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STABILITY ANALYSIS OF THE FIVE-DIMENSIONAL
ENERGY DEMAND-SUPPLY SYSTEM

Kun Yi Yang and Chun Xia An

In this paper, a five-dimensional energy demand-supply system has been considered. On
the one hand, we analyze the stability for all of the equilibrium points of the system. For each
of equilibrium point, by analyzing the characteristic equation, we show the conditions for the
stability or instability using Routh-Hurwitz criterion. Then numerical simulations have been
given to illustrate all of cases for the theoretical results. On the other hand, by introducing
the phenomenon of time delay, we establish the five-dimensional energy demand-supply model
with time delay. Then we analyze the stability of the equilibrium points for the delayed system
by the stability switching theory. Especially, Hopf bifurcation has been considered by showing
the explicit formulae using the central manifold theorem and Poincare normalization method.
For each cases of the theorems including the Hopf bifurcation, numerical simulations have been
given to illustrate the effectiveness of the main results.
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1. INTRODUCTION

With the development of economy, energy has become an essential part in peoples’ daily
life under which the energy consumption increases greatly. As a result, the pressure in
the supply of energy has been remarkably strengthening. It is practically significant to
maintain the world energy supply and demand balance. It is known that the presented
energy demand-supply system may be originated from the Volterra model which is in-
volved in many ecological or biological applications. The reference [5] shows the stability
delay-set for the Lotka–Volterra systems. Correspondingly, the orginal three-dimensional
energy demand-supply model has been established on the basis of the relationship be-
tween the demand and supply of energy in two regions([16]). The reference [23] considers
the delayed three-dimensional energy demand-supply system subsequently. By introduc-
ing the renewable energy utilization, a four-dimensional energy demand-supply system
has been established in the reference [15]. The linear feedback control has been shown
to be effective to suppress chaos to unstable equilibrium or periodic orbits for the four-
dimensional energy demand-supply system in the paper [17]. Further on, with energy
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constraints, a five-dimensional energy demand-supply system has been constructed in
the reference [22].

Stability switching technique has been widely applied in the stability analysis of
ordinary differential equations, especially for the time-delay systems. The reference [14]
considers the stability switching hypersurfaces for the linear time invariant systems with
time delay. In the reference [7], the eigenvalue crossing directions have been shown for the
mechanical systems with time delay. And the reference [2] describes the stability crossing
set for the linear time-delay systems. The reference [3] studies the stability crossing
curves which consist of all the delays such that the characteristic quasipolynomial has
at least one imaginary zero. The paper [1] considers the situations of the spectrum
that lies on the imaginary axis for some delays in order to detect the stability of the
system. Especially, for the high-dimensional dynamic systems involving a time delay and
some unknown parameters, the reference [18] presents a systematic method of stability
analysis.

Furthermore, it is well known techniques of applying D-subdivision and computing
stability-instability regions in the delay parameter space. For example, the paper [9]
analyzes completely the stability of the linear time-invariant systems with two scalar-
delay channels by the idea of D-subdivision method. In the paper [6], the discretized
Lyapunov-krasovskii functional method is proposed to estimate the maximal stable de-
lay interval accurately. The paper [11] concerns the linear time-invariant systems with
uncertain or time-varying delays, and studies the largest range of delay such that there
exists the feedback controller capable of stabilizing all the plants for delays within the
range. The reference [12] considers the delay margin of a time-delay system such that
a controller may exist to stabilize an unstable delay plant for a range of delay values.
The paper [10] presents the stability regions in the domain of time delay, and declares
the number of unstable characteristic roots by a simplifying substitution for the tran-
scendental characteristic equation. The paper [4] studies the largest delay just for the
occurrance of instability and the effect of certain graphs on the delay bound.

In this paper we will generalize the stability properties of the five-dimensional energy
demand-supply system, and then obtain the theoretical and numerical results for the
system under arbitrary coefficients. Furthermore, we will further analyze the stability
for the system with time delay by using the stability switching technique. The energy
demand-supply system considered in the paper is seen as following

ẋ(t) = a1x(t)

(
1− x(t)

M

)
− a2 [y(t) + z(t)]− d3u(t)− k4w(t),

ẏ(t) = −b1y(t)− b2z(t) + b3x(t) [N − (x(t)− z(t))],
ż(t) = c1z(t) (c2x(t)− c3),

u̇(t) = d1x(t)− d2u(t),

ẇ(t) = k1y(t)

(
y(t)

T1
− 1

)
+ k2w(t) (k3x(t)− T2) ,

(1-1)

where x(t) is the amount of the energy demand shortage of Region A, y(t) is the amount
of the energy increment supplied from Region B to Region A, z(t) is the amount of the
energy import of Region A, u(t) represents the amount of the self energy supply, and
w(t) signifies the amount of the utilization of new energy in region A. All of the constant
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coefficients are given in the reference [22] where the stability properties of the equilibrium
points have been shown under certain given coefficients.

The main contribution of this paper is focused on the stability analysis of the five-
dimensional energy demand-supply system. First of all, all of the equilibrium points
of the system have been computed. Then the stability of the equilibrium points has
been analyzed by using Hurwitz criterion. Next the phenomenon of the time delay
has been considered in which the system with the time delay has been established.
By the stability switching technique, the stability analysis of the delayed system have
been given. For the case of Hopf bifurcation, the explicit formula have been obtained
by the center manifold theorem and normal form method. For all of the situations of
the stability and instability, numerical simulations have been given which illustrate the
effectiveness of the main results. The innovation of this paper lies in the complexity
for the stability analysis and the corresponding simulations of the higher dimensional
ordinary differential equations. Based on the results of this paper, our next work may
be generalizing the theoretic and simulating results to the abstract and general ordinary
differential equations with a wide range of applications.

The paper is composed of the following five sections. In the second section we analyze
stability properties of the equilibrium points for the five-dimensional energy demand-
supply system and give the corresponding numerical simulations respectively. In the
third section we construct the system with time delay and analyze stability properties of
the equilibrium points for the delayed system. Especially the fourth section is devoted
to the properties of Hopf bifurcation expressed by explicit formulae, and numerical
simulations illustrating effectiveness of the main results. In the fifth section we take the
conclusion of the paper.

2. STABILIZATION OF FIVE-DIMENSIONAL ENERGY SYSTEM

In this section we consider stability properties of the equilibrium points for the system
(1-1) with arbitrary coefficients established in the reference [22]. And then numerical
simulations are given to show effectiveness of the main results.

2.1. Analysis of equilibrium points

By simple calculations, we compute the equilibrium points as that below

S0 = (0, 0, 0, 0, 0), S∗1 = (x∗1, y
∗
1 , z
∗
1 , u
∗
1, w

∗
1), S∗2 = (x∗2, y

∗
2 , z
∗
2 , u
∗
2, w

∗
2), (1)

where x∗1 satisfies the following polynomial equation

k1b
2
3

b21T1
x∗31 +

[
k2k3
k4

(
a2b3
b1
− a1
M

)
− 2

k1b
2
3N

b21T1

]
x∗21 +

{
k1b3
b1

(
1 +

b3N
2

b1T1

)
+
k3
k4

[
k3

(
a1 −

a2b3N

b1
− d1d3

d2

)
− T2

(
a2b3
b1
− a1
M

)]}
x∗1

−
[
k1b3N

b1
+
k2T2
k4

(
a1 −

a2b3N

b1
− d1d3

d2

)]
= 0,

(2)
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and the other variables y∗1 , z
∗
1 , u
∗
1, w

∗
1 are determined in the following equations respec-

tively

y∗1 =
b3
b1
x∗1 (N − x∗1) , z∗1 = 0, u∗1 =

d1
d2
x∗1,

w∗1 =
1

k4

[
a1x
∗
1

(
1− x∗1

M

)
− a2b3

b1
x∗1 (N − x∗1)− d1d3

d2
x∗1

]
,

(3)

furthermore,

x∗2 =
c3
c2
, u∗2 =

c3d1
c2d2

, (4)

y∗2 satisfies the following polynomial equation

k1k4

T1k2

(
T2 −

k3c3
c2

)y∗22 +

 a2b1
b3c3
c2
− b2

− k1k4

k2

(
T2 −

k3c3
c2

) + a2

 y∗2
−
[
a1c3
c2

(
1− c3

c2M

)
− c3d1d3

c2d2

]
= 0,

(5)

and

z∗2 =

b1y
∗
1 +

b3c
2
3

c22
b3c3
c2
− b2

, w∗2 =

k1y
∗
2

(
y∗2
T1
− 1

)
k2

(
T2 −

k3c3
c2

) , (6)

in the assumption of
b3c3
c2
− b2 6= 0 and T2 −

k3c3
c2
6= 0.

2.2. Stability of the equilibrium point S0

The jacobian matrix of the system (1-1)can be computed as that

a1

(
1− 2x

M

)
−a2 −a2 −d3 −k4

b3 [N − (2x− z)] −b1 b3x− b2 0 0
c1c2z 0 c1 (c2x− c3) 0 0
d1 0 0 −d2 0

k2k3w k1

(
2y

T1
− 1

)
0 0 k2 (k3x− T2)


. (7)

From (7), the jacobian matrix of the equilibrium point S0 can be naturally given as
that 

a1 −a2 −a2 −d3 −k4
b3N −b1 −b2 0 0

0 0 −c1c3 0 0
d1 0 0 −d2 0
0 −k1 0 0 −k2T2

 . (8)
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Its characteristic equation can be computed as that

(λ+ c1c3) [−k1k4b3N (λ+ d2) + (λ+ k2T2) (d1d3 (λ+ b1)
+ (λ+ d2) ((λ− a1) (λ+ b1) + a2b3N))] = 0.

(9)

Obviously, λ = −c1c3 is a negative real root of the equation (9). Thus we only need
to consider the roots of following equation

−k1k4b3N (λ+ d2) + (λ+ k2T2) [d1d3 (λ+ b1) +
(λ+ d2) ((λ− a1) (λ+ b1) + a2b3N)] = 0.

(10)

The equivalent form of the equation above is

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0, (11)

where 
A1 = b1 − a1 + d2 + k2T2,
A2 = d1d3 − a1b1 + b3Na2 + b1d2 − a1d2 + (b1 − a1 + d2) k2T2,
A3 = −k1k4b3N + d1d3b1 − a1b1d2 + b3Na2d2+

(d1d3 − a1b1 + b3a2N + b1d2 − a1d2) k2T2,
A4 = −k1k4b3Nd2 + (b1d1d3 − a1b1d2 + b3a2Nd2) k2T2.

(12)

Now define the equation

f(x) = x4 +A1x
3 +A2x

2 +A3x+A4, (13)

then from the reference [8], we take the assumption H(1) as follows

H(1) : A4 < 0, or

{
A4 ≥ 0,m1 ≥ 0,
λ1 > 0, f(λ1) < 0,

or

{
A4 ≥ 0,m1 < 0,
∃λi ∈ {λ1, λ2, λ3}, such that λi > 0, f(λi) ≤ 0, i = 1, 2, 3,

where

p =
1

2
A2 −

3

16
A2

1, q =
3

16
A3

1 −
1

8
A1A2 +A3, m1 =

(q
2

)3
+
(p

3

)3
, w1 = −1

2
+

√
3

2
i,

V1 = 3

√
−q

2
+
√
m1 + 3

√
−q

2
−
√
m1, V2 = w1

3

√
−q

2
+
√
m1 + w2

1
3

√
−q

2
−
√
m1,

V3 = w2
1

3

√
−q

2
+
√
m1 + w1

3

√
−q

2
−
√
m1, λi = Vi −

3A1

4
(i = 1, 2, 3)

and Aj(j = 1, 2, 3, 4) are the coefficients of the equation (11).

Theorem 2.1. (i) If the coefficients of the system (1-1) satisfy the following inequalities

A1 > 0, A4 > 0, A1A2 −A3 > 0, A1A2A3 −A2
3 −A2

1A4 > 0,

the equilibrium point S0 is stable.

(ii) If the characteristic equation (11) satisfies the assumption H(1), the equilibrium
point S0 is unstable.
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P r o o f . (i) According to the Routh–Hurwitz criterion [20], the sufficient and necessary
conditions for the equation (11) that the real parts of all of characteristic roots are
negative are as following

A1 > 0, A4 > 0,

∣∣∣∣A1 1
A3 A2

∣∣∣∣ = A1A2−A3 > 0,

∣∣∣∣∣∣
A1 1 0
A3 A2 A1

0 A4 A3

∣∣∣∣∣∣ = A1A2A3−A2
3−A2

1A4 > 0,

where Aj(j = 1, 2, 3, 4) are the coefficients of the equation (11).

(ii) According to the lemma in the 12th page of the reference [8], if the coefficients
of the equation (11) satisfy the assumption H(1), there exist positive roots for the
characteristic equation. �

2.3. Stability of the equilibrium points S∗1 and S∗2

From (7), the jacobian matrix of the equilibrium points S∗1 and S∗2 can be shown as that

a1

(
1− 2x∗

M

)
−a2 −a2 −d3 −k4

b3[N − (2x∗ − z∗)] −b1 −b2 + b3x
∗ 0 0

c1c2z
∗ 0 c1 (c2x

∗ − c3) 0 0
d1 0 0 −d2 0

k2k3w
∗ k1

(
2y∗

T1
− 1

)
0 0 k2 (k3x

∗ − T2)


, (14)

where (x∗, y∗, z∗, u∗, w∗) signifies the equilibrium points S∗1 or S∗2 .
Then we compute the corresponding characteristic equation for the equilibrium points

S∗1 and S∗2 as follows

λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5 = 0, (15)

where

C1 = b1 + d2 − P0 − T0 − V0,
C2 = a2S0 + a2Q0 + T0P0 − b1P0 − b1T0 + d2 (b1 − P0 − T0)

+d1d3 − V0 (b1 + d2 − P0 − T0) + k4E0,
C3 = a2 (S0R0 + b1S0 −Q0T0 + d2S0 + d2Q0) + d2 (T0P0 − b1P0 − b1T0)

+d1d3 (b1 − T0)− V0(a2S0 + a2Q0 + T0P0 − b1P0 − b1T0 + d2b1 − d2P0

−d2T0 + d1d3) + k4 (E0 (b1 + d2 − T0) + F0Q0) + b1T0P0,
C4 = d2 (a2S0R0 + a2b1S0 + b1T0P0 − a2Q0T0)− d1d3b1T0 − V0(a2S0R0 + a2b1S0

+b1T0P0 − a2Q0T0 + d2a2S0 + d2a2Q0 + d2T0P0 − d2b1P0 − d2b1T0 + d1d3b1
−d1d3T0) + k4 (E0(b1d2 − T0 (b1 + d2)) + F0Q0 (d2 − T0) + F0S0R0),

C5 = −V0 (d2 (S0R0a2 + a2b1S0 + b1T0P0 − a2Q0T0)− d1d3b1T0)− b1d2k4E0T0
−d2k4F0Q0T0 + d2k4F0S0R0,

(16)
and

P0 = a1

(
1− 2x∗

M

)
, Q0 = b3 [N − (2x∗ − z∗)] , R0 = b3x

∗ − b2, S0 = c1c2z
∗,

T0 = c1 (c2x
∗ − c3) , E0 = k2k3w

∗, F0 = k1

(
2y∗

T1
− 1

)
, V0 = k2 (k3x

∗ − T2) .
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According to the Routh-Hurwitz criterion ([20]), we have the following theorem.

Theorem 2.2. If the coefficients of the equation (15) satisfy the following inequalities{
C1 > 0, C5 > 0, C1C2 − C3 > 0, −C2

1C4 + C1C5 + C1C2C5 − C2
3 > 0,

C4

(
−C2

1C4 + C1C5 + C1C2C5 − C2
3

)
− C5

(
C1C

2
2 − C2C3 − C1C4 + C5

)
> 0,

(17)

where Cj(j = 1, 2, 3, 4, 5) are defined in the equation (16), all of the equilibrium points
S∗1 and S∗2 are asymptotically stable.

2.4. Simulations

This section is focused on numerical simulations in order to show effectiveness of the
Theorem 2.1 and Theorem 2.2. All of the situations for both of the theorems will be
simulated in this section.

First of all, we choose the parameters of the system (1-1) below a1 = 0.01, a2 = 0.15, b1 = 0.06, b2 = 0.1, b3 = 0.16, c1 = 0.2, c2 = 0.5, c3 = 0.4,
d1 = 0.1, d2 = 0.0616, d3 = 0.08,M = 1.85, N = 0.5, k1 = 0.68, k2 = 0.5, k3 = 0.49,
k4 = 0.09, T1 = 1.95, T2 = 2.8,

(18)
and the initial values as that

x(0) = 0.17, y(0) = 0.11, z(0) = 0.07, u(0) = 0.37, w(0) = 0.002.

Then we obtain Figure 1 which shows that the equilibrium point S0 is stable to
illustrate the first case of the Theorem 2.1.
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Fig 1. The equilibrium point S0 is stable.
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In order to show the effectiveness for the second case of the Theorem 2.1, we choose
the parameters as follows a1 = 0.05, a2 = 0.5, b1 = 0.006, b2 = 0.1, b3 = 0.16, c1 = 0.2, c2 = 0.5, c3 = 0.4,

d1 = 0.1, d2 = 0.06, d3 = 0.08, M = 1.85, N = 1, k1 = 0.68, k2 = 1.59, k3 = 0.5,
k4 = 0.09, T1 = 1.05, T2 = 2.5,

and initial values below

x(0) = 0.17, y(0) = 0.11, z(0) = 0.07, u(0) = 0.37, w(0) = 0.002,

then we obtain Figure 2 which means that the equilibrium point S0 is unstable to
illustrate the second case of the Theorem 2.1.
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Fig 2. The equilibrium point S0 is unstable.

In order the show the effectiveness of the Theorem 2.2, we choose parameters as
following

a1 = 0.09, a2 = 0.077, b1 = 0.08, b2 = 5, b3 = 0.16, c1 = 0.2, c2 = 0.5, c3 = 0.4, d1 = 0.09,
d2 = 0.06, d3 = 0.08,M = 1.85, N = 0.6, k1 = 0.68, k2 = 1.4, k3 = 0.49, k4 = 0.099,
T1 = 1.95, T2 = 2.7,

and initial values as that

x(0) = 0.016, y(0) = 0.11, z(0) = 0.07, u(0) = 0.37, w(0) = 0.002,

under which the equilibrium point can be computed as that

(0.8000,−3.7852, 0.0569, 1.2000, 2.3429).

Then we have Figure 3 which indicates that the state of the system is stabilized to the
equilibrium point to show the effectiveness of Theorem 2.2.
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Fig 3. The equilibrium point is stable.

3. STABILIZATION OF FIVE-DIMENSIONAL ENERGY SYSTEM WITH
TIME DELAY

In this section, we consider the phenomenon of time delay. Firstly we establish the five-
dimensional demand-supply system with time delay, and then we analyze the stability
properties of the equilibrium points for the delayed five-dimensional energy demand-
supply system.

3.1. The model of five-dimensional energy system with time delay

The phenomenon of time delay is wide and important in reality. It is natural to consider
the five-dimensional energy demand-supply system with time delay. The delayed system
can be constructed as follows dependent on the actual situations.

ẋ(t) = a1x(t)

(
1− x(t− τ)

M

)
− a2 [y(t− τ) + z(t− τ)]− d3u(t− τ)− k4w(t− τ),

ẏ(t) = −b1y(t)− b2z(t− τ) + b3x(t) [N − (x(t− τ)− z(t− τ))],

ż(t) = c1z(t) (c2x(t− τ)− c3),

u̇(t) = d1x(t)− d2u(t),

ẇ(t) = k1y(t)

(
y(t− τ)

T1
− 1

)
+ k2w(t) (k3x(t− τ)− T2) ,

(3-1)
where τ > 0 is the time delay, and all of the variables and coefficients can be seen in the
system (1-1).

The process of modeling is given as following. In the first equation, the term

(1− x(t−τ)
M ) means that the speed of energy demand of A region is positively correlated

with the share of energy consumption demand development potential in the previous
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stage. And the term −a2[y(t−τ)+z(t−τ)] indicates that the energy increment supplying
from B region to A region and the energy import in region A are negatively correlated
with the speed of energy demand of A region in the previous stage. Furthermore, the
term u(t− τ) and w(t− τ) indicate the self-sustaining energy and the utilization of new
energy in region A are negatively correlated with the speed of energy demand of A region
in the previous stage. In the second equation, the energy import in region A is negatively
correlated with the energy supply speed from region B to region A in the previous period,
which results in the term −b2z(t − τ). And the term b3x(t)[N − (x(t − τ) − z(t − τ))]
indicates that the energy demand shortage in the previous stage of A region is less than
the critical value. The speed of energy supply from B region to A region increases as
x(t) increases. But when the energy of A region is large enough, The speed of energy
supply from B region to A region decreases as x(t) increases. In the third equation,
the term c2x(t − τ) indicates the energy demand shortage of A region is proportion to
the speed of the energy import of A region in a previous period. In the fifth equation,

the term (y(t−τ)T1
− 1) means that the speed of the utilization of new energy in region A

is proportional to the energy supply rate in region A. And the term (k3x(t − τ) − T2)
indicates the speed of the utilization of new energy in region A is related to the energy
demand shortage of A region and the development cost of new energy in region A in the
previous stage.

Next we will analyze the stability of the delayed five-dimensional energy demand-
supply system (3-1).

3.2. Stability analysis

Obviously, the equilibrium points of the system (3-1) are S0, S
∗
1 and S∗2 which can be

seen in the equation (1). Then we consider the stability properties of the equilibrium
points respectively.

3.2.1. Stability of the equilibrium point S0

First of all, the linearization matrix of the system (3-1) can be calculated as that

a1

(
1− 2xe−λτ

M

)
−a2e−λτ −a2e−λτ −d3e−λτ −k4e−λτ

b3
[
N − (2x− z) e−λτ

]
−b1 (b3x− b2) e−λτ 0 0

c1c2ze
−λτ 0 c1

(
c2xe

−λτ − c3
)

0 0
d1 0 0 −d2 0

k2k3we
−λτ k1

(
2ye−λτ

T1
− 1

)
0 0 k2

(
k3xe

−λτ − T2
)


,

(19)
then the linearization matrix for the equilibrium point S0 is

a1 −a2e−λτ −a2e−λτ −d3e−λτ −k4e−λτ
b3N −b1 −b2e−λτ 0 0

0 0 −c1c3 0 0
d1 0 0 −d2 0
0 −k1 0 0 −k2T2

 . (20)
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Its characteristic equation is∣∣∣∣∣∣∣∣∣∣
λ− a1 a2e

−λτ a2e
−λτ d3e

−λτ k4e
−λτ

−b3N λ+ b1 b2e
−λτ 0 0

0 0 λ+ c1c3 0 0
−d1 0 0 λ+ d2 0

0 k1 0 0 λ+ k2T2

∣∣∣∣∣∣∣∣∣∣
= 0, (21)

that is to say,

(−c1c3 − λ) [−k1k4b3N (d2 + λ) e−λτ + (k2T2 + λ) (d1d3 (b1 + λ) e−λτ

+ (d2 + λ)
(
(λ− a1) (λ+ b1) + b3a2Ne

−λτ))] = 0.
(22)

Obviously λ = −c1c3 is a negative real root of the equation (22). Now we only need
to consider the roots of the equation below

[−k1k4b3N(d2 + λ)e−λτ + (k2T2 + λ)(d1d3(b1 + λ)e−λτ+
(d2 + λ)((λ− a1)(λ+ b1) + b3a2Ne

−λτ ))] = 0.
(23)

It can be calcuated as that

λ4 +Aλ3 +Bλ2 + Cλ+D + e−λτ
(
Eλ2 + Fλ+G

)
= 0, (24)

where 

A = b1 − a1 + d2 + k2T2,
B = b1d2 − a1b1 − a1d2 + (b1 − a1 + d2) k2T2,
C = (b1d2 − a1b1 − a1d2) k2T2 − a1b1d2,
D = −a1b1d2k2T2,
E = a2b3N + d1d3,
F = b1d1d3 + a2d2b3N − k1k4b3N + (d1d3 + a2b3N)k2T2,
G = (b1d1d3 + a2d2b3N)k2T2 − d2k1k4b3N.

(25)

Assume that λ = ±iw(w > 0) are a pair of pure imaginary roots of the equation (24),
then substituting it into the equation (24) gives that

w4 ∓Aw3i−Bw2 ± Cwi+D + (cos(wτ)∓ i sin(wτ))
(
−Ew2 ± Fwi+G

)
= 0. (26)

Depart the real and imaginary parts of the equation (26), then we have the following
two equations {(

G− Ew2
)

cos(wτ) + Fw sin(wτ) = −w4 +Bw2 −D,
Fw cos(wτ)−

(
G− Ew2

)
sin(wτ) = Aw3 − Cw, (27)

which indicate that

w8 +
(
A2 − 2B

)
w6 +

(
B2 + 2D − 2AC − E2

)
w4 +

(
2EG− F 2 − 2BD + C2

)
w2

+D2 −G2 = 0.
(28)
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From the equation (27), we have that[(
Aw3 − Cw

) (
G− Ew2

)
−
(
−w4 +Bw2 −D

)
Fw
]

cos(wτ)+[(
Aw3 − Cw

)
Fw +

(
−w4 +Bw2 −D

) (
G− Ew2

)]
sin(wτ) = 0,

(29)

which is equivalent to[(
Aw3 − Cw

) (
G− Ew2

)
−
(
−w4 +Bw2 −D

)
Fw
]

cos(wτ)

(G− Ew2)
2

+ (Fw)
2 +[(

Aw3 − Cw
)
Fw +

(
−w4 +Bw2 −D

) (
G− Ew2

)]
sin(wτ)

(G− Ew2)
2

+ (Fw)
2 = 0.

(30)

Suppose that(G−Ew2)2 + (Fw)2 6= 0, then the corresponding values of critical time
delay are given by

τn =
θ + nπ

w
, θ ∈ [0, 2π) , n = 0, 1, 2, . . .

where 
sin θ =

(
−w4 +Bw2 −D

)
Fw +

(
Cw −Aw3

) (
G− Ew2

)
(G− Ew2)

2
+ (Fw)

2 ,

cos θ =

(
Aw3 − Cw

)
Fw +

(
−w4 +Bw2 −D

) (
G− Ew2

)
(G− Ew2)

2
+ (Fw)

2 .

(31)

Lemma 3.1. sign

{
(dReλ)

dτ
|λ=±iw

}
= sign

{
4w7 + 3

(
A2 − 2B

)
w5+

2
(
B2 + 2D − 2AC − E2

)
w3 +

(
C2 − 2BD + 2EG− F 2

)
w
}
.

P r o o f . Taking the derivative of the equation (24) with τ shows the following equation

[
4λ3 + 3Aλ2 + 2Bλ+ C + e−λτ (2Eλ+ F )− τe−λτ

(
Eλ2 + Fλ+G

)] dλ

dτ
= λe−λτ

(
Eλ2 + Fλ+G

)
.

(32)

From the equation (24), it can be obtained that

e−λτ = −λ
4 +Aλ3 +Bλ2 + Cλ+D

Eλ2 + Fλ+G
, (33)

which together with (32) give that(
dλ

dτ

)−1
= − 4λ3 + 3Aλ2 + 2Bλ+ C

λ (λ4 +Aλ3 +Bλ2 + Cλ+D) (Eλ2 + Fλ+G)

+
2Eλ+ F

λ (Eλ2 + Fλ+G)
− τ

λ
.

(34)
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Hence,

sign

{
d(Reλ)

dτ
|λ=±iw

}
= sign

{
4w7 + 3

(
A2 − 2B

)
w5+

2
(
B2 + 2D − 2AC − E2

)
w3 +

(
C2 − 2BD + 2EG− F 2

)
w
}
.

(35)

�

In the equation (24), define a polynomial function as that

Q(λ) = Eλ2 + Fλ+G, (36)

then according to the stability theorem in the reference [18], we get the following main
theorem.

Theorem 3.2. On the assumption that there exists no pure imaginary characteristic
roots ±iω(ω > 0) such that Q(±iw) = 0, we have the following results.

(i) If there exists no root of the equation (28) and the system (3-1) when τ = 0 is
unstable, then the equilibrium point S0 is unstable for any τ > 0.

(ii) If there exists only one positive root of the equation (28) and the system (3-1) when
τ = 0 is asymptotically stable, then the equilibrium point S0 is asymptotically
stable when τ ∈ [0, τ0) and unstable when τ ∈ (τ0,+∞) respectively, and Hopf
bifurcation appears when τ = τ0.

(iii) If there exists two roots ω1 and ω2 of the equation (28) (without loss of generality

assume that ω1 > ω2), then we obtain the following two situations, where τ
(j)
1

and τ
(j)
2 (j = 0, 1, 2, . . .) represent the time delay corresponding to ω1 and ω2

respectively, and n signifies a nonnegative integer.

Situation I: When τ01 < τ02 , the equilibrium point S0 is unstable for any τ > 0.

Situation II: When τ01 > τ02 , there exists a nonnegative integer l such that τ
(l)
2 <

τ
(l)
1 < τ

(l+1)
1 . If τ ∈

⋃m
j=0(τ

(j)
2 , τ

(j)
1 ), the equilibrium point S0 is asymptotically stable. If

τ ∈
⋃m
j=0(τ

(j−1)
1 , τ

(j)
2 )∪(τ

(m)
1 ,+∞), the equilibrium point S0 is unstable, where m is the

minimum for all of the values l. Moreover, when τ = τ
(j)
1 or τ = τ

(j)
2 (j = 0, 1, 2, . . . ,m),

Hopf bifurcation appears.

P r o o f . (i) According to Corollary 2.4 in the reference [13], the sum of the orders of
the zeros of the characteristic equation in the open right half plane can change only if
a zero appears on or crosses in the imaginary axis. Then it is known that, when there
exists no root of the characteristic equation (28), the number of roots with positive real
parts is equal to the number of that when τ = 0. Since when τ = 0 the system (1-1)
is unstable, there always exists a root with a positive real part for the characteristic
equation (22). Thus when τ > 0 there always exists a root with a positive real part for
the equation (22). Therefore, the equilibrium point S0 is unstable for any τ > 0.
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(ii) From the 218th page of the reference [18], when there exists only one positive
root of the equation (28), the following inequality

d(Reλ)

dτ
|λ=±iw> 0 (37)

holds. Together with the Corollary 2.4, when the system (1-1) without time delay is
stable, as the time delay varies from zero to infinity, there always appears a new pair
of conjugate characteristic roots of the characteristic equation (22) of the system (3-1)
for each crossing of time delay at τk(k = 0, 1, . . .). This indicates that the system is
asymptotically stable when τ ∈ [0, τ0) and unstable when τ ∈ (τ0,+∞). When τ = τ0,
there exists only one pair of pure imaginary roots of the characteristic equation (22),
while there exist other roots with negative real parts. Furthermore, the inequalities

d(Reλ)

dτ
|λ=±iw 6= 0, (38)

hold. Therefore, Hopf bifurcation appears for the system (3-1) when τ = τ0.

(iii) If there exists two positive roots ω1 and ω2 of the equation (28), without loss

of generality assume that ω1 > ω2 which are corresponding to time delay τ
(j)
1 and

τ
(j)
2 (j = 0, 1, 2, . . .) respectively. From the reference [18] we have that

d(Reλ)

dτ
|
λ=±iw1,τ=τ

(j)
1
> 0,

d(Reλ)

dτ
|
λ=±iw2,τ=τ

(j)
2
< 0, (39)

moreover, the period of τ
(j)
1 is less than that of τ

(j)
2 .

Situation I: The case of τ01 < τ02 .
From the two inequalities (39), it is known that, as the time delay varies from zero to

infinity, there always appears a new pair of conjugate characteristic roots with positive
real parts of the characteristic equation (22) of the system (3-1), for each crossing of time

delay at τ
(j)
1 (j = 0, 1, . . .). But there removes such a pair of conjugate characteristic

roots for each crossing of time delay at τ
(j)
2 (j = 0, 1, . . .). Furthermore, τ01 < τ02 and the

period of τ
(j)
1 is less than that of τ

(j)
2 (j = 0, 1, . . .). Therefore, since the system (1-1)

without time delay is unstable, the system (3-1) is also unstable for any τ > 0.

Situation II: The case of τ01 > τ02 .
When τ01 > τ02 , as the time delay varies from zero to infinity, there always removes

a new pair of conjugate characteristic roots of the characteristic equation (22) of the

system (3-1) for each crossing of time delay at τ
(j)
2 (j = 0, 1, . . .). Thus the system (3-1)

is asymptotically stable when τ ∈ (τ02 , τ
0
1 ).

When τ01 > τ02 , as the time delay varies from zero to infinity, there always increases
a new pair of conjugate characteristic roots of the characteristic equation(22) of the

system (3-1) for each crossing of time delay at τ
(j)
1 (j = 0, 1, . . .). Thus the system (3-1)

is unstable when τ ∈ (τ01 , τ
1
2 ).
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Since the period of τ
(j)
1 is less than that of τ

(j)
2 , it is seen that there exists a nonnega-

tive integer l such that τ
(l)
2 < τ

(l)
1 < τ

(l+1)
1 . Assume that m is the minimum of all values

l, similar proof as that above can show that, if τ ∈
⋃m
j=0(τ

(j)
2 , τ

(j)
1 ), the system (3-1)

is asymptotically stable, and if τ ∈
⋃m
j=0(τ

(j−1)
1 , τ

(j)
2 ) ∪ (τ

(m)
1 ,+∞), the system (3-1) is

unstable.
When τ = τ

(j)
1 or τ = τ

(j)
2 (j = 0, 1, . . . ,m), there exists only one pair of pure imag-

inary roots while there exists other roots with negative real parts of the characteristic
equation (22). Furthermore, the inequalities

d(Reλ)

dτ
|λ=±iw1 6= 0,

d(Reλ)

dτ
|λ=±iw2 6= 0, (40)

hold. Therefore, Hopf bifurcation appears for the system (3-1) when τ = τ
(j)
1 or τ =

τ
(j)
2 (j = 0, 1, . . . ,m). �

3.2.2. Stability of the equilibrium points S∗1 and S∗2

Define x(t) = x(t)−x∗, y(t) = y(t)−y∗, z(t) = z(t)−z∗, u(t) = u(t)−u∗, w(t) = w(t)−w∗,
on the assumption that (x∗, y∗, z∗, u∗, v∗, w∗) signifies the equilibrium points S∗1 or S∗2 .
Then the system (3-1) can be transformed equivalently as the following system (3-2)

ẋ(t) = a1

(
1− x∗e−λτ

M

)
x(t)− a1x

∗

M
x(t− τ)− a2 [y(t− τ) + z(t− τ)]− d3u(t− τ)

−k4w(t− τ),

ẏ(t) = b3
[
N − (x∗ − z∗)e−λτ

]
x(t)− b3x∗x(t− τ)− b1y(t) + (b3x

∗ − b2) z(t− τ),

ż(t) = c1c2z
∗x(t− τ) + c1

(
c2x
∗e−λτ − c3

)
z(t),

u̇(t) = d1x(t)− d2u(t),

ẇ(t) = k2k3w
∗x(t− τ) + k1

(
y∗e−λτ

T1
− 1

)
y(t) +

k1y
∗

T1
y(t− τ)

+k2
(
k3x
∗e−λτ − T2

)
w(t).

(3-2)

The jacobian matrix of the system (3-2) can be obtained as that

a1

(
1− 2x∗e−λτ

M

)
−a2e−λτ −a2e−λτ −d3e−λτ −k4e−λτ

b3
[
N − (2x∗ − z∗) e−λτ

]
−b1 (b3x

∗ − b2) e−λτ 0 0

c1c2z
∗e−λτ 0 c1

(
c2x

∗e−λτ − c3
)

0 0
d1 0 0 −d2 0

k2k3w
∗e−λτ k1

(
2y∗e−λτ

T1
− 1

)
0 0 k2

(
k3x

∗e−λτ − T2

)


.

Now we choose the coefficients as followinga1 = 1, a2 = 0.5, b1 = 0.006, b2 = 0.1, b3 = 0.18, c1 = 0.6, c2 = 0.5, c3 = 0.4, d1 = 0.1,
d2 = 0.06, d3 = 0.08,M = 1.8, N = 1, k1 = 0.68, k2 = 1.59, k3 = 0.5, k4 = 0.09,
T1 = 1.05, T2 = 2,

(41)
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and initial values are given as that

x(0) = 0.016, y(0) = 0.11, z(0) = 0.07, u(0) = 0.37, w(0) = 0.002, (42)

under which the characteristic polynomial for the equilibrium point

(0.8000,−3.7852, 0.0569, 1.2000, 2.3429)

can be computed simply as

F (λ) = λ5 + 3.9100λ4 + 0.4876λ3 − 0.0154λ2 − 0.0040λ− 0.0001 + e−4λτ (0.0024λ
+0.0001) + e−3λτ (0.0648λ2 + 0.0100λ+ 0.0004) + e−2λτ (0.1355λ3 − 0.0871λ2

−0.0181λ− 0.0008)− e−λτ (0.5510λ4 + 0.0518λ3 − 0.1044λ2 − 0.0152λ− 0.0005).

Obviously, F (λ) is a continuous function, by the intermediate value theorem, it is
known that there exists at least a real positive root for the equation above, so the
equilibrium point S∗1 or S∗2 is unstable.

4. PROPERTIES OF HOPF BIFURCATION

Theorem 3.2 tells us that Hopf bifurcation may appear for the equilibrium point S0

when τ = τ
(j)
i (i = 0, 1, 2, j = 0, 1, . . . ,m). In this section we analyze the properties of

Hopf bifurcation by the center manifold theorem and normal form method ([19, 21]).
For the equilibrium point S0, after defining functions as follows

s1(t) = x(tτ), s2(t) = y(tτ), s3(t) = z(tτ), s4(t) = u(tτ), s5(t) = w(tτ),

the system (3-1) can be equivalently transformed into the system below

ṡ(t) = Lµ (st) + F (µ, st) , µ ∈ R, (4-1)

where ṡ(t) = (ṡ1(t), ṡ2(t), ṡ3(t), ṡ4(t), ṡ5(t))T , st = s(t+ θ) = (s1(t+ θ), s2(t+ θ), s3(t+
θ), s4(t+ θ), s5(t+ θ))T , φi(θ) = si(t+ θ)(i = 1, 2, 3, 4, 5) and C = C([−1, 0],R5),
θ ∈ [−1, 0], Lµ : C→ R5, F : R× C→ R5 are given by

Lµ(φ) = τ


a1 0 0 0 0
b3N −b1 0 0 0

0 0 −c1c3 0 0
d1 0 0 −d2 0
0 −k1 0 0 −k2T2



φ1(0)
φ2(0)
φ3(0)
φ4(0)
φ5(0)

+τ


0 −a2 −a2 −d3 −k4
0 0 −b2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



φ1(−1)
φ2(−1)
φ3(−1)
φ4(−1)
φ5(−1)

 ,

F (µ, φ) = τ


− a1
M
φ1(0)φ1(−1)

−b3φ1(0)φ1(−1) + b3φ1(0)φ3(−1)
c1c2φ3(0)φ1(−1)

0
k1
T1
φ2(0)φ2(−1) + k2k3φ5(0)φ1(−1)

 ,
φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ))

T
.
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According to Riesz Representation Theorem, there exists a bounded variation func-
tion matrix η(θ, µ), θ ∈ [−1, 0], which satisfies that

Lµ(φ) =

∫ 0

−1
dη(θ, µ)φ(θ),∀φ ∈ C. (43)

Next in order to be decomposed in the phase space, the system (4-1) are subsequently
transformed into the ordinary differential equations.

For φ(θ) ∈ C, define

A(µ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(ξ, µ)φ(ξ), θ = 0,

R(µ)φ(θ) =

{
0, θ ∈ [−1, 0),
F (µ, φ), θ = 0.

Then the system (4-1) can be transformed into the abstract differential equation

ṡt = A(µ)st +R(µ)st, (4-2)

where st = s(t+ θ), θ ∈ [−1, 0].

For ψ(χ) ∈ C
(

[−1, 0],
(
R5
)∗)

, define

A∗(µ)ψ(χ) =


−dψ(χ)

dχ
, χ ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), χ = 0,

where ηT (t, 0) is defined in (43).

For φ ∈ C and ψ ∈ C
(

[−1, 0],
(
R5
)∗)

define the bilinear function

〈ψ, φ〉 = ψ(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ, 0)φ(ξ)dξ. (44)

From the discussions in the section above, we know that ±iωτ (j)i (i = 0, 1, 2, j =
0, 1, 2, . . . ,m) are eigenvalues of A(0), and A∗(0) is adjoint operator of A(0). Sup-

pose q(θ) = q(0)eiωτ
(j)
i θ is an eigenvector of A(0) corresponding to iωτ

(j)
i and q∗(χ) =

Dq∗(0)eiωτ
(j)
i χ is the eigenvector of A∗(0) corresponding to −iωτ (j)i , where q(0) =
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[1, α, β, γ, δ]
T

, q∗(0) = [1, p, g, k, ε]. Moreover 〈q∗(χ), q(θ)〉 = 1. Then we obtain that



α =
b3N

b1 + iω
,

β = 0,

γ =
d1

d2 + iω
,

δ = − b3k1N

(k2T2 + iω) (b1 + iω)
,

and



p =
a2 (iω − k2T2) + k1k4
(iω − b1) (iω − k2T2)

,

q =
a2 (iω − b1) (iω − k2T2) + b2a2 (iω − k2T2) + k1k4

(iω − c1c3) (iω − b1) (iω − k2T2)
,

k =
d3

iω − d2
,

ε =
k4

iω − k2T2

D =

[
1 + αp+ kr + εδ − τ (j)i (a2α+ d3r + k4δ)e

−iωτ(j)i

]−1

.

When µ = 0, for any solution of the system (4-2) define

z (t) = 〈q∗, st〉 ,W (t, θ) = st (θ)− 2 Re {z (t) q (θ)} (45)

on the center manifold. We have

W (t, θ) = W
(
z (t) , z (t), θ

)
,

where

W
(
z (t) , z (t), θ

)
= W20 (θ)

z2 (t)

2
+W11 (θ) z (t) z (t) +W02 (θ)

z (t)
2

2
+ · · · , (46)

z (t) and z (t) are local coordinates for center manifold in the directions of q∗ and q∗.
Then the flow of the system (4-1) on the center manifold can be determined by the

following equations

ż (t) = iωτ
(j)
i z (t) + q∗ (0)F (0,W (t, 0) + 2 Re [z (t) q (0)]) .

Denote
G
(
z (t) , z (t)

)
= q∗ (0)F (0,W (t, 0) + 2 Re [z (t) q (0)]) .

From
W (t, 0) + 2 Re [z (t) q (0)] = st,

we get that
F (0,W (t, 0) + 2 Re [z (t) q (0)]) = F (0, st) ,

G
(
z (t) , z (t)

)
= τ

(j)
i D

(
1, p, q, k, ε

)


− a1
M
s1t (0) s1t (−1)

−b3s1t (0) s1t (−1) + b3s1t (0) s3t (−1)
c1c2s3t (0) s1t (−1)

0
k1
T1
s2t (0) s2t (−1) + k2k3s5t (0) s1t (−1)

 , (47)
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which can be expressed as power series of z (t) and z (t)

G
(
z (t) , z (t)

)
= g20

z(t)
2

2
+ g11z (t) z (t) + g02

z(t)
2

2
+ · · · , (48)

and

F (0, st) = f20
z(t)

2

2
+ f11z (t) z (t) + f02

z(t)
2

2
+ · · · , (49)

respectively.
From (45) and (46), we have that

st (θ) = (1, α, β, γ, δ)
T
eiωτ

(j)
i θz (t) +

(
1, α, β, γ, δ

)T
e−iωτ

(j)
i θz (t)+

W20 (θ) z
2(t)
2 +W11 (θ) z (t) z (t) +W02 (θ) z(t)

2

2 + · · · ,
(50)

where st (θ) = [s1t (θ) , s2t (θ) , s3t (θ) , s4t (θ) , s5t (θ)]
T

.
Substituting (50) into (47) and comparing their coefficients with that of (48) and (49)

respectively gives that

g20 = q∗ (0)f20 = 2Dτ
(j)
i

[
− a1
M
− pb3 +

(
k1
T1
α2 + k2k3δ

)
ε

]
e−iωτ

(j)
i ,

g11 = q∗ (0)f11 = Dτ
(j)
i

(
− a1
M
− pb3

)(
e−iωτ

(j)
i + eiωτ

(j)
i

)
+[(

k1
T1
αα+ k2k3δ

)
e−iωτ

(j)
i +

(
k1
T1
αα+ k2k3δ

)
eiωτ

(j)
i

]
Dτ

(j)
i ε,

g02 = q∗ (0)f02 = 2Dτ
(j)
i

[
− a1
M
− pb3 +

(
k1
T1
α2 + k2k3δ

)
ε

]
eiωτ

(j)
i ,

g21 = q∗ (0)f21

=
(
− a1
M
− pb3

)(
W

(1)
11 (−1) +

W
(1)
20 (−1)

2
+
W

(1)
20 (0)

2
eiωτ

(j)
i +W

(1)
11 (0)e−iωτ

(j)
i

)
Dτ

(j)
i +

(
W

(3)
11 (0)e−iωτ

(j)
i +W

(3)
20 (0)eiωτ

(j)
i

)
c1c2qDτ

(j)
i +(

W
(3)
11 (−1) +

W
(3)
20 (−1)

2

)
b3pDτ

(j)
i +

(
W

(2)
20 (−1) +W

(2)
20 (0)eiωτ

(j)
i

)
εα

k1
2T1

Dτ
(j)
i +

(
W

(2)
11 (−1) +W

(2)
11 (0)e−iωτ

(j)
i

)
εα
k1
T1
Dτ

(j)
i +(

W
(5)
11 (0)e−iωτ

(j)
i +W

(1)
11 (−1)δ +

W
(1)
20 (−1)

2
δ +

W
(5)
20 (0)

2
eiωτ

(j)
i

)
k2k3εDτ

(j)
i

(51)

where g21 is determined by W20 and W11.
From the paper [18], we obtain that

W20 (θ) =
ig20

wτ
(j)
i

q (0) eiωτ
(j)
i θ +

ig02

3ωτ
(j)
i

q (0)e−iωτ
(j)
i θ + E1e

2iωτ
(j)
i θ,

W11 (θ) = − ig11

wτ
(j)
i

q (0) eiωτ
(j)
i θ +

ig11

ωτ
(j)
i

q (0)e−iωτ
(j)
i θ + E2,

where

E1 =

[
2iωτ

(j)
i I −

∫ 0

−1
e2iωτ

(j)
i θdη (θ, 0)

]−1
f20, E2 = −

[∫ 0

−1
dη (θ, 0)

]−1
f11.
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From g20 = q∗ (0)f20 and g11 = q∗ (0)f11, we have that

f20 = 2τ
(j)
i e−iωτ

(j)
i



− a1
M
−b3

0
0(

k1
T1
α2 + k2k3δ

)


,

and

f11 = τ
(j)
i



− a1
M

(
eiωτ

(j)
i + e−iωτ

(j)
i

)
−b3

(
eiωτ

(j)
i + e−iωτ

(j)
i

)
0
0(

k1
T1
αα+ k2k3δ

)
e−iωτ

(j)
i +

(
k1
T1
αα+ k2k3δ

)
eiωτ

(j)
i


.

In addition, according to the definition of A(µ), when µ = 0 these two equalities
below hold

∫ 0

−1

e2iωτ
(j)
i θdη (θ, 0) = τ

(j)
i


a1 −a2e−2iωτ

(j)
i −a2e−2iωτ

(j)
i −d3e−2iωτ

(j)
i −k4e−2iωτ

(j)
i

b3N −b1 −b2e−2iωτ
(j)
i 0 0

0 0 −c1c3 0 0
d1 0 0 −d2 0
0 −k1 0 0 −k2T2

 ,

∫ 0

−1

dη (θ, 0) = τ
(j)
i


a1 −a2 −a2 −d3 −k4
b3N −b1 −b2 0 0

0 0 −c1c3 0 0
d1 0 0 −d2 0
0 −k1 0 0 −k2T2

 ,

E
(1)
1 =

−2e
−iωτ(j)

i (2iw + d2) (2iw + b1)

 a1
M

(2iω + k2T2) e
2iωτ

(j)
i +

(
k1

T1

α
2

+ k2k3δ

)
k4


(2iω+k2T2)

a2b3N(2iw + d2)+(2iw+b1)

(2iw − a1)(2iw + d2)e
2iωτ

(j)
i +d1d3

−k1k4b3N(2iw + d2)

+

2b3 (2iw + d2) e
−iωτ(j)

i [a2 (2iω + k2T2) − k1k4]

(2iω+k2T2)

a2b3N (2iw + d2) + (2iw + b1)

(2iw − a1) (2iw + d2) e
2iωτ

(j)
i + d1d3

 − k1k4b3N (2iw + d2)

,

E
(2)
1 =

−2e
iωτ

(j)
i (2iω + k2T2)

 a1M b3N (2iw + d2) + b3

(2iw − a1) (2iw + d2) + d1d3e
−2iωτ

(j)
i


(2iω+k2T2)

a2b3N(2iw + d2)+(2iw+b1)

(2iw − a1)(2iw + d2)e
2iωτ

(j)
i +d1d3

−k1k4b3N(2iw + d2)

−

2b3k4Ne
−iωτ(j)

i (2iw + d2)

(
k1

T1

α
2

+ k2k3δ

)

(2iω+k2T2)

a2b3N (2iw + d2) + (2iw + b1)

(2iw − a1) (2iw + d2) e
2iωτ

(j)
i + d1d3

 − k1k4b3N (2iw + d2)

,

E
(3)
1 = 0,
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E
(4)
1 =

−2d1e
iωτ

(j)
i

a1

M
(2iw + b1) (2iω + k2T2) + 2d1b3e

−iωτ(j)
i [a2 (2iw + k2T2) − k1k4]

(2iω+k2T2)

a2b3N(2iw + d2)+(2iw+b1)

(2iw − a1)(2iw + d2)e
2iωτ

(j)
i +d1d3

−k1k4b3N(2iw + d2)

−

2d1k4e
−iωτ(j)

i

(
k1

T1

α
2

+ k2k3δ

)
(2iw + b1)

(2iω+k2T2)

a2b3N (2iw + d2) + (2iw + b1)

(2iw − a1) (2iw + d2) e
2iωτ

(j)
i + d1d3

 − k1k4b3N (2iw + d2)

,

E
(5)
1 =

2e
−iωτ(j)

i k1b3N

 a1M (2iw + d2) + b3k1

(2iw − a1) (2iw + d2) + d1d3e
−2iωτ

(j)
i


(2iω+k2T2)

a2b3N(2iw + d2)+(2iw+b1)

(2iw − a1)(2iw + d2)e
2iωτ

(j)
i +d1d3

−k1k4b3N(2iw + d2)

+

2e
iωτ

(j)
i


(
k1

T1

α
2

+ k2k3δ

)
{d1d3e

−2iωτ
(j)
i (2iw + b1) +(2iw + d2)

(2iw − a1)(2iw + b1) + a2b3Ne
−2iωτ

(j)
i

}


(2iω+k2T2)

a2b3N (2iw + d2) + (2iw + b1)

(2iw − a1) (2iw + d2) e
2iωτ

(j)
i + d1d3

 − k1k4b3N (2iw + d2)

,

E
(1)
2 =

k1

T1

αα

e−iωτ(j)i + e
iωτ

(j)
i

 + k2k3

δe−iωτ(j)i + δe
iωτ

(j)
i

 b1d2k4
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

−

e−iωτ(j)i + e
iωτ

(j)
i

[−a1
M

b1d2k2T2 + b3d2(a2k2T2 − k1k4)

]

d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)
,

E
(2)
2 =

e−iωτ(j)i + e
iωτ

(j)
i

 [ a1
M
d2b3Nk2T2 + b3k2T2(d1d3 − a1d2)

]
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

+

 k1
T1

αα

e−iωτ(j)i + e
iωτ

(j)
i

 + k2k3

δe−iωτ(j)i + δe
iωτ

(j)
i

 d2k4b3N
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

,

E
(3)
2 = 0,

E
(4)
2 =

e−iωτ(j)i + e
iωτ

(j)
i

 [b1d1k2T2 a1
M

+ b3d1 (k1k4 − a2k2T2)

]
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

+

 k1
T1

αα

e−iωτ(j)i + e
iωτ

(j)
i

 + k2k3

δe−iωτ(j)i + δe
iωτ

(j)
i

 b1d1k4
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

,

E
(5)
2 = −

 k1
T1

αα

e−iωτ(j)i + e
iωτ

(j)
i

 + k2k3

δe−iωτ(j)i + δe
iωτ

(j)
i

 (b1d3d1 − d2a1b1 + b3d2a2N)

d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

−

e−iωτ(j)i + e
iωτ

(j)
i

 [ a1
M
k1d2b3N − b3k1(a1d2 − d1d3)

]
d2b3Nk1k4 + k2T2 (a1b1d2 − a2d2b3N − b1d1d3)

,

where E1 =
(
E

(1)
1 , E

(2)
1 , E

(3)
1 , E

(4)
1 , E

(5)
1

)T
, E2 =

(
E

(1)
2 , E

(2)
2 , E

(3)
2 , E

(4)
2 , E

(5)
2

)T
.

Substitute E1 and E2 into W20(θ) and W11(θ) respectively, and substitute W20(θ)
and W11(θ) into g21, then all of g20, g11, g02 and g21 can be obtained from the system
(3-1).
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Denote c1(0) =
i

2ωτ0

(
g20g11 − 2 |g11|2 −

|g02|2

3

)
+
g21
2

, then we have the parameters

below which determine the properties of Hopf bifurcation

µ
(j)
i2 = −Re {c1(0)}

Re {λ′)}
, β

(j)
i2 = 2 Re {c1(0)} , τ (j)i2 = −

Im {c1(0)}+ µ2 Im
{
λ′
(
τ
(j)
i

)}
ωτ

(j)
i

.

According to positiveness or negativeness of the parameters above and the reference
[21], we obtain the properties of Hopf bifurcation stated by the following theorem.

Theorem 4.1. If µ
(j)
i2 > 0(µ

(j)
i2 < 0) (i = 0, 1, 2, j = 0, 1, 2, . . . ,m) then the periodic

solutions of Hopf bifurcation are supercritical (subcritical). If β
(j)
i2 < 0(β

(j)
i2 > 0) (i =

0, 1, 2, j = 0, 1, 2, . . . ,m), then the periodic solutions of Hopf bifurcation are asymptot-

ically stable (unstable). If τ
(j)
i2 > 0(τ

(j)
i2 < 0) (i = 0, 1, 2, j = 0, 1, 2, . . . ,m), then the

period of bifurcating period solutions increases (decreases).

4.1. Simulation

In this section, we will simulate the state of the delayed system (3-1) to illustrate the
effectiveness of the Theorem 3.2 and Theorem 4.1. First of all, parameters are selected
as followinga1 = 0.09, a2 = 0.077, b1 = 0.08, b2 = 5, b3 = 0.16, c1 = 0.2, c2 = 0.5, c3 = 0.4,

d1 = 0.01, d2 = 0.06, d3 = 0.08, M = 1.85, N = 0.6, k1 = 0.68, k2 = 1.4, k3 = 0.49,
k4 = 0.09, T1 = 1.95, T2 = 2.7,

and initial values have been chosen to be

x(0) = 0.016, y(0) = 0.11, z(0) = 0.07, u(0) = 0.37, w(0) = 0.002.

Then we obtain Figure 4 which shows that the system (1-1) is unstable when τ = 0, and
Figure 5 which shows that the system (3-1) is chaotic when τ = 0.2.
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Fig 4. The equilibrium point S0 is unstable when τ = 0.
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Fig 5. The equilibrium point S0 is unstable when τ = 0.2.

For the case that there exists only one root of the equation (28), we choose the
parameters (18) under which the system (1-1) without time delay is stable as is shown
in Figure 1. Through simple computations, we attain the following values

ω = 0.1214 and τ (n) = 3.2974 + 25.8780n, n = 0, 1, 2, . . . . (52)

It is shown in the Theorem 3.2 that the equilibrium point S0 is asymptotically stable
when τ ∈ [0, 3.2974) and unstable when τ ∈ (3.2974,+∞), moreover, Hopf bifurcation
appears when τ = 3.2974.

Now we set τ = 2.5 ∈ [0, 3.2974), then we attain Figure 6 which shows that system(3-
1) is stable and the equilibrium pointS0 is asymptotically stable.
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Fig 6. The equilibrium point S0 is stable when τ = 2.5 ∈ [0, 3.2974).
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Set τ = 8 ∈ (3.2974,+∞), numerical simulation is given in Figure 7 which shows
that the equilibrium point S0 is unstable.
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Fig 7. The equilibrium point S0 is unstable when

τ = 8 ∈ (3.2974,+∞).

When τ = τ0 = 3.2974 , the parameters which determine the properties of Hopf
bifurcation can be obtained as

µ ≈ −5361.8<0, β ≈ 26.5680>0, τ ≈ −105.1107<0, (53)

which together with Theorem 4.1 show that the periodic solutions of Hopf bifurcation
are subcritical, unstable and decreases periodically. As we set τ = τ0 = 3.2974, then
we have Figure 8 which shows that the states of the system shock periodically near the
equilibrium point S0. Obviously Hopf bifurcation appears.
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Fig 8. Hopf bifurcation appears when τ = 3.2974.
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5. CONCLUSION

In this paper, we consider the five-dimensional energy demand-supply system which is
the high-dimensional ordinary differential equations and applied widely in reality. First
of all, we analyze the stability and obtain the conditions of stability or instability for
all of the equilibrium points. Numerical simulations have then been given in order to
illustrate the effectiveness of all of the cases for the related theorems. Secondly, the
phenomenon of time delay has been introduced in the energy model which results in
the construction of the delayed system. The stability of the equilibrium points of the
delayed system has been analyzed completely by the stability switching technique, which
tells us the stability and instability intervals for the delay. This may be conducted in
the actual process of the energy demand and supply. Especially, for the case that Hopf
bifurcation appears, the explicit formulae of the parameters have been shown to illustrate
the properties of the periodic solutions. Finally, the numerical simulations have been
given to show the effectiveness of the main results. The related future work may be
focused on the form of the controller to stabilize the applied high-dimensional ordinary
differential equations.
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