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CHARACTERIZATION OF ADMISSIBLE LINEAR
ESTIMATORS UNDER EXTENDED BALANCED
LOSS FUNCTION

Buatikan Mirezi and Selahattin Kaçıranlar

In this paper, we study the admissibility of linear estimator of regression coefficient in
linear model under the extended balanced loss function (EBLF). The sufficient and necessary
condition for linear estimators to be admissible are obtained respectively in homogeneous and
non-homogeneous classes. Furthermore, we show that admissible linear estimator under the
EBLF is a convex combination of the admissible linear estimator under the sum of square
residuals and quadratic loss function.
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1. INTRODUCTION

The following notations and operations on a matrix L are used throughout this paper.
We will write L ∈ Rp×n, if L is a p×n real matrix, L ∈ Rp if L is a p×1 real matrix and
p×p identity matrix written as Ip. For a matrix L, the symbols L′, L−, L+, tr(L), C(L)
and λ(L) stand for respectively the transpose, g-inverse, Moore–Penrose inverse, trace,
column space(range) and eigenvalues of L. For symmetric matrices L and M , L ≥ M
and L > M represent the nonnegative definite (n.n.d) and positive definite (p.d) of
matrix L − M . We shall write Ly ∼ β to denote that Ly is admissible for β, also
Ly 6∼ β to denote that Ly is not admissible for β. Consider the linear model

y = Xβ + ε, E(ε) = 0, E(εε′) = σ2In (1)

where y is an n × 1 vector of observations on the dependent variable, X is an n × p
model matrix of observations on the p regressors and X has full of rank p, β ∈ Rp and
σ2 > 0 are unknown parameters , ε is an n× 1 vector of disturbances.

Let β∗ denote any estimator of β, then the quadratic loss function which reflects the
goodness of fit of the model is

(y −Xβ∗)′(y −Xβ∗), (2)
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where Xβ∗ is the predictor for y. Similarly, the precision of estimator of β is measured
by the weighted loss function

(β∗ − β)′X ′X(β∗ − β). (3)

Generally, either of the criterion of (2) or (3) is used to judge the performance of any
estimator. By combining the (2) and (3), Zellner [27] proposed a new criterion called
balanced loss function (ZBLF), which focuses on estimates around true parameter and
goodness of fit of model

ZBLF (β∗, β) = t (y −Xβ∗)
′
(y −Xβ∗) + (1− t)(β∗ − β)′X ′X(β∗ − β). (4)

ZBLF has received considerable attention in the literature under different setups, see for
example, Xu and Wu [25], Cao [7], Cao and He [8].

Further, Shalabh [21] has defined a target function for the purpose of simultaneous
prediction of actual and average values of y as

T = ty + (1− t)E (y) , (5)

where t is a scalar between 0 and 1.
The following predictive loss function arises when we use the predictor Xβ∗ for si-

multaneous prediction of actual and average values of y through the target function (5):

PLF (β∗, β, t) = (Xβ∗ − T )′(Xβ∗ − T )

= t2 (y −Xβ∗)
′
(y −Xβ∗) + (1− t)2(β∗ − β)′X ′X(β∗ − β)

+ 2t(1− t)(Xβ∗ − y)′X(β∗ − β).

(6)

Predictive loss function not only incorporates the ZBLF as its particular case but
also measures the correlation between the goodness of fit of model and concentration of
estimates around the true parameter.

Appereciating the popularity of the ZBLF, Shalabh et al. [22] proposed the EBLF
as follows:

EBLF (β∗, β, t1, t2) = t1 (y −Xβ∗)
′
(y −Xβ∗) + t2(β∗ − β)′X ′X(β∗ − β)

+ (1− t1 − t2) (Xβ∗ − y)′X(β∗ − β),
(7)

where t1and t2 are the scalars lying between 0 and 1 characterizing the loss functions.
EBLF encompass the following particular cases:

1. When t1 = 1 and t2 = 0, the EBLF in Equation (7) reduces to the (2) which is
the criterion of goodness of fit of model .

2. If we put t1 = 0 and t2 = 1, the EBLF in Equation (7) reduces to the weighted
quadratic loss function of (3) which is the criterion of precision of estimation.

3. If t1 = 0 and t2 = 0, the EBLF in Equation (7) reduces to the component(Xβ∗ −
y)′X(β∗ − β) which is the criterion of interaction or covariation between the pre-
cision of estimation and goodness of fit.
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4. When we take t1 = t and t2 = 1 − t, where 0 < t < 1, we obtain the ZBLF in
Equation (4).

Then, from Equations (7), Shalabh et al. [22] observed that

EBLF (β∗, β, t1, t2) = t1ε
′ε− (1 + t1 − t2) ε′X(β∗ − β) + (β∗ − β)′X ′X(β∗ − β), (8)

and the risk of any estimator β∗ is the expected value of the EBLF which is calculated
by

R(β∗, β, t1, t2) = E(EBLF (β∗, β, t1, t2)). (9)
The main advantage of the EBLF is that it is more flexible in comparison to (4)

and (6). The ZBLF in Equation (4) takes care only either the precision of estimation
or the goodness of fit whereas the EBLF in Equation (7) extends it by considering
the interaction or covariation between the precision of estimation and goodness of fit.
Ignoring this covariation in the formulation of loss function may lead to wrong statistical
inferences. The weights assigned in Equation (6) for precision of estimation, goodness
of fit and their covariation depends only on one factor t assigned to one of the criterion
only. The EBLF in Equation (7) provides a more flexible option of choosing different
weights for precision of estimation, goodness of fit and covariation terms and, in the
presence of covariation, it will obviously lead to improved statistical inferences ( see
Chaturvedi and Shalabh [6] ).

There are some studies on EBLF by some authors. For example; Özbay and Kaçıranlar
[18] discussed the performance of the adaptive optimal estimator of Farebrother (1975)
under the EBLF. Kaçıranlar and Dawoud [15] introduced and derived the optimal EBLF
estimators and predictors and discussed their performances.

The problem of admissibility of linear estimators was investigated first by Cohen
[4]. Ten years later, an exhaustive study of the problem was given by Rao [19] for
the more general model. Characterization of admissible linear estimators has received
considerable attention in the literature under different models or loss function. Some
important examples are given as follows: Baksalary and Markiewicz [1,2,3], Klonecki
and Zontek [14], Stepniak [20], Hoffmann [13], Markiewicz [17], Yu Lu and Zhong Shi
[26], Groß and Markiewicz [12]. Recently, Synowka Bejenka and Zontek [24] examined
on admissibility of linear estimators in models with finitely generated parameter space.
Stepniak [23] studied on admissible invariant estimators in a linear model. As far as we
know, characterization of admissible linear estimators is not studied under EBLF, and
this will be discussed in this article.

Throughout this paper, linear estimators are, respectively, from the following non-
homogeneous and homogeneous classes

L =
{
Ly + a : L ∈ Rp×n, a ∈ Rp

}
, (10)

and
Lh =

{
Ly : L ∈ Rp×n} . (11)

In this paper, Section 2 we give our main results, namely the sufficient and necessary
conditions for linear estimators to be admissible and some corollaries. Section 3 contains
some definitions and lemmas playings important roles in this paper. Proofs of the main
results are given in Section 4 and details of the proofs are given in Appendix, Conclusions
are assigned in Section 5.



616 B. MIREZI AND S. KACIRANLAR

2. THE MAIN RESULTS

In this section, the sufficient and necessary condition for linear estimators to be ad-
missible are obtained respectively in L and Lh classes. In addition, admissible linear
estimator under the EBLF is shown by the convex combination of linear admissible
estimators under the sum of square residuals and quadratic loss function.

2.1. Explicit characterization

It is known that EBLF is more sensitive than the quadratic loss and reduces to the
quadratic loss when t1 = 0 and t2 = 1. Thus, there exists some relationship between
the EBLF and the quadratic loss. It is presented in Theorem 2.1 which plays a crucial
role in proving the main results.

Theorem 2.1. Given linear model{
z = X ′Xβ + u
E(u) = 0, E(uu′) = σ2X ′X,

(12)

where β ∈ Rp andσ2 > 0 are unknown and u is a p- dimensional error vector. Let
C = (1− w) Ip, L̃ =

{
L̃z : L̃ ∈ Rp×p

}
, Lh0 = {L0X

′y : L0 ∈ Rp×p}, the loss function

LFB(β∗, Cβ) = (β∗ − Cβ)′B(β∗ − Cβ),

L̃ = L0 − w (X ′X)
−1, and Cβ is linearly estimable in model (12). Then, under model

(12) and loss LFB(β∗, Cβ), L̃z L̃∼Cβ holds if and only if L0X
′y
Lh

0∼ β holds under model
(1) and the EBLF, where w = (1 + t1 − t2) /2 and 0 ≤ w ≤ 1.

The following characterization can be derived from the above results.

Theorem 2.2. Under model (1) and the EBLF, Ly L
h

∼ β holds if and only if L can be
written as

L =
[
w (X ′X)

−1
+ (1− w) (X ′X)

−1/2
D (X ′X)

−1/2
]
X ′,

where w = (1 + t1 − t2) /2 , 0 ≤ w ≤ 1 and D = (X ′X)
1/2

LX (X ′X)
−1/2 is symmetric

and λ(D) ⊂ [0, 1].

According to the Theorem 2.2, we can obtain the following corollary.

Corollary 2.3. In linear model (1), if A is the set of admissible linear estimator of β in
Lh under the LFI(β∗, β) = (β∗ − β)′(β∗ − β), and let A∗ is the set of admissible linear
estimator of β under the EBLF. Then, A∗ can be demonstrated as follows

A∗ =
{
wβ̂ + (1− w)β̃mse : β̃mse ∈ A

}
=
{
β̂ − (1− w) (X ′X)

−1/2
D (X ′X)

−1/2
X ′y : β̃mse ∈ A

}
,

where β̂ denotes least square estimator which is the admissible estimator under loss
(2) and β̃mse is the admissible estimator under the loss LFI(β∗, β).
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Theorem 2.4. Under model (1) and the EBLF, Ly+a
L∼ β holds if and only if Ly L

h

∼ β
and a ∈ C (LX − Ip) holds simultaneously.

2.2. Implicit characterization

Theorem 2.2 and Theorem 2.4 provide the explicit form of L and a which is necessary and
sufficient for Ly + a

L∼ β. From the following theorem, the implicit characterizations of
admissible linear estimators Ly+a by giving necessary and sufficient algebraic conditions
on L and a can be deduced.

Theorem 2.5. Under model (1) and the EBLF, Ly + a
L∼ β holds if and only if

i. XL = L′X ′,

ii. λ(XL) ⊂ [0, 1],

iii. a ∈ C (LX − Ip).

3. PRELIMINARIES

Lemma 3.1. Let y be an n× 1 random vector with E(y) = µ and Cov(y) = V and let
W be an n× n non- stochastic matrix. Then the identity

E(y′Wy) = tr(WV ) + µ′Wµ,

holds true. Note that the above result holds for any not necessarily symmetric square
matix W .

Definition 3.2. Let L be a class of estimators. For arbitrary d (y) /∈ L, if there exists
an estimator d1 (y) ∈ L such that d1 (y) is better than d (y), then L is called a complete
class (Lehmann and Casella [16]) .

Thus from this definition, it is known that we only need to search admissible estima-
tors in the complete class.

Lemma 3.3. Let Lh0 = {L0X
′y : L0 ∈ Rp×p}. Then Lh0 is a complete class of Lh in

Equation (11).

P r o o f . If β∗ = Ly ∈ Lh, using some properties of trace and Lemma 3.1, from Equation
(7) and (9), we get

R
(
Ly; β, σ2

)
= E

[
t1 (y −XLy)

′
(y −XLy) + t2 (Ly − β)

′
X ′X (Ly − β)

]
+
[
(1− t1 − t2)E (XLy − y)

′
X (Ly − β)

]
= σ2tr

[
t1 (In −XL)

′
(In −XL) + t2 (L′X ′XL)

]
+ σ2tr (1− t1 − t2)

(
(XL− In)

′
XL

)
+ β′X ′ (In −XL)

′
(In −XL)Xβ.

(13)
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On the other hand, if Ly ∈ Lh, then, LPXy = L0X
′y ∈ Lh0 , where PX = X (X ′X)

−1
X ′

and L0 = LX(X ′X)−1. So ,

R
(
Ly; β, σ2

)
−R

(
LPXy; β, σ2

)
= σ2tr [L′X ′XL (In − PX)] ≥ 0,

(see Graybill [10], p.307). Moreover, the equality holds if and only if L = LPX . The
proof is given in detail in the Appendix 1. �

The following Lemma 3.4 is essentially due to Rao [19] as extended by Chen et al. [5].

Lemma 3.4. Let L∗ =
{
Lz : L ∈ Rk×n } and{

z = X0β + u ;
E(u) = 0, E(uu′) = σ2V,

(14)

where, n× p matrix X0 and V > 0 are known, β ∈ Rp and σ2 > 0 are unknown. If C
is a k × p matrix and Cβ is estimable, then Lz L

∗

∼ Cβ holds under loss function

LFI(β∗, Cβ) = (β∗ − Cβ)′(β∗ − Cβ),

if and only if the following statements are valid:

(a) L = LX0T
−X ′0V

−1

(b) LX0T
−X ′0L

′ ≤ LX0T
−C ′,

where LX0T
−C ′ is symmetric, T = X ′0V

−1X0 and T− is g - inverse of T .

We can see that if k = p, the set L∗ turns into Lh, and if n = k = p, the set L∗ turns
into L̃.

Lemma 3.5. (Dong and Wu [9]) In the linear model (12), the sufficient and neces-
sary condition for L̃z ∈ L̃ to be an admissible estimator of Cβ with respect to the
LFB(β∗, Cβ) is unrelated to B only if B > 0.

4. PROOFS OF THE MAIN RESULTS

P r o o f o f T h e o r em 2.1: Let L0X
′y ∈ Lh0 . We get from Equation (13)

R
(
L0X

′y ; β, σ2
)

= σ2tr(XL̃′BL̃X ′) + σ2tr
(
t1In − w2X (X ′X)

−1
X ′
)

+ β′
[
L̃X ′X − C

]′
B
[
L̃X ′X − C

]
β,

(15)

where w = (1 + t1 − t2) /2, 0 ≤ w ≤ 1, B = X ′X, C = (1− w) Ip and L̃ = L0 −
w (X ′X)

−1.

(The proof of Equation (15) is given in detail in the Appendix 2.)

Note that

ELFB(L̃z, Cβ) = σ2tr(XL̃′BL̃X ′) + β′
[(
L̃X ′X − C

)′
B
(
L̃X ′X − C

)]
β. (16)
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If L0X
′y
Lh

0∼β, then for an arbitrary M0X
′y ∈ Lh0 , we have

R
(
L0X

′y ; β, σ2
)
≤ R

(
M0X

′y ; β, σ2
)
, (17)

for all β ∈ Rp andσ2 > 0, where M̃ = M0−w (X ′X)
−1. We can see from (15) and (16),

R
(
L0X

′y ; β, σ2
)
−R

(
M0X

′y ; β, σ2
)

= ELFB(L̃z, Cβ)− ELFB(M̃z, Cβ).

Then,we get that (17) holds if and only if for any M̃z ∈ L̃

ELFB(L̃z, Cβ) ≤ ELFB(M̃z, Cβ), (18)

holds for all β ∈ Rp and σ2 > 0, where M̃ = M0−w (X ′X)
−1. Thus, from the definition

of admissibility, (17) holds if and only if L̃z L̃∼ Cβ in model (12). So, proof of Theorem
2.1 is completed. �

The following characterization can be derived from the above results.

P r o o f o f T h e o r em 2.2. In this proof, first of all, we demonstrate that L̃ which is
given in Theorem 2.1. Then, using Lemma 3.3 and relationship between the L̃, L0 and
L, we will get the desired result.

Let k = n = p. If X0 = V = X ′X, model (14) reduces to the model (12) and
the set L∗ turns into L̃. Then, using Lemma 3.4, Lemma 3.5 and Theorem 2.1, under
the model (12) when B = X ′X, we get the necessary and sufficient condition for the

L̃z
L̃∼ Cβ under

LFX′X(β∗, Cβ) = (β∗ − Cβ)′X ′X(β∗ − Cβ),

are as follows:

(a) L̃ = L̃X ′X
(
X ′X (X ′X)

−1
X ′X

)−
X ′X (X ′X)

−1
= L̃

(b) L̃X ′XL̃′ ≤ (1− w)L̃, (19)

where (1− w)L̃ is symmetric and T = V = X ′X.

If we take D = (1− w)−1 (X ′X)
1/2

L̃ (X ′X)
1/2, using (19), we get

L̃X ′XL̃′ ≤ (1− w)L̃ ⇔ DD′ ≤ D,

where

DD′ = (1− w)−2 (X ′X)
1/2

L̃X ′XL̃′ (X ′X)
1/2

≤ (1− w)−1 (X ′X)
1/2

L̃ (X ′X)
1/2

= D,

then D′ = D and λ(D) ⊂ [0, 1]. So, from D = (1 − w)−1 (X ′X)
1/2

L̃ (X ′X)
1/2 we can

obtain the L̃ = (1−w) (X ′X)
−1/2

D (X ′X)
−1/2. Since (15) and Theorem 2.1, we know
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L0 = w (X ′X)
−1

+ L̃ and L̃z
L̃∼ Cβ ⇔ L0X

′y
Lh

0∼ β.

Then, under the model (1) and the EBLF, L0X
′y
Lh

0∼ β holds if and only if

L0 = w (X ′X)
−1

+ (1− w) (X ′X)
−1/2

D (X ′X)
−1/2

. (20)

As Ly ∈ Lh and L0X
′y ∈ Lh0 , then, L0X

′y = Ly ∈ Lh and using Lemma 3.3, we can

obtain the desired result that Ly L
h

∼ β under the EBLF holds if and only if L can be
written as

L =
[
w (X ′X)

−1
+ (1− w) (X ′X)

−1/2
D (X ′X)

−1/2
]
X ′, (21)

so, the proof of Theorem 2.2 is completed. �

According to the Theorem 2.2, we can obtain the following corollary.

P r o o f o f C o r o lł a r y 2.3. If we consider the special case of Lemma 3.4 when k = p,
X0 = X, V = In and C = Ip, then , we get the sufficient and necessary condition for

Lz
Lh

∼ β under the loss function LFI(β∗, β) are as follows:

a) L = LX (X ′X)
−1
X ′ = LPX , (22)

b) LPxL′ ≤ LX (X ′X)
−1
, (23)

where LX (X ′X)
−1 is symmetric and T = X ′X.

If we take D = (X ′X)
1/2

LX (X ′X)
−1/2 and using (23), we get

LPxL
′ ≤ LX (X ′X)

−1 ⇔ DD′ ≤ D,

where D′ = D and λ(D) ⊂ [0, 1]. From (22), L = LPX , we get

L = LX (X ′X)
−1
X ′ = (X ′X)

−1/2
D (X ′X)

−1/2
X ′.

For model (1), let

A =
{
Ly : L = LPX and LPXL′ ≤ LX (X ′X)

−1
}

=
{

(X ′X)
−1/2

D (X ′X)
−1/2

X ′y : D′ = D and 0 ≤ D ≤ Ip
}
.

(24)

If β̃mse ∈ A, then
β̃mse = Ly = (X ′X)

−1/2
D (X ′X)

−1/2
X ′y.

This is same as the results in Groß [11] when a = 0 (see p.221).

As A∗ is the set of admissible linear estimators of β in Lh under the EBLF, from
(22), we have

A∗ =

{
Ly =

[
w (X ′X)

−1
+ (1− w) (X ′X)

−1/2
D (X ′X)

−1/2
]
X ′y

whereD = D′ and 0 ≤ D ≤ Ip

}
=
{
wβ̂ + (1− w)β̃mse : β̃mse ∈ A

}
,

(25)
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for any β∗EBLF ∈ A∗ and L ∈ Lh. Then we get

β∗EBLF = Ly = wβ̂ + (1− w)β̃mse.

We have the following conclusion from the above statements:
The expression of A∗ shows that the admissible linear estimator under the EBLF is a
convex combination of the admissible linear estimators under the unweighted squared
error loss (2) and (3).

Since D = D′ and 0 ≤ D ≤ Ip, then D1 = Ip −D also symmetric and 0 ≤ D1 ≤ Ip.

So,

A =
{

(X ′X)
−1/2

D (X ′X)
−1/2

X ′y : D = D′ and 0 ≤ D ≤ Ip
}

=
{
β̂ − (X ′X)

−1/2
D1 (X ′X)

−1/2
X ′y : D1 = D′1 and 0 ≤ D1 ≤ Ip

}
.

(26)

Combining (25) and (26), A∗ can be rewritten as follows

A∗ = wβ̂ + (1− w)β̃

= wβ̂ + (1− w)
(
β̂ − (X ′X)

−1/2
D1 (X ′X)

−1/2
X ′y

)
= β̂ − (1− w)β̃mse.

(27)

P r o o f o f T h e o r em 2.4. Sufficiency.
If a linear estimator β∗ = Ly+ a ∈ L , then, using Equation (7) and (9), we get the risk
of its with respect to the EBLF.

R
(
Ly + a ; β, σ2

)
= t1E

[
(y −X(Ly + a))

′
(y −X(Ly + a))

]
+ t2E

[
((Ly + a)− β)

′
X ′X ((Ly + a)− β)

]
+ (1− t1 − t2)

[
E (X(Ly + a)− y)

′
X ((Ly + a)− β)

]
= σ2tr

[
t1 (In −XL)

′
(In −XL) + t2 (L′X ′XL)

]
+ (1− t1 − t2)σ2tr

(
(XL− In)

′
XL

)
+ [(LX − Ip)β + a]

′
X ′X [(LX − Ip)β + a]

(28)

(The proof of Equation (28) is given in detail in the Appendix 3).

As a ∈ C (LX − Ip), there exists a0 ∈ Rp such that a = (LX − Ip) a0. Hence, using
(28) we get

R
(
Ly + a ; β, σ2

)
= R

(
Ly ; β + a0, σ

2
)
. (29)

Suppose Ly + a 6∼ β, then there exists an estimator Qy + q such that

R
(
Qy + q ; β, σ2

)
≤ R

(
Ly + a ; β, σ2

)
, (30)
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holds for all β ∈ Rp andσ2 > 0.

Let β = −a0 in (30), then by (28) and (29)

[q − (QX − Ip) a0]
′
X ′X [q − (QX − Ip) a0]

= lim
σ2→0+

R
(
Qy + q ; −a0, σ2

)
≤ lim
σ2→0+

R
(
Ly + a ; β, σ2

)
= lim
σ2→0+

R
(
Ly ; 0, σ2

)
.

(31)

Since X ′X > 0 and the right side of inequality (31) is approaching zero. Therefore,

q = (QX − Ip) a0. (32)

From (29), (30) and (32),

R
(
Qy ; β + a0, σ

2
)

= R
(
Qy + a0 ; β, σ2

)
≤ R

(
Ly + a0 ; β, σ2

)
= R

(
Ly ; β + a0, σ

2
)
,

and we get
R
(
Qy ; β0, σ

2
)
≤ R

(
Ly ; β0, σ

2
)
,

for all β0 ∈ Rp andσ2 > 0, where β0 = β + a0. Which means that Qy is better than Ly,
this is contradicting Ly ∼ β. Hence, the sufficiency is proved.

Necessity. Firstly, it is proved that a ∈ C (LX − Ip) when Ly + a ∼ β.
Denote S as the orthogonal matrix of projection onto C

{
(X ′X)

1/2
(LX − Ip)

}
and

s = (X ′X)
−1/2

S (X ′X)
1/2

a. Let η = (X ′X)
1/2

(LX − Ip), using the knowledge of pro-
jection matrix in Groß [11] (see pp.242-243) , we get

S = η(η′η)+η′

= (X ′X)
1/2

(LX − Ip) [(LX − Ip)′ (X ′X) (LX − Ip)]
+

(LX − Ip)′ (X ′X)
1/2

, (33)

and
s = (LX − Ip) [(LX − Ip)′ (X ′X) (LX − Ip)]

+
(LX − Ip)′ (X ′X) a. (34)

So, s ∈ C (LX − Ip) holds. Using Moore–Penrose properties such as η′η (η′η)
+
η′ = η′,

we have

R
(
Ly + a ; β, σ2

)
−R

(
Ly + s ; β, σ2

)
= a′X ′Xa− s′X ′Xs = a′ (X ′X)

1/2
(Ip − S) (X ′X)

1/2
a ≥ 0.

From which we get

R
(
Ly + a ; β, σ2

)
≥ R

(
Ly + s ; β, σ2

)
, (35)

for all β ∈ Rp andσ2 > 0. The inequality holds if and only if (X ′X)1/2a = S(X ′X)1/2a
holds, which is a = (X ′X)−1/2S(X ′X)1/2a = s. Inequality (35) and the admissibility of
Ly + a together result in a = s. Thus a ∈ C (LX − Ip) is right.
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Next, we prove that Ly ∼ β, when Ly + a ∼ β holds.
If Ly 6∼ β, there exists an estimator Ky such that

R
(
Ky ; β, σ2

)
≤ R

(
Ly ; β, σ2

)
, (36)

is right for all (β, σ2) with the strict inequality holding at some point (β1, σ
2
1). As

a ∈ C (LX − Ip), there exists a0 ∈ Rp such that a = (LX − Ip) a0.

So, by (36),

R
(
Ly + a ; β, σ2

)
= R

(
Ly ; β + a0, σ

2
)

≥ R
(
Ky ; β + a0, σ

2
)

= R
(
Ky + (KX − Ip)a0 ; β, σ2

)
,

holds for all (β, σ2) and the strict inequality is true at point
(
β1 − a0, σ2

1

)
, which means

that Ky + (KX − Ip)a0 is better than Ly + a, this is contradictory to the admissibility
of Ly+ a. Hence necessity is proved. Therefore, the proof of Theorem 2.4 is completed.

�

P r o o f o f T h e o r em 2.5. Using (21) in Theorem 2.2, we have

XL = wX (X ′X)
−1
X ′ + (1− w)X (X ′X)

−1/2
D (X ′X)

−1/2
X ′. (37)

If we set

H = X (X ′X)
−1
X ′, G = X (X ′X)

−1/2
D (X ′X)

−1/2
X ′,

since D and H is symmetric, then XL = wH + (1 − w)G is symmetric, which means
condition (i) satisfied. The non-zero eigenvalues of G coincide with the nonzero eigen-
values of D (X ′X)

−1/2
X ′X (X ′X)

−1/2
= D, where λ(D) ⊂ [0, 1]. This shows that, all

eigenvalues of the matrix G lie in [0,1], which denoted by λ(G) ⊂ [0, 1] (see Groß [11]
Theorem A.38).

Let H and G be two symmetric n × n matrices satisfying GH = HG. Then there
exists an n× n orthogonal matrix U such that

H = UΛU ′ andG = UΓU ′,

where Λ and Γ are two n × n diagonal matrices (see also Groß [11] Theorem A.47).
Then, XL can be written as

XL = U(wΛ + (1− w)Γ)U ′.

Since H is idempotent, H has only eigenvalues 0 or 1 and λ(G) ⊂ [0, 1] means that
diagonal element γi, i = 1, . . . , p lies in the interval [0, 1]. Then, we get

λ(wΛ + (1− w)Γ) ⊂ [0, 1]⇔ λ(XL) ⊂ [0, 1],

where 0 ≤ w ≤ 1 (see Graybill [10], p.43). So, condition (ii) also satisfied.
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Using results of Theorem 2.4, we have a ∈ C (LX − Ip). Thus, the proof of Theorem
2.4 is completed. �

Appendix 1: Proof of Lemma 3.3
Note that, β∗ = Ly ∈ Lh, using some properties of trace and Lemma 3.1, from Equation
(7) and Equation (9), we get

R
(
Ly;β, σ2

)
= σ2tr

[
t1 (In −XL)

′
(In −XL) + t2 (L′X ′XL)

]
+ σ2tr (1− t1 − t2)

(
(XL− In)

′
XL

)
+ β′X ′ (In −XL)

′
(In −XL)Xβ.

On the other hand, if Ly ∈ Lh, then LPXy = L0X
′y ∈ Lh0 , where PX = X (X ′X)

−1
X ′and

L0 = LX(X ′X)−1. So ,

R
(
Ly;β, σ2

)
−R

(
LPXy;β, σ2

)
= σ2tr [t1 (XLL′X ′) + t2 (XLL′X ′)

− t1 (XLPXL
′X ′)− t2 (XLPXL

′X ′)

+ (1− t1 − t2) (L′X ′XL−XLPXL′X ′)]
= σ2tr [t1L

′X ′XL (In − PX) + t2L
′X ′XL (In − PX)

+ (1− t1 − t2)L′X ′XL (In − PX)]

= σ2tr [L′X ′XL (In − PX)] ≥ 0.

Moreover, the equality holds if and only if L = LPX .

Appendix 2: The proof of Equations (15).

Firstly, let L0X
′y ∈ Lh0 we get Equation (15) using (13):

R
(
L0X

′y ; β, σ2
)

= σ2tr
[
t1 (In −XL0X

′)
′

(In −XL0X
′) + t2 (XL′0X

′XL0X
′)

+ (1− t1 − t2)
(

(XL0X
′ − Ip)

′

XL0X
′
)]

+ β′X ′ (In −XL0X
′)
′

(In −XL0X
′)Xβ

= σ2tr [XL′0X
′XLX ′ − (1 + t1 − t2)XL0X

′] + σ2tr (t1In)

+ β′ (L0X
′X − Ip)

′

X ′X (L0X
′X − Ip)β.

Since 0 ≤ t1, t2 ≤ 1 , we can find such a w denoted by w = (1 + t1 − t2) /2, where
0 ≤ w ≤ 1. Then above equation can be rewritten as follows:

R
(
L0X

′y ; β, σ2
)

= σ2tr

[(
L0X

′ − w (X ′X)
−1
X ′
)′
X ′X

(
L0X

′ − w (X ′X)
−1
X ′
)]

+ σ2tr
(
t1In − w2X (X ′X)

−1
X ′
)

+ β′ (L0X
′X − Ip)

′

X ′X (L0X
′X − Ip)β.
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Let
B = X ′X,C = (1− w) Ip, L̃ = L0 − w (X ′X)

−1
.

Then, above equation equal to

R
(
L0X

′y ; β, σ2
)

= σ2trXL̃′BL̃X ′ + σ2tr
(
t1In − w2X (X ′X)

−1
X ′
)

+ β′
[
L̃X ′X − C

]′
B
[
L̃X ′X − C

]
β.

Appendix 3: The proof of Equation (28).

R
(
Ly + a;β, σ2

)
= t1

[
σ2tr (In −XL)

′
(In −XL) + β′X ′ (In −XL)

′
(In −XL)Xβ

−a′X ′(In −XL)Xβ − β′X ′ (In −XL)
′
Xa+ a′X ′Xa

]
+ t2

[
σ2tr(L′X ′XL) + β′X ′L′X ′XLXβ + β′X ′L′X ′X(a− β)

+(a− β)′X ′XLXβ + (a− β)′XX(a− β)]

+ (1− t1 − t2)
[
σ2tr (XL− In)

′
XL+ β′X ′ (In −XL)

′
XLXβ

+a′X ′XLXβ + β′X ′ (XL− In)
′
X(a− β) + a′X ′X(a− β)

]
= σ2tr

[
t1 (In −XL)

′
(In −XL) + t2 (L′X ′XL)

+ (1− t1 − t2)
(

(XL− In)
′
XL

)]
+ [(LX − Ip)β + a]

′
X ′X [(LX − Ip)β + a] .

5. CONCLUSIONS

We investigate the explict and implict characterization of admissible linear estimator
with respect to the EBLF. The relationship between the EBLF and the quadratic loss
is presented in Theorem 2.1. For the admissibility of an estimator of form Ly under the
EBLF, the structure of L is given in Theorem 2.2. We also show that admissible linear
estimator under the EBLF is a convex combination of the admissible linear estimator
under the sum of square residuals and quadratic loss function. The relationship between
the admissibility of homogeneous and heterogeneous estimators is given in Theorem 2.4.
Furthermore, the alternative theorem for the admissibility of heterogeneous estimators
is given as Theorem 2.5.
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