂ x which is the estimator of the
conditional distribution function of Y given X = x and this estimator is based on the
local linear method. In order to obtain the functional local linear estimator of the
conditional distribution function, we consider the function F x(·) as a regression model
with the response variable H(h−1H (· − Yi)) (see Fan and Gijbels [11]) and by the studies
of Barrientos-Marin et al. [1], Demongeot et al. [7] and Demongeot et al. [8], the
functional local linear estimator is based on the minimization of the following quantity:

(â, b̂) = arg min
(a,b)∈R2

n∑
i=1

(h−1H H(h−1H (y − Yi))− a− bβ(Xi, x))2K(h−1K δ(Xi, x)) (1)

where â is the estimator of the conditional distribution function β(·, ·) and δ(·, ·) are two
functions defined from F × F to R, such that:

∀ξ ∈ F , β(ξ, ξ) = 0, and d(·, ·) = |δ(·, ·)|.

K and H are Kernels and hK = hK,n (resp. hH = hH,n) is chosen as a sequence of
positive real numbers and each of them converges to 0 when n→∞.

Clearly, by using a simple algebra, we can obtain explicitly the following definition
of F̂ x:

F̂ x(y) =

∑n
i,j=1Wi,j(x)H(h−1H (y − Yi))∑n

i,j=1Wi,j(x)
(2)

where

Wi,j(x) = β(Xi, x)(β(Xi, x)− β(Xj , x))K(h−1K δ(x,Xi))K(h−1K δ(x,Xj))

with the convention 0/0 = 0.
It’s clear that if b = 0, we obtain from (1) the Nadaraya–Watson estimator studied.

3. ASSUMPTIONS

The purpose of this paper is to establish the uniform almost complete convergence of F̂
on some subset SF of F , such that:

SF ⊂ ∪dnk=1B(xk, rn)

where xk ∈ F and rn (resp dn) is a sequence of positive real numbers. All along the
paper, x will denote a fixed point in F and φx(r1, r2) = P(r2 ≤ δ(X,x) ≤ r1).

Then, we assume that our nonparametric model satisfies the following conditions:
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(H1) There exists a differentiable function φ(·), such that:
∀x ∈ SF , 0 < Cφ(h) ≤ φx(h) ≤ C ′φ(h) <∞ and ∃η0 > 0,∀η < η0, φ

′
(η) < C,

where C and, C
′

are strictly positive constants and where φ
′

denotes the first
derivative of φ.

(H2) The conditional distribution function F x is such that: there exist b1 > 0, b2 > 0,
∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SF × SF

|F x1(y1)− F x2(y2)| ≤ C(db1(x1, x2) + |y1 − y2|b2)

where C is a positive constant.

(H3) the function β(·, ·) is such that:

∀x
′
∈ F , C1d(x, x

′
) ≤| β(x, x

′
) |≤ C2d(x, x

′
) where C1 > 0 and C2 > 0

and, for some strictly positive constant C
′
, the following Lipschitz’s condition:

∀(x1, x2) ∈ SF × SF : |β(x1, x
′
)− β(x2, x

′
)| ≤ C

′
d(x1, x2).

(H4) K is a positive, differentiable function with support [−1, 1] and, for some strictly
positive constant C, the following Lipschitz’s condition:

| K(x)−K(y) |≤ C | | x | − | y | | .

(H5) The kernel H is a differentiable, positive, bounded and Lipschitzian function, such
that: H is of class C2, of compact support and satisfies:∫

|t|b2H(1)(t) dt <∞.

(H6) the bandwidth hk satisfies: there exists an integer n0, such that:

∀n > n0,−
1

Φx(hK)

∫ 1

−1
φx(zhK , hK)

d

dz
(z2K(z)) dz > C3 > 0

and

hK

∫
B(x,hK)

β(u, x) dP (u) = o
(∫

B(x,hK)

β2(u, x) dP (u)
)

where B(x, r) denotes the closed-ball and dP (x) is the cumulative distribution of
X.

(H7) for rn = O
(

lnn
n

)
, and for some γ ∈ (0, 1), for n large enough the sequence dn

satisfies:
(lnn)2

n1−γh2Hφ(hk)
< ln dn <

n1−γh2Hφ(hk)

lnn

and:
∞∑
n=1

n

(3γ + 1)

2 d1−βn <∞, for some β > 1.
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We notice that conditions (H1) and (H7) are linked with the topological structure of
the functional variable, hypothesis (H2) is a Lipschitz condition which characterizes the
functional space of our model and it’s allowed to state the rate of convergence. The
assumptions (H4), (H6) are the same as those mentioned in Barrientos-Marin et al. [1]
and Demongeot et al. [8]. (H5) is technical condition.

4. ASYMPTOTIC RESULTS

Before giving the asymptotic result,we introduce the following notations

F̂ xN (y) =
1

n(n− 1)EW12

n∑
i,j=1

Wi,jHi(h
−1
H (y − Yi)

and

f̂xD =
1

n(n− 1)EW12

n∑
i,j=1

Wi,j .

Theorem 4.1. Under (H1) – (H7), we obtain that:

sup
x∈SF

sup
x∈SR

|F̂ x(y)− F x(y)| = O(hb1k + hb2H ) +Oa.co

(√
ln dn

n1−γφ(hK)

)
.

Remark that, the theorem’s proof can be deduced directly from the following decom-
position

F̂ x(y)− F x(y) =
1

f̂xD

{(
F̂ xN (y)− E[F̂ xN (y)]

)
−
(
F x(y)− E[F̂ xN (y)]

)}
+

F̂ x(y)

f̂xD

(
1− f̂xD

) (3)

in addition Lemmas 4.2, 4.4 and 4.5 below (for which the proofs are given in the Ap-
pendix) lead us to get Theorem 4.1.

Lemma 4.2. under assumptions (H1), (H3), (H4), (H5) and (H6), we obtain that:

sup
x∈SF

|f̂xD − 1| = Oa.co

(√
ln dn
nφ(hK)

)
.

Corollary 4.3. Under the assumptions of Lemma 4.2, we have that:
∞∑
n=1

P
(

inf
x∈SF

f̂xD <
1

2

)
<∞.

Lemma 4.4. Under assumptions (H1), (H2), (H4) and (H5) we obtain that:

sup
x∈SF

sup
y∈SR

|F x(y)− E[F̂ xN (y)]| = O(hb1K ) +O(hb2H ).

Lemma 4.5. under the hypotheses (H1) – (H7) we obtain that:

sup
x∈SF

sup
y∈SR

|F̂ xN (y)− EF̂ xN (y)| = Oa.co.

(√
ln dn

n1−γφ(hK)

)
.
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5. APPLICATION: CONDITIONAL QUANTILE ESTIMATION

The purpose of this section is to state the asymptotic convergence of the conditional
functional quantile, denoted by tθ(x) for θ ∈ [0, 1]. For this aim, we will need the
following assumptions:

(H8) ∀ε0 > 0,∃η > 0,∀r : SF → SR, we have that:

sup
x∈SF

|tθ(x)− r(x)| ≥ ε0 ⇒ sup
x∈SF

|F x(r(x))− F x(tθ(x))| ≥ η.

(H9) there exists some integer j > 1 such that ∀x ∈ SF , the function F x is j-times
continuously differentiable on interior (SR) with respect to y, and:

F x(l)(tθ(x)) = 0, if 1 ≤ l < j
andF x(j)(·)is uniformly continuous on SR
such that|F x(j)(tθ(x))| > C > 0

where F x(j) denotes the jth order derivative of the conditional distribution F x.

The estimator of tθ(x) is the random variable t̂θ(x) which defined by

t̂θ(x) = inf{y ∈ R, F̂ x(y) ≥ θ}

and we can get the following corollary

Corollary 5.1. Under the hypotheses of Theorem 4.1 and if conditions (H8) – (H9) are
satisfied, we get

sup
x∈SF

|t̂θ(x)− tθ(x)| = O(hb1K + hb2K ) +Oa.co.

(√
ln dn

n1−γφ(hK)

)
.

6. SIMULATION STUDY

We first construct the simulation of the explanatory functional variables. In the second
part, we focus on the ability of the nonparametric functional regression to predict re-
sponses variable from functional predictors. finally we illustrated the MONTE-CARLO
methodology and we will appropriate to test the efficiency of the asymptotic normality
results parallel the practical experiment.

For this purpose, we consider the following process explanatory functional variables
for n = 350:

Xi(t) = 1− sin(2Ωit)αi + Ωit , ∀t ∈ [0, 3] (4)

where αi and Ωi are n independent real random variables (r.r.v.) uniformly distributed
over [0.3; 2] (resp. [1; 3]),t is assumed that these curves are observed on a discretization
grid of 100 points in the interval. These functional variables are represented on the
Figure 1.
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Fig. 1. The curves Xi=1,...,200.

For response variables Yi, we consider the following model for all i = 1, . . . n and j =
1, . . . 100:

Y = r(X) + ε

where r(x) =
∫ tj
0

1
1−Xi(v)2

dv and ε is a centered normal variable and assumed to be

independent of (Xi)i . Our goal in this illustration is to show the usefulness of conditional
cumulative in a context of forecasting. Thus the use of optimal parameters of the
conditional cumulative and without theoretical validity.

Now, we precise the different parameters of our estimators. Indeed, first of all, it is
clear that the shape of the curves allows us to use

d(x1, x2) =

√∫ 1

0

(x1(t)− x2(t))2 ; ∀x1, x2 ∈ H where H is semi-metric.

We choose particularly the quadratic kernels defined by

3

2
(1− x2) x ∈ [0, 1].

In this illustration, we select the functional index θ on the set of eigenvectors of the
empirical covariance operator.

1

200

200∑
i=1

(Xi − X̄)t((Xi − X̄)).

Indeed, we recall that the ideas can be adapted to find a method of practical selection
for θ. However, this adaptation in the case of the conditional density require tools and
additional preliminary results.



826 C. HEBCHI AND A. CHOUAF

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1
0

−
8

−
6

−
4

−
2

0

Fig. 2. Predicted functional responses (solid lines); observed

functional responses (dashed lines).

For this purpose, we divide our observations on two packets learning sample (Xi, Yi)i=1,...200

and test sample and (Xi, Yi)i=201,...250. For the choice of smoothing parameters hK and
hH , we will adopt the selection criterion used by Ferraty and Vieu [13] in the case of
the kernel method for which hK and hH are obtained. by minimizing the next criterion

for each Xi in the sample of the test err(hK , hH) = |Yi∗ − θ(Xi∗)| (5)

where i∗ denotes the index of the nearest curve Xi from all the curves of the learning
sample. Now, let us describe the parameter of the estimator:

F̂ x(y) =

∑n
i,j=1Wi,j(x)H(h−1H (y − Yi))∑n

i,j=1Wi,j(x)
, ∀y ∈ R. (6)

In this simulation study, we assume the quality of prediction by compared between the
predicted functional responses (i. e. F̂ (x, y) for any X in the testing sample) versus the
observed functional responses (i. e. F (x, y)) as in Figure 2. However, if one wishes to
assess the quality of prediction for the whole testing sample, it is much better to see
what happens direction by direction.

In other words, displaying the predictions onto the direction ek,n amounts to plot-

ting the 50 points (< F (xi, y), ek >,< F̂ (xi, y), ek >)i=201,...,250. Figure 3 proposes
a componentwise prediction graph for the two first components (i. e.k = 1, 2). The
percentage of variance explained by these 2 components are 99.8% and 0.9% (i. e.

0.998 = (
∑2
k=1 θ̂k/

∑100
k=1 θ̂k), where θ̂1 > θ̂2 > . . . denotes the eigenvalues of the empir-

ical covariance operator.
The quality of the prediction for the whole sample is also presented in Figure 3.

such that the percentage of variance explained by two components are 99.8% and 0.9%.
Finally we conclude that the quality of componentwise predictions is quite good for each
component.
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Fig. 3. Representation of the quality of the prediction.

For the next simulation algorithm we used:

• Simulate a sample of size n.

• Calculate the smoothing parameters hK and hH that are varied over an interval
[0,1] and which minimizes by 5

• We compute the quantities

(nhHφx)1/2(F̂ (x, y)− F (x, y))

where F̂ (x, y) is the functional kernel estimator from the sample (Xi, Yi)i=1,...,200,

and given in relation (6).

• Compute a standard cumulative estimator by the local linear method.

• Compares the estimated F̂ (x, y) with the corresponding estimated F (x, y)).

The obtained results are shown in Figure 4.

It can be seen that, both distributions are very close and have good behaviors with
respect to the standard normal distribution.

6.1. Real data application

In this section, we examine the performance of our local linear modeling in functional
prediction context. More precisely, we examine its superiority over the classical kernel
method in prediction on meteorological data. It should be noted that, the prediction
of meteorological data is of interest, in particular, for studying the microclimate con-
ditions in mountainous terrain, resource management or calibration of satellite sensors.
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Fig. 4. Representation of the estimated cumulative function with the

local linear method.

In this real data example, we are interested in the prediction of the logarithm of the to-
tal precipitations given the curve of the monthly maximum temperatures. Specifically,
according to the notations of the previous section, the functional predictor Xi is the
curve of the monthly maximum temperatures in the ith climatic station (defined by its
geographic coordinates) in a period T and Yi is the logarithm of the total precipitations
in the same station and in the same period. The real data considered here are available
on the ftp address: ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly, and are
collected in 100 climatic stations in USA from 2004 to 2010. The functional covariates
are given in Figure 5.

Time
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Fig. 5. Monthly maximum temperatures in 100 climatic stations in

USA.

 ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly
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For this comparison study, we treat the both estimators in the same conditions and we
use are used in the computation of the estimators we proceed by the following estimators:
the functional local linear estimator (FLLE) is

for each k, F̂1(Xk) =

∑n
i,j=1Wij(Xk)H(h−1H (y − Yi))∑n

i,j=1Wij(Xk)

and the kernel estimator (KE) is

for each k, F̂2(Xk) =

∑n
i=1K(h−1d((Xk), Xi))H(h−1H (y − Yi))∑n

i=1K(h−1d((Xk), Xi))

where the smoothing parameters h is locally chosen by cross-validation on the k-nearest
neighbors with respect the criterium (5). The kernel K is chosen to be quadratic on
(−1, 1). As discussed in the previous section, the shape of the curves has great consid-
eration in the choice of β, δ and d. In this example, we take

d(x, x′) = δ(x, x′) = ‖x− x′‖F and β(x, x′) =< θ, x− x′ >F .

These quantities are computed by using the semi-metric based on the functional principal
components analysis (see Ferraty and Vieu [13]) with q = 4.

Now, in order to compare the both predictors model, we split our data into two
subsets: learning sample (80 stations) and test sample (20 stations) and we compute
the mean squared prediction errors (MSE), defined by the following quantities:

MSE(FLLE) =

∑20
i=1

(
Yi − F̂1(Xi))

)2
20

and MSE(Kernel) =

∑20
i=1

(
Yi − F̂2(Xi))

)2
20

.

Clearly, the comparison of both scatterplots (see Figure 6) indicates that the local
linear estimate method gives better results than those given by the kernel method.
Furthermore, our results are also comparable to other tools of forecast such as the
Conditional quantile and the median (cf. Ferraty and Vieu [13]).

7. APPENDIX

In what follows, when no confusion is possible, we put for any x ∈ F , and for all
i = 1, . . . , n:

Ki(x) = K(h−1δ(x,Xi)), βi(x) = β(Xi, x) and Hi(y) = H(h−1H (y − Yi)).

P r o o f of Lemma 4.2: One starts by using the same decomposition’s in Barrientos–
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Fig. 6. Comparison of the prediction results between the

FLLE-Method and the Kernel-Method.

Marin et al. [1]. Indeed,

f̂xD = Q1


 1

n

n∑
j=1

Kj(x)

φx(hK)


︸ ︷︷ ︸

P2(x)

(
1

n

n∑
i=1

Ki(x)β2
i (x)

h2Kφx(hK)

)
︸ ︷︷ ︸

P4(x)

−

 1

n

n∑
j=1

Kj(x)βj(x)

hKφx(hK)


︸ ︷︷ ︸

P3(x)

(
1

n

n∑
i=1

Ki(x)βi(x)

hKφx(hK)

)
︸ ︷︷ ︸

P3(x)

 .
Thus, all it remains to show are the following uniform convergences:

sup
x∈SF

|Pk(x)− E[Pk(x)]| = O

(√
ln dn
nφ(hK)

)
a.co. for k = 2, 3, 4, (7)

and

sup
x∈SF

|E[P2(x)]E[P4(x)]− E[P2(x)P4(x)]− var[P3(x)]| = o

(√
ln dn
nφ(hK)

)
a.co
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and, also that, uniformily on x ∈ SF :

Q1 = O(1) and |E[Pk(x)]| = O(1), for k = 2, 3, 4.

Clearly, it suffices to consider (H1) to get the results of the last tow equations. Further-
more, the proof of (7) follows the same ideas as in Ferraty et al. [14]. Indeed, by noting:
j(x) = arg minj∈{1,2,...,dn} |δ(x, xk)|, we consider the following decomposition:

sup
x∈SF

|Pk(x)− E[Pk(x)]|

≤ sup
x∈SF

|Pk(x)− Pk(xj(x))|︸ ︷︷ ︸
Tk
1

+ sup
x∈SF

|Pk(xj(x))− E[Pk(xj(x))] |︸ ︷︷ ︸
Tk
2

+ sup
x∈SF

|E[Pk(xj(x))]− E[Pk(x)] |︸ ︷︷ ︸
Tk
3

.

Firstly, we consider that the terms T k1 and T k3 have almost the same treatment. let
us analyse the first term T k1 for k = 2, 3, 4. Since K is supported in [−1, 1], we can write
for all k = 2, 3, 4 that:

T k1 ≤
C(k − 2)

nhk−2K φx(hK)
sup
x∈SF

n∑
i=1

Ki(x)1B(x,hK)(Xi)|βk−2i (x)− βk−2i (xj(x))1B(xj(x),hK)(Xi)|

+
1

nhk−2K φx(hK)
sup
x∈SF

n∑
i=1

βk−2i (xj(x))1B(xj(x),hK)(Xi)|Ki(x)1B(x,hK)(Xi)−Ki(xj(x))|.

The Lipschitz condition on K allows us directly to write

1B(xj(x),hK)(Xi)|Ki(x)1B(x,hK)(Xi)−Ki(xj(x))| ≤ Cε1B(x,hK)∩B(xj(x),hK)(Xi)

+C1
B(xj(x),hK)∩B(x,hK)

(Xi).

Once again, one can apply Lipschitz condition on β to get

1B(x,hK)(Xi)|βi(x)− βi(xj(x))1B(xj(x),hK)(Xi)| ≤ ε1B(x,hK)∩B(xj(x),hK)(Xi)

+hK1B(x,hK)∩B(xj(x),hK)
(Xi)

1B(x,hK)(Xi)|β2
i (x)− β2

i (xj(x))1B(xj(x),hK)(Xi)| ≤ εhK1B(x,hK)∩B(xj(x),hK)(Xi)

+h2K1B(x,hK)∩B(xj(x),hK)
(Xi)

which implies that, for k = 3, 4:

1B(x,hK)(Xi)|βk−2i (x)− βk−2i (xj(x))1B(xj(x),hK)(Xi)| ≤ εhk−3K 1B(x,hK)∩B(xj(x),hK)(Xi)

+hk−2K 1
B(x,hK)∩B(xj(x),hK)

(Xi).

Therefore
T k1 ≤ C sup

x∈SF

(
T k11 + T12 + T k13 + T14

)
,
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where

T k11 =
C(k − 2)

nφx(hK)

n∑
i=1

1
B(x,hK)∩B(xj(x),hK)

(Xi), T12 =
Cε

nφx(hK)

n∑
i=1

1B(x,hK)∩B(xj(x),hK)(Xi)

T k13 =
C(k − 2)ε

nhKφx(hK)

n∑
i=1

1B(x,hK)∩B(xj(x),hK)(Xi), T14 =
C

nφx(hK)

n∑
i=1

1
B(xj(x),hK)∩B(x,hK)

(Xi).

Now, to evaluate the terms T k11, T12, T k13 and T14, one can apply a standard inequality
for sums of bounded random variables with Zi is identified such that:

Zi =



1

φx(hK)
sup
x∈SF

[
1
B(x,hK)∩B(xj(x),hK)

(Xi)
]

for T k11

ε

hK φx(hK)
sup
x∈SF

[
1B(x,hK)∩B(xj(x),hK)(Xi)

]
for T12 and T k13

1

φx(hK)
sup
x∈SF

[
1
B(xj(x),hK)∩B(x,hK)

(Xi)
]

for T14.

Clearly, under the second part of (H1), we have for the first and the last case:

Z1 = O

(
1

φ(hK)

)
, E[Z1] = O

(
ε

φ(hK)

)
and var(Z1) = O

(
ε

(φ(hK))2

)
.

So that, we get:

T k11 = O

(
ε

φ(hK)

)
+Oa.co.

(√
ε ln n

n φ(hK)2

)
.

In the same way, assumption (H7) allows to get, for T12 or T k13 case

Z1 = O

(
ε

hKφ(hK)

)
, E[Z1] = O

(
ε

hK

)
and var(Z1) = O

(
ε2

h2Kφ(hK)

)
which implies that:

T k12 = Oa.co.

(√
ln dn
n φ(h)

)
.

To achieve the study of the term T k1 , it suffices to put togather all the intermediate
results and to use (H7) to obtain:

T k1 = Oa.co.

(√
ln dn

n φ(hK)

)
. (8)

Furthermore, since:

T k3 ≤ E
[

sup
x∈SF

|Pk(x)− Pk(xj(x))|
]

we get:

T k3 = O

(√
ln dn

n φ(hK)

)
. (9)
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Secondly, about the term T k2 . For all η > 0, we have that:

P
(
T k2 > η

√
ln dn

n φ(hK)

)
= P

(
max

j∈{1,...,dn}
|Pk(xj(x)

)− E[Pk(xj(x)
)]| > η

√
ln dn

n φ(hK)

)

≤ dn max
j∈{1,...,dn}

P

(
|Pk(xj(x)

)− E[Pk(xj(x)
)]| > η

√
ln dn

n φ(hK)

)
we use a Bernstein-type inequality on

∆ki =
1

nhk−2K φ(hK)

(
Ki(xk)βk−2i (xk)− E[Ki(xk)βk−2i (xk)]

)
, for k = 2, 3, 4,

we have for all j = 1, . . . , dn and i = 1, . . . , n, that:

E|∆ki|m = O(φ(hK)−m+1), for k = 2, 3, 4

and we get

P
(
|Pi(xk)− E[Pi(xk)]| > η

√
ln dn

n φ(hK)

)
= P

(
1

n
|
n∑
i=1

∆lki| > η

√
ln dn

n φ(hK)

)
≤ 2 exp{−Cη2 ln dn}.

Thus, by choosing η such that Cη2 = β, we obtain that:

dn max
k∈{1,...,dn}

P

(
|Pi(xk)− E[Pi(xk)]| > η

√
ln dn

n φ(hK)

)
≤ C

′
d1−βn . (10)

Since

n∑
i=1

d1−βn <∞, we get

T2 = Oa.co.

(√
ln dn

n φ(hK)

)
.

�

P r o o f of Corollary 4.3: Clearly, we have that: inf
x∈SF

f̂D(x) ≤ 1

2
implies that exists

x ∈ SF such that

|1− f̂D(x)| ≥ 1

2

which allows to write

sup
x∈SF

|1− f̂D(x)| ≥ 1

2
.

According to the Lemma 4.2, we obtain∑
n

P
(

inf
x∈SF

f̂D(x) <
1

2

)
≤
∑
n

P
(

sup
x∈SF

|1− f̂D(x)| ≥ 1

2

)
<∞.

�
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P r o o f of Lemma 4.4: Since the pairs (Xi, Yi) are identically distributed then:

E[F̂ xN (y)] =
1

E[W12(x)]
E[W12(x)E[H2|X2]].

Next, we use an integration by part to show that:

E[H2|X2] = h−1H

∫
R
H(1)(h−1H (y − z))F x(z) dz.

In order to evaluate E[H2|X2], we use the usual change of variables t =
y − z
hH

, we get:

|E[H2|X2]− F x(y)| ≤
∫
R
H(1)(t)|FX(y − hHt)− F x(y)|dt.

Thus, by using (H2) and (H4), we obtain:

1B(x,hK)|E[F̂ xN (y)]− F x(y)| ≤
∫
R
H(1)(t)(hb1K + hb2H |t|

b2) dt.

Since H(1) is a probability density, and by (H5), we get:

sup
x∈SF

sup
y∈SR

|F x(y)− E[F̂ xN (y)]| ≤ c(hb1K + hb2H ).

�

P r o o f of Lemma 4.5: The proof of this lemma follows the same steps as the proof of
Lemmma 4.2, where P2(x), P3(x) and P4(x) are replaced by:

Mx
2 (y) =

1

n

n∑
j=1

Kj(x)Hj(y)

φx(hK)

Mx
3 (y) =

1

n

n∑
j=1

Kj(x)βj(x)Hj(y)

hKφx(hK)

Mx
4 (y) =

1

n

n∑
j=1

Kj(x)β2
j (x)Hj(y)

h2Kφx(hK)

by using the compactness property of SR, we can write that: there exists a sequence of
real numbers (tk)k=1,...,sn , such that: SR ⊂ ∪snk=1(tk − ln, tk + ln) where: ln = n−

3
2γ−

1
2

and sn = O(l−1n ).
Taking: ty = arg min

t∈{t1,...,tsn}
|y − t| and by the same previously notation of j(x) we

consider the following decomposition:
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|Mx
i (y)− E[Mx

i (y)]| ≤ sup
x∈SF

sup
y∈SR

|Mx
i (y)−Mxj(x)

i (y)|︸ ︷︷ ︸
A1

+ sup
x∈SF

sup
y∈SR

|Mxj(x)

i (y)−Mxj(x)

i (ty)|︸ ︷︷ ︸
A2

+ sup
x∈SF

sup
y∈SR

|Mxj(x)

i (ty)− E[M
xj(x)

i (ty)]|︸ ︷︷ ︸
A3

+ sup
x∈SF

sup
y∈SR

|E[M
xj(x)

i (ty)]− E[M
xj(x)

i (y)]|︸ ︷︷ ︸
A4

+ sup
x∈SF

sup
y∈SR

|E[M
xj(x)

i (y)]− E[Mx
i (y)]|︸ ︷︷ ︸

A5

.

Similarly to the study of the term T1 in Lemmma 4.2, we obtain:

A1 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
and A5 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
. (11)

To treat the term A2, we use the Lipschitz’s condition on the kernel H and, we can write:

|Mxj(x)

i (y)−Mxj(x)

i (ty)| ≤ C 1

nhlKφ(hK)

n∑
i=1

Ki(xj(x))β
l
i(xj(x))|Hi(y)−Hi(ty)| ≤ ln

hH
Pi(xj(x))

where Pi(·) for i = 2, 3, 4 is treated in proof of Lemma 4.2. Thus by using the facts

that: ln = n−
3
2γ−

1
2 and (H7), we obtain:

A2 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
and A4 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
. (12)

Finally, for the term A3, we have for all η > 0 that:

P

(
A3 > η

√
ln dn

n1−γφ(hK)

)

= P

(
max

j∈{1,2,...,Sn}
max

k∈{1,2,...,dn}
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)

≤ sndn max
j∈{1,2,...,Sn}

max
k∈{1,2,...,dn}

P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
.

To do this last probability, we use the classical Bernstein’s inequality such that, we
put:

Zli =
1

hlKφ(hK)

(
Ki(xk)Hi(tj)β

l
i(xk)− E[Ki(xk)Hi(tj)β

l
i(xk)]

)
, for l = 0, 1, 2.
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By the assumption (H3), we have that
1

hlK
(Kiβ

l
i) < C and since H < 1 then, we

can write:

|Zli | ≤
C

φx(hK)
and E|Zli | ≤

C
′

φx(hK)
.

So, the use of the classical Bernstein’s inequality allows us to write for all η ∈ (0, C
′
/C):

P

(
|
n∑
i=1

Zli | ≥ η

√
ln dn

nφx(hK)

)
≤ C

′
d−Cη

2

n .

Therefore, the last inequality allows to get:

∀j ≤ Sn,P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
≤ 2 exp{−Cη2 ln dn}

since: Sn = O(n
−

3

2
γ − 1/2

),
ln dn
nφ(hK)

>
1

nφ(hK)
and by choosing Cη2 = β, one gets:

sndn max
j∈{1,2,...,Sn}

max
k∈{1,2,...,dn}

P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
≤ C

′′
Snd

1−β
n .

By using the second part of condition (H7) we obtain

E3 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
. (13)

Thus, Lemma 4.5’s result can be deduced from (11), (12), (13). �

P r o o f of Corollary 5.1: With a Taylor development of F x(t̂θ(x)) around tθ(x), we
get:

F x(t̂θ(x)) = F x(tθ(x))+

j−1∑
i=1

1

i!
(t̂θ(x)−tθ(x))iF x(i+1)(tθ(x))+

1

j!
(t̂θ(x)−tθ(x))jF x(j+1)(t

′

θ(x))

because of (H8), we have:

F x(t̂θ(x)) = F x(tθ(x)) +
1

j!
(t̂θ(x)− tθ(x))jF x(j)(t

′

θ(x))

where t
′

θ(x) is lying between tθ(x) and t̂θ(x).
The condition (H9) and from the definition of tθ(x) and t̂θ(x) allow to write:

|F x(t̂θ(x))− F x(tθ(x))| ≤ 2 sup
y∈SR

|F̂ x(y)− F x(y)|. (14)
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It is clear that, from conditions (H8), (14) and from Theorem 4.1, we obtain that:

sup
x∈SF

|t̂θ(x)− tθ(x)| → 0, a.co.

And by using (H9) again, we obtain that:

sup
x∈SF

|F x(j)(θ
′
(x))− F x(j)(tθ(x))| → 0, a.co.

Consequently, we can get τ > 0 such that:

∞∑
n=1

P
(

inf
x∈SF

F x(j)(θ
′
(x)) < τ

)
<∞

and we have:

sup
x∈SF

|t̂θ(x)− tθ(x)|j ≤ C sup
x∈SF

sup
y∈SR

|F̂ x(y)− F x(y)|, a.co.

So, this last inequality together with Theorem 4.1 lead us to get the claimed result.
�
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[32] E. Youndjé, P. Sarda, and P. Vieu: Optimal smooth hazard estimates. Test 5 (1996),
379–394. DOI:10.1007/BF02562624

[33] K. Yu, Z. Lu, and J. Stander: Quantile regression : applications and current research
areas. The Statistician 52 (2003), 331–350. DOI:10.1111/1467-9884.00363

Chaima Hebchi, Lab. of Statistics and Process stochastic (LSPS), University Djillali
liabès, BP 89, Sidi bel Abbes 22000. Algeria.

e-mail: chaima.hebchi@gmail.com

Abdelhak Chouaf, Lab. of Statistics and Process stochastic (LSPS), University Djillali
liabès, BP 89, Sidi bel Abbes 22000. Algeria.

e-mail: abdo stat@yahoo.fr

https://doi.org/10.1111/j.1600-0447.1968.tb07928.x
https://doi.org/10.1111/j.1600-0447.1968.tb07928.x
https://doi.org/10.1016/0167-7152(89)90095-3
https://doi.org/10.1214/aos/1176343886
https://doi.org/10.1214/aos/1176349943
https://doi.org/10.1214/aos/1176346265
https://doi.org/10.1093/biomet/51.1-2.175
https://doi.org/10.1080/03610926.2017.1359292
https://doi.org/10.1007/BF02562624
 https://doi.org/10.1111/1467-9884.00363

	Introduction
	The model
	Assumptions
	Asymptotic results
	Application: Conditional quantile estimation
	Simulation study
	Real data application

	Appendix

